1
|
Mosti F, Hoye ML, Escobar-Tomlienovich CF, Silver DL. Multi-modal investigation reveals pathogenic features of diverse DDX3X missense mutations. PLoS Genet 2025; 21:e1011555. [PMID: 39836689 PMCID: PMC11771946 DOI: 10.1371/journal.pgen.1011555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/27/2025] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
De novo mutations in the RNA binding protein DDX3X cause neurodevelopmental disorders including DDX3X syndrome and autism spectrum disorder. Amongst ~200 mutations identified to date, half are missense. While DDX3X loss of function is known to impair neural cell fate, how the landscape of missense mutations impacts neurodevelopment is almost entirely unknown. Here, we integrate transcriptomics, proteomics, and live imaging to demonstrate clinically diverse DDX3X missense mutations perturb neural development via distinct cellular and molecular mechanisms. Using mouse primary neural progenitors, we investigate four recurrently mutated DDX3X missense variants, spanning clinically severe (2) to mild (2). While clinically severe mutations impair neurogenesis, mild mutations have only a modest impact on cell fate. Moreover, expression of severe mutations leads to profound neuronal death. Using a proximity labeling screen in neural progenitors, we discover DDX3X missense variants have unique protein interactors. We observe notable overlap amongst severe mutations, suggesting common mechanisms underlying altered cell fate and survival. Transcriptomic analysis and subsequent cellular investigation highlights new pathways associated with DDX3X missense variants, including upregulated DNA Damage Response. Notably, clinically severe mutations exhibit excessive DNA damage in neurons, associated with increased cytoplasmic DNA:RNA hybrids and formation of stress granules. These findings highlight aberrant RNA metabolism and DNA damage in DDX3X-mediated neuronal cell death. In sum our findings reveal new mechanisms by which clinically distinct DDX3X missense mutations differentially impair neurodevelopment.
Collapse
Affiliation(s)
- Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Mariah L. Hoye
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Carla F. Escobar-Tomlienovich
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Rafiepoor H, Ghorbankhanloo A, Soleimani Dorcheh S, Angouraj Taghavi E, Ghanadan A, Shirkoohi R, Aryanian Z, Amanpour S. Diagnostic Power of MicroRNAs in Melanoma: Integrating Machine Learning for Enhanced Accuracy and Pathway Analysis. J Cell Mol Med 2025; 29:e70367. [PMID: 39823244 PMCID: PMC11740884 DOI: 10.1111/jcmm.70367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
This study identifies microRNAs (miRNAs) with significant discriminatory power in distinguishing melanoma from nevus, notably hsa-miR-26a and hsa-miR-211, which have exhibited diagnostic potential with accuracy of 81% and 78% respectively. To enhance diagnostic accuracy, we integrated miRNAs into various machine-learning (ML) models. Incorporating miRNAs with AUC scores above 0.70 significantly improved diagnostic accuracy to 94%, with a sensitivity of 91%. These findings underscore the potential of ML models to leverage miRNA data for enhanced melanoma diagnosis. Additionally, using the miRNet tool, we constructed a network of miRNA-miRNA interactions, revealing 170 key genes in melanoma pathophysiology. Protein-protein interaction network analysis via Cytoscape identified hub genes including MYC, BRCA1, JUN, AURKB, CDKN2A, DDX5, MAPK14, DDX3X, DDX6, FOXM1 and GSK3B. The identification of hub genes and their interactions with miRNAs enhances our understanding of the molecular mechanisms driving melanoma. Pathway enrichment analyses highlighted key pathways associated with differentially expressed miRNAs, including the PI3K/AKT, TGF-beta signalling pathway and cell cycle regulation. These pathways are implicated in melanoma development and progression, reinforcing the significance of our findings. The functional enrichment of miRNAs suggests their critical role in modulating essential pathways in melanoma, suggesting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Haniyeh Rafiepoor
- Cancer Biology Research Center, Cancer InstituteTehran University of Medical SciencesTehranIran
| | - Alireza Ghorbankhanloo
- Cancer Biology Research Center, Cancer InstituteTehran University of Medical SciencesTehranIran
| | | | - Elham Angouraj Taghavi
- Cancer Biology Research Center, Cancer InstituteTehran University of Medical SciencesTehranIran
| | - Alireza Ghanadan
- Department of Dermatopathology, Razi HospitalTehran University of Medical SciencesTehranIran
| | - Reza Shirkoohi
- Cancer Biology Research Center, Cancer InstituteTehran University of Medical SciencesTehranIran
- Cancer Research Center, Cancer InstituteTehran University of Medical SciencesTehranIran
| | - Zeinab Aryanian
- Autoimmune Bullous Diseases Research Center, Razi HospitalTehran University of Medical SciencesTehranIran
| | - Saeid Amanpour
- Cancer Biology Research Center, Cancer InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Stefaniak-Preis U, Kaczmarek A, Andrusiewicz M, Roszak M, Trzeszczyńska N, Samborski W, Mojs E, Malak R. First Diagnostic Questionnaire for Assessing Patients' Social Functioning: Comprehensive DDX3X Syndrome Patient Profile. J Clin Med 2024; 13:7842. [PMID: 39768765 PMCID: PMC11676840 DOI: 10.3390/jcm13247842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: DDX3X syndrome is often misdiagnosed as autism spectrum disorder (ASD, Rett Syndrome, and Dandy-Walker Syndrome). Precise phenotyping is needed with reference to neurodevelopmental diagnosis. Observation of behavior and communication in parents with DDX3X syndrome in the USA, France, and Poland; conversations with the parents of patients; and rudimentary information in evidence-based medical articles prompted us to identify differences in communication, play, and social interaction between children with ASD only, those with both ASD and DDX3X, and those with DDX3X only. Methods: As diagnostic tool for DDX3X patients, we created a questionnaire divided into four sections: medical, social, play, and communication. Results: The results showed inconsistent diagnoses in different countries where children could have been diagnosed with DDX3X. In a comparative analysis, individuals with DDX3X exhibited greater social skills than individuals with ASD. Furthermore, those with DDX3X demonstrated higher levels of social functioning compared to children with ASD. Therefore, parents of children recently diagnosed with ASD or similar conditions are encouraged to complete a survey to determine if their child is likely to have features of DDX3X syndrome. Conclusion: Identification of early behavioral markers that differentiate children with ASD and those with DDX3X could lead to the earliest opportunity for identification and intervention, and can significantly impact developmental trajectories, leading to better long-term outcomes.
Collapse
Affiliation(s)
- Urszula Stefaniak-Preis
- Department of Clinical Psychology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland (E.M.)
| | - Ada Kaczmarek
- Department of Clinical Psychology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland (E.M.)
| | - Mirosław Andrusiewicz
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland;
| | - Magdalena Roszak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Rokietnicka 7, 60-806 Poznań, Poland
| | - Natalia Trzeszczyńska
- Department of Clinical Psychology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland (E.M.)
| | - Włodzimierz Samborski
- Department and Clinic of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 28 Czerwca 1956 r. 135/147, 61-545 Poznań, Poland
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland (E.M.)
| | - Roksana Malak
- Department and Clinic of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 28 Czerwca 1956 r. 135/147, 61-545 Poznań, Poland
| |
Collapse
|
4
|
Ma X, Lu T, Yang Y, Qin D, Tang Z, Cui Y, Wang R. DEAD-box helicase family proteins: emerging targets in digestive system cancers and advances in targeted drug development. J Transl Med 2024; 22:1120. [PMID: 39707322 DOI: 10.1186/s12967-024-05930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer has become one of the major diseases threatening human health in the twenty-first century due to its incurability. In 2022, new cases of esophageal and gastrointestinal cancers accounted for 17.1% of all newly diagnosed cancer cases worldwide. Despite significant improvements in early cancer screening, clinical diagnostics, and treatments in recent years, the overall prognosis of digestive system cancer patients remains poor. The DEAD-box helicase family, a crucial member of the RNA helicase family, participates in almost every aspect of RNA metabolism, including transcription, splicing, translation, and degradation, and plays a key role in the occurrence and progression of various cancers. This article aims to summarize and discuss the role and potential clinical applications of DEAD-box helicase family proteins in digestive system cancers. The discussion includes the latest progress in the occurrence, development, and treatment of esophageal and gastrointestinal tumors; the main functions of DEAD-box helicase family proteins; their roles in digestive system cancers, including their relationships with clinical factors; effects on cancer proliferation, migration, and invasion; and involved signaling pathways; as well as the existing inhibitory strategies targeting DDX family proteins, are discussed. Additionally, outlooks on future research directions are provided.
Collapse
Affiliation(s)
- Xiaochao Ma
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Tianyu Lu
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Yue Yang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Da Qin
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Ze Tang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China.
| | - Rui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| |
Collapse
|
5
|
Yanas A, Shweta H, Owens MC, Liu KF, Goldman YE. RNA helicases DDX3X and DDX3Y form nanometer-scale RNA-protein clusters that support catalytic activity. Curr Biol 2024; 34:5714-5727.e6. [PMID: 39591970 DOI: 10.1016/j.cub.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
DEAD-box helicases, crucial for many aspects of RNA metabolism, often contain intrinsically disordered regions (IDRs) whose functions remain unclear. Using multiparameter confocal microscopy, we reveal that sex chromosome-encoded homologous RNA helicases, DDX3X and DDX3Y, form nanometer-scale RNA-protein clusters (RPCs) that foster their catalytic activities in vitro and in cells. The IDRs are critical for the formation of these RPCs. A thorough analysis of the catalytic cycle of DDX3X and DDX3Y by ensemble biochemistry and single-molecule photon bursts in the confocal microscope showed that RNA release is a major step that differentiates the unwinding activities of DDX3X and DDX3Y. The N-terminal IDRs of DDX3X and DDX3Y are both the drivers of RPC formation and the major differentiators of their enzymatic activities. Our findings provide new insights that the nanoscale helicase RPCs may be the normal state of these helicases under non-stressed conditions that promote their RNA unwinding and might act as nucleation points for stress granule formation. This mechanism may apply broadly among other members of the DEAD-box helicase family.
Collapse
Affiliation(s)
- Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Him Shweta
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Choi ME, Choi EJ, Lee JH, Won CH, Chang SE, Lee MW, Lee WJ. Spatial transcriptomic analysis of amelanotic acral melanoma versus pigmented acral melanoma reveals distinct molecular determinants. Br J Dermatol 2024; 191:580-591. [PMID: 38815138 DOI: 10.1093/bjd/ljae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Amelanotic acral melanoma (AAM) is a rare type of acral melanoma that has a poor prognosis. OBJECTIVES To investigate the transcriptomic differences between AAM and pigmented acral melanoma (PAM). METHODS Differences in the spatially resolved transcriptomic profiles of 9 patients with AAM with 29 regions of interest (ROIs) and 11 patients with PAM with 46 ROIs were investigated using S100b and CD3 morphology markers. RESULTS In S100b+ tumour cell areas, we detected 11 upregulated differentially expressed genes (DEGs; including chaperone/ubiquitin--associated DEGs) and 82 downregulated DEGs (including human leucocyte antigen) in AAMs vs. PAMs. Protein-protein interaction network and pathway analyses revealed significant enrichment of dysregulated translational and nonsense-mediated decay pathways but significant decreases in antigen processing and presentation, interferon signalling and melanin biosynthesis pathways in S100b+ ROIs of AAMs compared with PAMs. In tumour-associated immune cell areas, the numbers of CD8 T cells (P = 0.04) and M1 macrophages (P = 0.01) were significantly decreased, whereas those of monocytes (P = 0.04) and endothelial cells (P = 0.04) were increased in AAMs compared with PAMs. CONCLUSIONS These findings could widen our understanding of the biological differences between AAMs and PAMs, which might result in a different clinical course.
Collapse
Affiliation(s)
- Myoung Eun Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Ji Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Hyeon Lee
- Department of Biomedical Science, Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Ulsan, Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Ma J, Ross SR. Multifunctional role of DEAD-box helicase 41 in innate immunity, hematopoiesis and disease. Front Immunol 2024; 15:1451705. [PMID: 39185415 PMCID: PMC11341421 DOI: 10.3389/fimmu.2024.1451705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
DEAD-box helicases are multifunctional proteins participating in many aspects of cellular RNA metabolism. DEAD-box helicase 41 (DDX41) in particular has pivotal roles in innate immune sensing and hematopoietic homeostasis. DDX41 recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses. DDX41 also binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, thereby maintaining genome stability by preventing their accumulation. DDX41 deficiency leads to increased R-loop levels, resulting in inflammatory responses that likely influence hematopoietic stem and progenitor cell production and development. Beyond nucleic acid binding, DDX41 associates with proteins involved in RNA splicing as well as cellular proteins involved in innate immunity. DDX41 is also a tumor suppressor in familial and sporadic myelodysplastic syndrome/acute myelogenous leukemia (MDS/AML). In the present review, we summarize the functions of DDX helicases in critical biological processes, particularly focusing on DDX41's association with cellular molecules and the mechanisms underlying its roles in innate immunity, hematopoiesis and the development of myeloid malignancies.
Collapse
Affiliation(s)
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Zhao J, Chen Z, Zhang M, Zou L, He S, Liu J, Wang Q, Song X, Wu J. DeepIRES: a hybrid deep learning model for accurate identification of internal ribosome entry sites in cellular and viral mRNAs. Brief Bioinform 2024; 25:bbae439. [PMID: 39234953 PMCID: PMC11375421 DOI: 10.1093/bib/bbae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/03/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
The internal ribosome entry site (IRES) is a cis-regulatory element that can initiate translation in a cap-independent manner. It is often related to cellular processes and many diseases. Thus, identifying the IRES is important for understanding its mechanism and finding potential therapeutic strategies for relevant diseases since identifying IRES elements by experimental method is time-consuming and laborious. Many bioinformatics tools have been developed to predict IRES, but all these tools are based on structure similarity or machine learning algorithms. Here, we introduced a deep learning model named DeepIRES for precisely identifying IRES elements in messenger RNA (mRNA) sequences. DeepIRES is a hybrid model incorporating dilated 1D convolutional neural network blocks, bidirectional gated recurrent units, and self-attention module. Tenfold cross-validation results suggest that DeepIRES can capture deeper relationships between sequence features and prediction results than other baseline models. Further comparison on independent test sets illustrates that DeepIRES has superior and robust prediction capability than other existing methods. Moreover, DeepIRES achieves high accuracy in predicting experimental validated IRESs that are collected in recent studies. With the application of a deep learning interpretable analysis, we discover some potential consensus motifs that are related to IRES activities. In summary, DeepIRES is a reliable tool for IRES prediction and gives insights into the mechanism of IRES elements.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Zhewei Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Lingxiao Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Shan He
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Quan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Jiangning District, Nanjing 211106, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| |
Collapse
|
9
|
Amson R, Senff-Ribeiro A, Karafin T, Lespagnol A, Honoré J, Baylot V, Banroques J, Tanner NK, Chamond N, Dimitrov JD, Hoebeke J, Droin NM, Job B, Piard J, Bommer UA, Choi KW, Abdelfatah S, Efferth T, Telerman SB, Geyer FC, Reis-Filho J, Telerman A. TCTP regulates genotoxic stress and tumorigenicity via intercellular vesicular signaling. EMBO Rep 2024; 25:1962-1986. [PMID: 38548973 PMCID: PMC11014985 DOI: 10.1038/s44319-024-00108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 04/14/2024] Open
Abstract
Oncogenic intercellular signaling is regulated by extracellular vesicles (EVs), but the underlying mechanisms remain mostly unclear. Since TCTP (translationally controlled tumor protein) is an EV component, we investigated whether it has a role in genotoxic stress signaling and malignant transformation. By generating a Tctp-inducible knockout mouse model (Tctp-/f-), we report that Tctp is required for genotoxic stress-induced apoptosis signaling via small EVs (sEVs). Human breast cancer cells knocked-down for TCTP show impaired spontaneous EV secretion, thereby reducing sEV-dependent malignant growth. Since Trp53-/- mice are prone to tumor formation, we derived tumor cells from Trp53-/-;Tctp-/f- double mutant mice and describe a drastic decrease in tumori-genicity with concomitant decrease in sEV secretion and content. Remarkably, Trp53-/-;Tctp-/f- mice show highly prolonged survival. Treatment of Trp53-/- mice with sertraline, which inhibits TCTP function, increases their survival. Mechanistically, TCTP binds DDX3, recruiting RNAs, including miRNAs, to sEVs. Our findings establish TCTP as an essential protagonist in the regulation of sEV-signaling in the context of apoptosis and tumorigenicity.
Collapse
Affiliation(s)
- Robert Amson
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Andrea Senff-Ribeiro
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Teele Karafin
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Alexandra Lespagnol
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Joane Honoré
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Virginie Baylot
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Josette Banroques
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, IBPC, 13 rue Pierre et Marie Curie and Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005, Paris, France
| | - N Kyle Tanner
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, IBPC, 13 rue Pierre et Marie Curie and Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005, Paris, France
| | - Nathalie Chamond
- Faculté de Pharmacie de Paris, Laboratoire CiTCom - UMR CNRS 8038 Université Paris Descartes 4 Avenue de l'Observatoire, 75270, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Johan Hoebeke
- Institut de Biologie Moléculaire et Cellulaire, UPR CNRS 9021, 15, rue René Descartes, 67084, Strasbourg, France
| | - Nathalie M Droin
- Institut Gustave Roussy (IGR), Unité Inserm U1287, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Bastien Job
- Institut Gustave Roussy (IGR), Bioinformatics Core Facility, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Jonathan Piard
- Département de Chimie, Ecole Normale Supérieure Paris-Saclay, 4 avenue Des Sciences, 91110, Gif-sur-Yvette, France
| | - Ulrich-Axel Bommer
- Graduate School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Felipe Correa Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Ave, New York, NY, 10065, USA
| | - Jorge Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Ave, New York, NY, 10065, USA
| | - Adam Telerman
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France.
| |
Collapse
|
10
|
Zhang H, Mañán-Mejías PM, Miles HN, Putnam AA, MacGillivray LR, Ricke WA. DDX3X and Stress Granules: Emerging Players in Cancer and Drug Resistance. Cancers (Basel) 2024; 16:1131. [PMID: 38539466 PMCID: PMC10968774 DOI: 10.3390/cancers16061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
The DEAD (Asp-Glu-Ala-Asp)-box helicase 3 X-linked (DDX3X) protein participates in many aspects of mRNA metabolism and stress granule (SG) formation. DDX3X has also been associated with signal transduction and cell cycle regulation that are important in maintaining cellular homeostasis. Malfunctions of DDX3X have been implicated in multiple cancers, including brain cancer, leukemia, prostate cancer, and head and neck cancer. Recently, literature has reported SG-associated cancer drug resistance, which correlates with a negative disease prognosis. Based on the connections between DDX3X, SG formation, and cancer pathology, targeting DDX3X may be a promising direction for cancer therapeutics development. In this review, we describe the biological functions of DDX3X in terms of mRNA metabolism, signal transduction, and cell cycle regulation. Furthermore, we summarize the contributions of DDX3X in SG formation and cellular stress adaptation. Finally, we discuss the relationships of DDX3X, SG, and cancer drug resistance, and discuss the current research progress of several DDX3X inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Han Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paula M. Mañán-Mejías
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrea A. Putnam
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - William A. Ricke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
11
|
Indacochea A, Guitart T, Boada A, Peg V, Quer A, Laayouni H, Condal L, Espinosa P, Manzano JL, Gebauer F. CSDE1 Intracellular Distribution as a Biomarker of Melanoma Prognosis. Int J Mol Sci 2024; 25:2319. [PMID: 38396995 PMCID: PMC10889260 DOI: 10.3390/ijms25042319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
RNA-binding proteins are emerging as critical modulators of oncogenic cell transformation, malignancy and therapy resistance. We have previously found that the RNA-binding protein Cold Shock Domain containing protein E1 (CSDE1) promotes invasion and metastasis of melanoma, the deadliest form of skin cancer and also a highly heterogeneous disease in need of predictive biomarkers and druggable targets. Here, we design a monoclonal antibody useful for IHC in the clinical setting and use it to evaluate the prognosis potential of CSDE1 in an exploratory cohort of 149 whole tissue sections including benign nevi and primary tumors and metastasis from melanoma patients. Contrary to expectations for an oncoprotein, we observed a global decrease in CSDE1 levels with increasing malignancy. However, the CSDE1 cytoplasmic/nuclear ratio exhibited a positive correlation with adverse clinical features of primary tumors and emerged as a robust indicator of progression free survival in cutaneous melanoma, highlighting the potential of CSDE1 as a biomarker of prognosis. Our findings provide a novel feature for prognosis assessment and highlight the intricacies of RNA-binding protein dynamics in cancer progression.
Collapse
Affiliation(s)
- Alberto Indacochea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Aram Boada
- Dermatology Department, Hospital Universitari Germans Trias i Pujol, Institut d’investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (L.C.)
| | - Vicente Peg
- Pathology Department, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Ariadna Quer
- Pathology Department, Hospital Universitari Germans Trias I Pujol, Institut d’Investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain;
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, C/Wellington 30, 08006 Barcelona, Spain
| | - Laura Condal
- Dermatology Department, Hospital Universitari Germans Trias i Pujol, Institut d’investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (L.C.)
| | - Pablo Espinosa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Jose Luis Manzano
- Medical Oncology Department, Catalonian Institute of Oncology, (ICO), Hospital Germans Trias I Pujol, 08916 Badalona, Spain;
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
12
|
Rafat K, Abdel-Hamid MS, Abdel-Salam GM. Dandy-Walker Malformation in a Girl with DDX3X-Related Intellectual Disability. Mol Syndromol 2023; 14:523-529. [PMID: 38058759 PMCID: PMC10697763 DOI: 10.1159/000531715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/21/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction We report on a 4-year-old female patient who presented with severe intellectual disability, autistic features, hyperlaxity of joints, and progressive scoliosis. Whole-exome sequencing identified a de novo missense variant (c.976C>T; p.Arg326Cys) in DDX3X. Case Presentation The girl was born with congenital diaphragmatic hernia a finding which had not previously been associated with variants in DDX3X. Her brain MRI showed hypogenesis of corpus callosum, ventriculomegaly, frontal and perisylvian polymicrogyria, and hypoplastic pons in addition to Dandy-Walker malformation. Conclusion Our results confirmed the phenotype and genotype correlation of missense variants and the polymicrogyria. Moreover, it further expands the knowledge of the phenotypic and molecular features of DDX3X-related intellectual disability.
Collapse
Affiliation(s)
- Karima Rafat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed S. Abdel-Hamid
- Medical Molecular Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ghada M.H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
13
|
Yao L, Hao Q, Wang M, Chen Y, Cao H, Zhang Q, Yu K, Jiang Y, Shao Z, Zhou X, Xu Y. KLHL29-mediated DDX3X degradation promotes chemosensitivity by abrogating cell cycle checkpoint in triple-negative breast cancer. Oncogene 2023; 42:3514-3528. [PMID: 37845393 PMCID: PMC10656286 DOI: 10.1038/s41388-023-02858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype and accounts for approximately 15-20% of breast cancer cases. In this study, we identified KLHL29, which is an understudied member of the Kelch-like gene family, as a crucial tumor suppressor that regulates chemosensitivity in TNBC. KLHL29 expression was significantly downregulated in breast cancer tissues compared with adjacent normal tissues, and low levels of KLHL29 were associated with unfavorable prognoses. Ectopic KLHL29 suppressed, while depleting KLHL29 promoted, the growth, proliferation, migration, and invasion of TNBC. Mechanistically, KLHL29 recruited the CUL3 E3-ligase to the RNA-binding protein DDX3X, leading to the proteasomal degradation of the latter. This downregulation of DDX3X resulted in the destabilization of CCND1 mRNA and the consequent cell cycle arrest at G0/G1 phase. Remarkably, the DDX3X inhibitor RK33 combined with platinum-based chemotherapy can synergistically suppress TNBC that usually expresses low levels of KLHL29 and high levels of DDX3X using cancer cell-derived xenograft and patient-derived organoids models. Altogether, we uncovered the potential role for the KLHL29-DDX3X signaling cascade in the regulation of TNBC progression, thus providing a promising combination strategy for overcoming TNBC chemoresistance.
Collapse
Affiliation(s)
- Litong Yao
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuhai Chen
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongyi Cao
- Department of Pathology, the First Hospital of China Medical University and College of Basic Medical Sciences, Shenyang, Liaoning, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Keda Yu
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yizhou Jiang
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhiming Shao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Hayashi Y, Nakayama J, Yamamoto M, Maekawa M, Watanabe S, Higashiyama S, Inoue JI, Yamamoto Y, Semba K. Aberrant accumulation of NIK promotes tumor growth by dysregulating translation and post-translational modifications in breast cancer. Cancer Cell Int 2023; 23:57. [PMID: 37005661 PMCID: PMC10067241 DOI: 10.1186/s12935-023-02904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND In vivo investigations with cancer cells have powerful tools to discover cancer progression mechanisms and preclinical candidate drugs. Among these in vivo experimental models, the establishment of highly malignancy cell lines with xenograft has been frequently used. However, few previous researches targeted malignancy-related genes whose protein levels translationally changed. Therefore, this study aimed to identify malignancy-related genes which contributed to cancer progression and changed at the protein level in the in vivo selected cancer cell lines. METHODS We established the high malignancy breast cancer cell line (LM05) by orthotopic xenograft as an in vivo selection method. To explore the altered genes by translational or post-translational regulation, we analyzed the protein production by western blotting in the highly malignant breast cancer cell line. Functional analyses of the altered genes were performed by in vitro and in vivo experiments. To reveal the molecular mechanisms of the regulation with protein level, we evaluated post-translational modification by immunoprecipitation. In addition, we evaluated translational production by click reaction-based purification of nascent protein. RESULTS As a result, NF-κB inducing kinase (NIK) increased at the protein level and promoted the nuclear localization of NF-κB2 (p52) and RelB in the highly malignant breast cancer cell line. The functional analyses indicated the NIK upregulation contributed to tumor malignancy via cancer-associated fibroblasts (CAFs) attraction and partially anti-apoptotic activities. Additionally, the immunoprecipitation experiment revealed that the ubiquitination of NIK decreased in LM05 cells. The decline in NIK ubiquitination was attributed to the translational downregulation of cIAP1. CONCLUSIONS Our study identified a dysregulated mechanism of NIK production by the suppression of NIK post-modification and cIAP1 translation. The aberrant NIK accumulation promoted tumor growth in the highly malignant breast cancer cell line.
Collapse
Affiliation(s)
- Yusuke Hayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-Ku, Tokyo, 105-8512, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
- Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-Ku, Osaka, 541-8567, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
16
|
Deng L, Liao L, Zhang YL, Hu SY, Yang SY, Ma XY, Huang MY, Zhang FL, Li DQ. MYC-driven U2SURP regulates alternative splicing of SAT1 to promote triple-negative breast cancer progression. Cancer Lett 2023; 560:216124. [PMID: 36907504 DOI: 10.1016/j.canlet.2023.216124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Triple-negative breast cancer (TNBC), although highly lethal, lacks validated therapeutic targets. Here, we report that U2 snRNP-associated SURP motif-containing protein (U2SURP), a poorly defined member of the serine/arginine rich protein family, was significantly upregulated in TNBC tissues, and its high expression was associated with poor prognosis of TNBC patients. MYC, a frequently amplified oncogene in TNBC tissues, enhanced U2SURP translation through an eIF3D (eukaryotic translation initiation factor 3 subunit D)-dependent mechanism, resulting in the accumulation of U2SURP in TNBC tissues. Functional assays revealed that U2SURP played an important role in facilitating tumorigenesis and metastasis of TNBC cells both in vitro and in vivo. Intriguingly, U2SURP had no significant effects on proliferative, migratory, and invasive potential of normal mammary epithelial cells. Furthermore, we found that U2SURP promoted alternative splicing of spermidine/spermine N1-acetyltransferase 1 (SAT1) pre-mRNA by removal of intron 3, resulting in an increase in the stability of SAT1 mRNA and subsequent protein expression levels. Importantly, spliced SAT1 promoted the oncogenic properties of TNBC cells, and re-expression of SAT1 in U2SURP-depleted cells partially rescued the impaired malignant phenotypes of TNBC cells caused by U2SURP knockdown both in vitro and in mice. Collectively, these findings reveal previously unknown functional and mechanism roles of the MYC-U2SURP-SAT1 signaling axis in TNBC progression and highlight U2SURP as a potential therapy target for TNBC.
Collapse
Affiliation(s)
- Ling Deng
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Ying Huang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Rudrappa M, Nayaka S, Kumar RS. In Silico Molecular Docking Approach of Melanin Against Melanoma Causing MITF Proteins and Anticancer, Oxidation-Reduction, Photoprotection, and Drug-Binding Affinity Properties of Extracted Melanin from Streptomyces sp. strain MR28. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04358-4. [PMID: 36692647 DOI: 10.1007/s12010-023-04358-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Melanin is a biopolymer reported for diverse biological actions to secure organisms over adverse environmental factors. In the last decade, melanin attributed considerable attention for its use in bioelectronics, photoprotection, environmental bioremediation, and drug discovery. Molecular docking study is the emerging trend in drug discovery for drug designing by targeting proteins. Considering the therapeutic nature of the melanin, we extracted melanin from Streptomyces sp. strain MR28, and it was tested for various biological activities, viz., DPPH free radical scavenging potency, sun protection factor (SPF), drug likeness by SwissADME, molecular docking of melanin on melanocyte-inducing transcription factor (MITF) proteins, cytotoxic activity on A375 malignant melanoma with induction of apoptosis study by flow cytometry, and adsorption study of melanin on doxorubicin and camptothecin drug for drug uptake by melanin. The melanin showed good scavenging potency of DPPH free radicals in a concentration-dependent manner. SPF of 38.64 ± 0.63, 55.53 ± 0.53, and 67.07 ± 0.82 were recorded at 0.06, 0.08, and 0.1 µg/mL, concentrations, respectively. SwissADME screening confirms the drug likeness of melanin. Docking of melanin with MITF proteins exhibited a maximum of - 9.2 kcal/mol binding affinity for 4ATK protein. Cytotoxicity of the melanin drug exhibited good inhibition of melanoma cells in dose-dependent way with significant IC50 of 65.61 µg/mL; apoptotic study reveals melanin showed 64.02% apoptosis for melanin and 33.8% apoptosis for standard drug (doxorubicin). The maximum adsorptions for selected drugs camptothecin and doxorubicin to melanin were recorded at 90 min. In conclusion, the extracted melanin showed significant results over many biological applications and it can be used in the pharmaceutical field to avoid chemical-based drugs.
Collapse
Affiliation(s)
- Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, Karnataka, 580003, India.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
18
|
Antitumor Effect of Cycloastragenol in Colon Cancer Cells via p53 Activation. Int J Mol Sci 2022; 23:ijms232315213. [PMID: 36499536 PMCID: PMC9737126 DOI: 10.3390/ijms232315213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer cell (CRC) is the fourth most common cancer in the world. There are several chemotherapy drugs available for its treatment, though they have side effects. Cycloastragenol (CY) is a compound from Astragalus membranaceus (Fisch.) Bge known to be effective in aging, anti-inflammatory, anticancer, and anti-heart failure treatments. Although many studies have demonstrated the functions of CY in cancer cells, no studies have shown the effects of p53 in colon cancer cells. In this study, we found that CY reduces the viability of colon cancer cells in p53 wild-type cells compared to p53 null cells and HT29. Furthermore, CY induces apoptosis by p53 activation in a dose- and time-dependent manner. And it was confirmed that it affects the L5 gene related to p53. Additionally, CY enhanced p53 expression compared to when either doxorubicin or 5-FU was used alone. Altogether, our findings suggest that CY induces apoptosis via p53 activation and inhibits the proliferation of colon cancer cells. In addition, apoptosis occurs in colon cancer cells due to other factors. Moreover, CY is expected to have a combined effect when used together with existing treatments for colon cancer in the future.
Collapse
|
19
|
Ryan CS, Schröder M. The human DEAD-box helicase DDX3X as a regulator of mRNA translation. Front Cell Dev Biol 2022; 10:1033684. [PMID: 36393867 PMCID: PMC9642913 DOI: 10.3389/fcell.2022.1033684] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 08/27/2023] Open
Abstract
The human DEAD-box protein DDX3X is an RNA remodelling enzyme that has been implicated in various aspects of RNA metabolism. In addition, like many DEAD-box proteins, it has non-conventional functions that are independent of its enzymatic activity, e.g., DDX3X acts as an adaptor molecule in innate immune signalling pathways. DDX3X has been linked to several human diseases. For example, somatic mutations in DDX3X were identified in various human cancers, and de novo germline mutations cause a neurodevelopmental condition now termed 'DDX3X syndrome'. DDX3X is also an important host factor in many different viral infections, where it can have pro-or anti-viral effects depending on the specific virus. The regulation of translation initiation for specific mRNA transcripts is likely a central cellular function of DDX3X, yet many questions regarding its exact targets and mechanisms of action remain unanswered. In this review, we explore the current knowledge about DDX3X's physiological RNA targets and summarise its interactions with the translation machinery. A role for DDX3X in translational reprogramming during cellular stress is emerging, where it may be involved in the regulation of stress granule formation and in mediating non-canonical translation initiation. Finally, we also discuss the role of DDX3X-mediated translation regulation during viral infections. Dysregulation of DDX3X's function in mRNA translation likely contributes to its involvement in disease pathophysiology. Thus, a better understanding of its exact mechanisms for regulating translation of specific mRNA targets is important, so that we can potentially develop therapeutic strategies for overcoming the negative effects of its dysregulation.
Collapse
|
20
|
Duran-Arqué B, Cañete M, Castellazzi CL, Bartomeu A, Ferrer-Caelles A, Reina O, Caballé A, Gay M, Arauz-Garofalo G, Belloc E, Mendez R. Comparative analyses of vertebrate CPEB proteins define two subfamilies with coordinated yet distinct functions in post-transcriptional gene regulation. Genome Biol 2022; 23:192. [PMID: 36096799 PMCID: PMC9465852 DOI: 10.1186/s13059-022-02759-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vertebrate CPEB proteins bind mRNAs at cytoplasmic polyadenylation elements (CPEs) in their 3' UTRs, leading to cytoplasmic changes in their poly(A) tail lengths; this can promote translational repression or activation of the mRNA. However, neither the regulation nor the mechanisms of action of the CPEB family per se have been systematically addressed to date. RESULTS Based on a comparative analysis of the four vertebrate CPEBs, we determine their differential regulation by phosphorylation, the composition and properties of their supramolecular assemblies, and their target mRNAs. We show that all four CPEBs are able to recruit the CCR4-NOT deadenylation complex to repress the translation. However, their regulation, mechanism of action, and target mRNAs define two subfamilies. Thus, CPEB1 forms ribonucleoprotein complexes that are remodeled upon a single phosphorylation event and are associated with mRNAs containing canonical CPEs. CPEB2-4 are regulated by multiple proline-directed phosphorylations that control their liquid-liquid phase separation. CPEB2-4 mRNA targets include CPEB1-bound transcripts, with canonical CPEs, but also a specific subset of mRNAs with non-canonical CPEs. CONCLUSIONS Altogether, these results show how, globally, the CPEB family of proteins is able to integrate cellular cues to generate a fine-tuned adaptive response in gene expression regulation through the coordinated actions of all four members.
Collapse
Affiliation(s)
- Berta Duran-Arqué
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Manuel Cañete
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Chiara Lara Castellazzi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Bartomeu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Ferrer-Caelles
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Adrià Caballé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Eulalia Belloc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Raúl Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
21
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
22
|
Shen H, Yanas A, Owens MC, Zhang C, Fritsch C, Fare CM, Copley KE, Shorter J, Goldman YE, Liu KF. Sexually dimorphic RNA helicases DDX3X and DDX3Y differentially regulate RNA metabolism through phase separation. Mol Cell 2022; 82:2588-2603.e9. [PMID: 35588748 PMCID: PMC9308757 DOI: 10.1016/j.molcel.2022.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023]
Abstract
Sex differences are pervasive in human health and disease. One major key to sex-biased differences lies in the sex chromosomes. Although the functions of the X chromosome proteins are well appreciated, how they compare with their Y chromosome homologs remains elusive. Herein, using ensemble and single-molecule techniques, we report that the sex chromosome-encoded RNA helicases DDX3X and DDX3Y are distinct in their propensities for liquid-liquid phase separation (LLPS), dissolution, and translation repression. We demonstrate that the N-terminal intrinsically disordered region of DDX3Y more strongly promotes LLPS than the corresponding region of DDX3X and that the weaker ATPase activity of DDX3Y, compared with DDX3X, contributes to the slower disassembly dynamics of DDX3Y-positive condensates. Interestingly, DDX3Y-dependent LLPS represses mRNA translation and enhances aggregation of FUS more strongly than DDX3X-dependent LLPS. Our study provides a platform for future comparisons of sex chromosome-encoded protein homologs, providing insights into sex differences in RNA metabolism and human disease.
Collapse
Affiliation(s)
- Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Celia Zhang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clark Fritsch
- Graduate Group in Cellular and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katie E Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Cellular and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Goldman
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Mestre-Farràs N, Guerrero S, Bley N, Rivero E, Coll O, Borràs E, Sabidó E, Indacochea A, Casillas-Serra C, Järvelin AI, Oliva B, Castello A, Hüttelmaier S, Gebauer F. Melanoma RBPome identification reveals PDIA6 as an unconventional RNA-binding protein involved in metastasis. Nucleic Acids Res 2022; 50:8207-8225. [PMID: 35848924 PMCID: PMC9371929 DOI: 10.1093/nar/gkac605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-binding proteins (RBPs) have been relatively overlooked in cancer research despite their contribution to virtually every cancer hallmark. Here, we use RNA interactome capture (RIC) to characterize the melanoma RBPome and uncover novel RBPs involved in melanoma progression. Comparison of RIC profiles of a non-tumoral versus a metastatic cell line revealed prevalent changes in RNA-binding capacities that were not associated with changes in RBP levels. Extensive functional validation of a selected group of 24 RBPs using five different in vitro assays unveiled unanticipated roles of RBPs in melanoma malignancy. As proof-of-principle we focused on PDIA6, an ER-lumen chaperone that displayed a novel RNA-binding activity. We show that PDIA6 is involved in metastatic progression, map its RNA-binding domain, and find that RNA binding is required for PDIA6 tumorigenic properties. These results exemplify how RIC technologies can be harnessed to uncover novel vulnerabilities of cancer cells.
Collapse
Affiliation(s)
- Neus Mestre-Farràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Santiago Guerrero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Nadine Bley
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Ezequiel Rivero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Olga Coll
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Alberto Indacochea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Carlos Casillas-Serra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Baldomero Oliva
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
24
|
Zheng Y, Zhou Y, Huang Y, Wang H, Guo H, Yuan B, Zhang J. Transcriptome sequencing of black and white hair follicles in the giant panda. Integr Zool 2022; 18:552-568. [PMID: 35500067 DOI: 10.1111/1749-4877.12652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the completion of the draft assembly of the giant panda genome sequence, RNA sequencing technology has been widely used in genetic research on giant pandas. We used RNA-seq to examine black and white hair follicle samples from adult pandas. By comparison with the giant panda genome, 75 963 SNP loci were labeled, 2 426 differentially expressed genes were identified, and 2 029 new genes were discovered, among which 631 were functionally annotated. A cluster analysis of the differentially expressed genes showed that they were mainly related to the Wnt signaling pathway, ECM-receptor interaction, the p53 signaling pathway and ribosome processing. The enrichment results showed that there were significant differences in the regulatory networks of hair follicles with different colors during the transitional stage of hair follicle resting growth, which may play a regulatory role in melanin synthesis during growth. In conclusion, our results provide new insights and more data support for research on the color formation in giant pandas. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yingmin Zhou
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China
| | - Yijie Huang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Haoqi Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Haixiang Guo
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| |
Collapse
|
25
|
Abstract
Continuously renewing the proteome, translation is exquisitely controlled by a number of dedicated factors that interact with the ribosome. The RNA helicase DDX3 belonging to the DEAD box family has emerged as one of the critical regulators of translation, the failure of which is frequently observed in a wide range of proliferative, degenerative, and infectious diseases in humans. DDX3 unwinds double-stranded RNA molecules with coupled ATP hydrolysis and thereby remodels complex RNA structures present in various protein-coding and noncoding RNAs. By interacting with specific features on messenger RNAs (mRNAs) and 18S ribosomal RNA (rRNA), DDX3 facilitates translation, while repressing it under certain conditions. We review recent findings underlying these properties of DDX3 in diverse modes of translation, such as cap-dependent and cap-independent translation initiation, usage of upstream open reading frames, and stress-induced ribonucleoprotein granule formation. We further discuss how disease-associated DDX3 variants alter the translation landscape in the cell.
Collapse
Affiliation(s)
- Joon Tae Park
- Division of Life Sciences, Incheon National University, Incheon 22012, Korea
| | - Sekyung Oh
- Department of Medical Science, Catholic Kwandong University College of Medicine, Incheon 22711, Korea
| |
Collapse
|
26
|
Understanding Molecular Mechanisms of Phenotype Switching and Crosstalk with TME to Reveal New Vulnerabilities of Melanoma. Cells 2022; 11:cells11071157. [PMID: 35406721 PMCID: PMC8997563 DOI: 10.3390/cells11071157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Melanoma cells are notorious for their high plasticity and ability to switch back and forth between various melanoma cell states, enabling the adaptation to sub-optimal conditions and therapeutics. This phenotypic plasticity, which has gained more attention in cancer research, is proposed as a new paradigm for melanoma progression. In this review, we provide a detailed and deep comprehensive recapitulation of the complex spectrum of phenotype switching in melanoma, the key regulator factors, the various and new melanoma states, and corresponding signatures. We also present an extensive description of the role of epigenetic modifications (chromatin remodeling, methylation, and activities of long non-coding RNAs/miRNAs) and metabolic rewiring in the dynamic switch. Furthermore, we elucidate the main role of the crosstalk between the tumor microenvironment (TME) and oxidative stress in the regulation of the phenotype switching. Finally, we discuss in detail several rational therapeutic approaches, such as exploiting phenotype-specific and metabolic vulnerabilities and targeting components and signals of the TME, to improve the response of melanoma patients to treatments.
Collapse
|
27
|
Dai Y, Yang Z, Guo J, Li H, Gong J, Xie Y, Xiao B, Wang H, Long L. Expansion of Clinical and Genetic Spectrum of DDX3X Neurodevelopmental Disorder in 23 Chinese Patients. Front Mol Neurosci 2022; 15:793001. [PMID: 35392274 PMCID: PMC8981727 DOI: 10.3389/fnmol.2022.793001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/02/2022] [Indexed: 01/12/2023] Open
Abstract
AimDe novo DDX3X variants account for 1–3% of unexplained intellectual disability cases in females and very rarely in males. Yet, the clinical and genetic features of DDX3X neurodevelopmental disorder in the Chinese cohort have not been characterized.MethodA total of 23 Chinese patients (i.e., 22 female and 1 male) with 22 de novo DDX3X deleterious variants were detected among 2,317 probands with unexplained intellectual disability (ID) undertaking whole exome sequencing (WES). The age, sex, genetic data, feeding situation, growth, developmental conditions, and auxiliary examinations of the cohort were collected. The Chinese version of the Gesell Development Diagnosis Scale (GDDS-C) was used to evaluate neurodevelopment of DDX3X patients. The Social Communication Questionnaire (SCQ)-Lifetime version was applied as a primary screener to assess risk for autism spectrum disorder (ASD).ResultA total of 17 DDX3X variants were novel and 22 were de novo. Missense variants overall were only slightly more common than loss-of-function variants and were mainly located in two functional subdomains. The average age of this cohort was 2.67 (±1.42) years old. The overlapping phenotypic spectrum between this cohort and previously described reports includes intellectual disability (23/23, 100%) with varying degrees of severity, muscle tone abnormalities (17/23, 73.9%), feeding difficulties (13/23, 56.5%), ophthalmologic problems (11/23, 47.8%), and seizures (6/23, 26.1%). A total of 15 individuals had notable brain anatomical disruption (15/23, 65.2%), including lateral ventricle enlargement, corpus callosum abnormalities, and delayed myelination. Furthermore, 9 patients showed abnormal electroencephalogram results (9/23, 39.1%). Hypothyroidism was first noted as a novel clinical feature (6/23, 26.1%). The five primary neurodevelopmental domains of GDDS-C in 21 patients were impaired severely, and 13 individuals were above the “at-risk” threshold for ASD.InterpretationAlthough a certain degree of phenotypic overlap with previously reported cohorts, our study described the phenotypic and variation spectrum of 23 additional individuals carrying DDX3X variants in the Chinese population, adding hypothyroidism as a novel finding. We confirmed the importance of DDX3X as a pathogenic gene in unexplained intellectual disability, supporting the necessity of the application of WES in patients with unexplained intellectual disability.
Collapse
Affiliation(s)
- Yuwei Dai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jialing Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, China
| | - Yuanyuan Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Wang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China
- *Correspondence: Lili Long,
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, China
- Hua Wang,
| |
Collapse
|
28
|
Stefaniak U, Malak R, Mojs E, Samborski W. Autistic-like Behaviors Associated with a Novel Non-Canonical Splice-Site DDX3X Variant: A Case Report of a Rare Clinical Syndrome. Brain Sci 2022; 12:brainsci12030390. [PMID: 35326346 PMCID: PMC8946163 DOI: 10.3390/brainsci12030390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Heterozygous pathogenic variants in the DDX3X gene account for 1−3% of females with intellectual and developmental disabilities (IDD). The clinical presentation is variable, including a wide range of neurological and behavioral deficits and structural defects of the brain. Approximately 52% of affected females remain nonverbal after five years of age. Case presentation: We report a 7 year old nonverbal female with a likely novel de novo pathogenic heterozygous variant in the DDX3X gene affecting the non-canonical splice-site in the intron 1 (NM_001356:c.45+12G>A). The patient presents with features typical for the DDX3X phenotype, such as: movement disorders, behavioral problems, a diagnosis of autism spectrum disorder (ASD), and some other features uncommon for DDX3X such as: muscle hypertonia and spinal asymmetry evaluated through the scoliometer. Conclusions. Due to its rare occurrence, the clinical picture of DDX3X syndrome is yet to be fully determined. So far, behavioral disorders, including those from ASD, and neurological abnormalities seem to be the dominant features of this disorder.
Collapse
Affiliation(s)
- Urszula Stefaniak
- Department of Clinical Psychology, Poznań University of Medical Sciences, 60-812 Poznań, Poland;
- Correspondence: (U.S.); (W.S.)
| | - Roksana Malak
- Department and Clinic of Rheumatology, Rehabilitation and Internal Medicine, Poznań University of Medical Sciences, 61-545 Poznań, Poland;
| | - Ewa Mojs
- Department of Clinical Psychology, Poznań University of Medical Sciences, 60-812 Poznań, Poland;
| | - Włodzimierz Samborski
- Department and Clinic of Rheumatology, Rehabilitation and Internal Medicine, Poznań University of Medical Sciences, 61-545 Poznań, Poland;
- Correspondence: (U.S.); (W.S.)
| |
Collapse
|
29
|
Cherepakhin OS, Argenyi ZB, Moshiri AS. Genomic and Transcriptomic Underpinnings of Melanoma Genesis, Progression, and Metastasis. Cancers (Basel) 2021; 14:123. [PMID: 35008286 PMCID: PMC8750021 DOI: 10.3390/cancers14010123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a deadly skin cancer with rapidly increasing incidence worldwide. The discovery of the genetic drivers of melanomagenesis in the last decade has led the World Health Organization to reclassify melanoma subtypes by their molecular pathways rather than traditional clinical and histopathologic features. Despite this significant advance, the genomic and transcriptomic drivers of metastatic progression are less well characterized. This review describes the known molecular pathways of cutaneous and uveal melanoma progression, highlights recently identified pathways and mediators of metastasis, and touches on the influence of the tumor microenvironment on metastatic progression and treatment resistance. While targeted therapies and immune checkpoint blockade have significantly aided in the treatment of advanced disease, acquired drug resistance remains an unfortunately common problem, and there is still a great need to identify potential prognostic markers and novel therapeutic targets to aid in such cases.
Collapse
Affiliation(s)
| | - Zsolt B. Argenyi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Ata S. Moshiri
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Varshney D, Cuesta SM, Herdy B, Abdullah UB, Tannahill D, Balasubramanian S. RNA G-quadruplex structures control ribosomal protein production. Sci Rep 2021; 11:22735. [PMID: 34815422 PMCID: PMC8611094 DOI: 10.1038/s41598-021-01847-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Four-stranded G-quadruplex (G4) structures form from guanine-rich tracts, but the extent of their formation in cellular RNA and details of their role in RNA biology remain poorly defined. Herein, we first delineate the presence of endogenous RNA G4s in the human cytoplasmic transcriptome via the binding sites of G4-interacting proteins, DDX3X (previously published), DHX36 and GRSF1. We demonstrate that a sub-population of these RNA G4s are reliably detected as folded structures in cross-linked cellular lysates using the G4 structure-specific antibody BG4. The 5' UTRs of protein coding mRNAs show significant enrichment in folded RNA G4s, particularly those for ribosomal proteins. Mutational disruption of G4s in ribosomal protein UTRs alleviates translation in vitro, whereas in cells, depletion of G4-resolving helicases or treatment with G4-stabilising small molecules inhibit the translation of ribosomal protein mRNAs. Our findings point to a common mode for translational co-regulation mediated by G4 structures. The results reveal a potential avenue for therapeutic intervention in diseases with dysregulated translation, such as cancer.
Collapse
Affiliation(s)
- Dhaval Varshney
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sergio Martinez Cuesta
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Barbara Herdy
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Ummi Binti Abdullah
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
31
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
32
|
Gong C, Krupka JA, Gao J, Grigoropoulos NF, Giotopoulos G, Asby R, Screen M, Usheva Z, Cucco F, Barrans S, Painter D, Zaini NBM, Haupl B, Bornelöv S, Ruiz De Los Mozos I, Meng W, Zhou P, Blain AE, Forde S, Matthews J, Khim Tan MG, Burke GAA, Sze SK, Beer P, Burton C, Campbell P, Rand V, Turner SD, Ule J, Roman E, Tooze R, Oellerich T, Huntly BJ, Turner M, Du MQ, Samarajiwa SA, Hodson DJ. Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Mol Cell 2021; 81:4059-4075.e11. [PMID: 34437837 DOI: 10.1016/j.molcel.2021.07.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
Collapse
Affiliation(s)
- Chun Gong
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Joanna A Krupka
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Jie Gao
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - George Giotopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ryan Asby
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Michael Screen
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Zelvera Usheva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Francesco Cucco
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | | | - Björn Haupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Susanne Bornelöv
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Igor Ruiz De Los Mozos
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Wei Meng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Peixun Zhou
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Alex E Blain
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Sorcha Forde
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Jamie Matthews
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Michelle Guet Khim Tan
- Department of Clinical Translational Research, Singapore General Hospital, Outram Road, Singapore 169856, Singapore
| | - G A Amos Burke
- Department of Paediatric Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Philip Beer
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Cathy Burton
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Vikki Rand
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | - Reuben Tooze
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK; Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Brian J Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
33
|
Chen HH, Yu HI, Rudy R, Lim SL, Chen YF, Wu SH, Lin SC, Yang MH, Tarn WY. DDX3 modulates the tumor microenvironment via its role in endoplasmic reticulum-associated translation. iScience 2021; 24:103086. [PMID: 34568799 PMCID: PMC8449240 DOI: 10.1016/j.isci.2021.103086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Using antibody arrays, we found that the RNA helicase DDX3 modulates the expression of secreted signaling factors in oral squamous cell carcinoma (OSCC) cells. Ribo-seq analysis confirmed amphiregulin (AREG) as a translational target of DDX3. AREG exerts important biological functions in cancer, including promoting cell migration and paracrine effects of OSCC cells and reprogramming the tumor microenvironment (TME) of OSCC in mice. DDX3-mediated translational control of AREG involves its 3′-untranslated region. Proteomics identified the signal recognition particle (SRP) as an unprecedented interacting partner of DDX3. DDX3 and SRP54 were located near the endoplasmic reticulum, regulated the expression of a common set of secreted factors, and were essential for targeting AREG mRNA to membrane-bound polyribosomes. Finally, OSCC-associated mutant DDX3 increased the expression of AREG, emphasizing the role of DDX3 in tumor progression via SRP-dependent, endoplasmic reticulum-associated translation. Therefore, pharmacological targeting of DDX3 may inhibit the tumor-promoting functions of the TME. DDX3-AREG axis promotes cancer progression through microenvironment remodeling DDX3 activates AREG translation via binding to its 3′ UTR DDX3 interacts with the signal recognition particle (SRP) DDX3-SRP-mediated mRNA recruitment assists ER-associated translation
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| | - Rudy Rudy
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| | - Sim-Lin Lim
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Fen Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
34
|
Sun L, Arbesman J. Canonical Signaling Pathways in Melanoma. Clin Plast Surg 2021; 48:551-560. [PMID: 34503716 DOI: 10.1016/j.cps.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melanoma is the most lethal type of skin cancer, originating from the uncontrolled proliferation of melanocytes. The transformation of normal melanocytes into malignant tumor cells has been a focus of research seeking to better understand melanoma's pathogenesis and develop new therapeutic targets. Over the past few decades, a conglomeration of studies has pinpointed several driver mutations and their associated signaling pathways. In this review, we summarize the key signaling pathways and the driver mutations involved in melanoma tumorigenesis and also discuss the potential underlying mechanisms.
Collapse
Affiliation(s)
- Lillian Sun
- Cleveland Clinic, Lerner College of Medicine at Case Western Reserve University, 9501 Euclid Avenue, Cleveland, OH 44106, USA
| | - Joshua Arbesman
- Department of Dermatology, Cleveland Clinic, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
35
|
Rampogu S, Kim SM, Shaik B, Lee G, Kim JH, Kim GS, Lee KW, Kim MO. Novel Butein Derivatives Repress DDX3 Expression by Inhibiting PI3K/AKT Signaling Pathway in MCF-7 and MDA-MB-231 Cell Lines. Front Oncol 2021; 11:712824. [PMID: 34485148 PMCID: PMC8416463 DOI: 10.3389/fonc.2021.712824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background Breast cancer is one of the major causes of mortalities noticed in women globally. DDX3 has emerged as a potent target for several cancers, including breast cancer to which currently there are no reported or approved drugs. Methods To find effective cancer therapeutics, three compounds were computationally designed tweaking the structure of natural compound butein. These compounds were synthesized and evaluated for their anticancer property in MCF-7 and MDA-MB-231 cell lines targeting DDX3. The in silico molecular docking studies have shown that the compounds have occupied the binding site of the human DDX3 target. Furthermore, to investigate the cell viability effect of 3a, 3b, and 3c on MCF-7 and MDA-MB-231 cell lines, the cell lines were treated with different concentrations of compounds for 24 and 48 h and measured using MTT assay. Results The cell viability results showed that the have induced dose dependent suppression of DDX3 expression. Additionally, 3b and 3c have reduced the expression of DDX3 in MCF-7 and MDA-MD-231 cell lines. 3b or 3c treated cell lines increased apoptotic protein expression. Both the compounds have induced the apoptotic cell death by elevated levels of cleaved PARP and cleaved caspase 3 and repression of the anti-apoptosis protein BCL-xL. Additionally, they have demonstrated the G2/M phase cell cycle arrest in both the cell lines. Additionally, 3c decreased PI3K and AKT levels. Conclusions Our results shed light on the anticancer ability of the designed compounds. These compounds can be employed as chemical spaces to design new prospective drug candidates. Additionally, our computational method can be adapted to design new chemical scaffolds as plausible inhibitors.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea.,Division of Life Science and Applied Life Science (BK 21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, South Korea
| | - Seong Min Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Baji Shaik
- Department of Chemistry (BK 21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, South Korea
| | - Gihwan Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK 21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, South Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Keun Woo Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK 21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
36
|
Fabbri L, Chakraborty A, Robert C, Vagner S. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer 2021; 21:558-577. [PMID: 34341537 DOI: 10.1038/s41568-021-00380-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Translational control of mRNAs during gene expression allows cells to promptly and dynamically adapt to a variety of stimuli, including in neoplasia in response to aberrant oncogenic signalling (for example, PI3K-AKT-mTOR, RAS-MAPK and MYC) and microenvironmental stress such as low oxygen and nutrient supply. Such translational rewiring allows rapid, specific changes in the cell proteome that shape specific cancer phenotypes to promote cancer onset, progression and resistance to anticancer therapies. In this Review, we illustrate the plasticity of mRNA translation. We first highlight the diverse mechanisms by which it is regulated, including by translation factors (for example, eukaryotic initiation factor 4F (eIF4F) and eIF2), RNA-binding proteins, tRNAs and ribosomal RNAs that are modulated in response to aberrant intracellular pathways or microenvironmental stress. We then describe how translational control can influence tumour behaviour by impacting on the phenotypic plasticity of cancer cells as well as on components of the tumour microenvironment. Finally, we highlight the role of mRNA translation in the cellular response to anticancer therapies and its promise as a key therapeutic target.
Collapse
Affiliation(s)
- Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France.
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
37
|
Beneventi G, Munita R, Cao Thi Ngoc P, Madej M, Cieśla M, Muthukumar S, Krogh N, Nielsen H, Swaminathan V, Bellodi C. The small Cajal body-specific RNA 15 (SCARNA15) directs p53 and redox homeostasis via selective splicing in cancer cells. NAR Cancer 2021; 3:zcab026. [PMID: 34316713 PMCID: PMC8271217 DOI: 10.1093/narcan/zcab026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023] Open
Abstract
Small Cajal body-specific RNAs (scaRNAs) guide post-transcriptional modification of spliceosomal RNA and, while commonly altered in cancer, have poorly defined roles in tumorigenesis. Here, we uncover that SCARNA15 directs alternative splicing (AS) and stress adaptation in cancer cells. Specifically, we find that SCARNA15 guides critical pseudouridylation (Ψ) of U2 spliceosomal RNA to fine-tune AS of distinct transcripts enriched for chromatin and transcriptional regulators in malignant cells. This critically impacts the expression and function of the key tumor suppressors ATRX and p53. Significantly, SCARNA15 loss impairs p53-mediated redox homeostasis and hampers cancer cell survival, motility and anchorage-independent growth. In sum, these findings highlight an unanticipated role for SCARNA15 and Ψ in directing cancer-associated splicing programs.
Collapse
Affiliation(s)
- Giulia Beneventi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Magdalena Madej
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| |
Collapse
|
38
|
Wang Q, Qian L, Tao M, Liu J, Qi FZ. Knockdown of DEAD-box RNA helicase 52 (DDX52) suppresses the proliferation of melanoma cells in vitro and of nude mouse xenografts by targeting c-Myc. Bioengineered 2021; 12:3539-3549. [PMID: 34233596 PMCID: PMC8806535 DOI: 10.1080/21655979.2021.1950283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ATP-dependent protein DEAD-box RNA helicase 52 (DDX52) is an important regulator in RNA biology and has been implicated in the development of prostate and lung cancer. However, its biological functions and clinical importance in malignant melanoma (MM) are still unclear. Understanding the potential mechanism underlying the regulation of MM progression by DDX52 might lead to novel therapeutic strategies. The aim of the present study was to investigate the role of DDX52 in the regulation of MM progression and its clinical relevance. DDX52 expression in normal and MM tissues was evaluated by GEO analysis and immunohistochemistry. The effects of DDX52 on cell growth were evaluated in MM cells with downregulated DDX52 expression. In this study, we found that DDX52 was markedly overexpressed in MM tissues compared with nontumor tissues and was associated with shorter overall survival in patients; therefore, DDX52 might be a prognostic marker in MM. Downregulation of DDX52 expression in the MM cell lines A2058 and MV3 markedly inhibited cell proliferation and colony formation. Additionally, knockdown of DDX52 in MM cells caused significant regression of established tumors in nude mice and delayed the onset time. Moreover, downregulation of DDX52 markedly suppressed c-Myc mRNA and protein expression, and an RNA immunoprecipitation assay confirmed the association between DDX52 and c-Myc. Restoration of c-Myc expression partly rescued the effects of DDX52 deficiency in MM cells. In conclusion, our study found that DDX52 mediated oncogenesis by promoting the transcriptional activity of c-Myc and could be a therapeutic target in MM.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leqi Qian
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengyuan Tao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fa-Zhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Nicol PB, Coombes KR, Deaver C, Chkrebtii O, Paul S, Toland AE, Asiaee A. Oncogenetic network estimation with disjunctive Bayesian networks. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Kevin R. Coombes
- Department of Biomedical Informatics Ohio State University Columbus Ohio
| | - Courtney Deaver
- Natural Sciences Division Pepperdine University Malibu California
| | | | - Subhadeep Paul
- Department of Statistics Ohio State University Columbus Ohio
| | - Amanda E. Toland
- Department of Cancer Biology and Genetics and Department of Internal Medicine Division of Human Genetics, Comprehensive Cancer Center Ohio State University Columbus Ohio
| | - Amir Asiaee
- Mathematical Biosciences Institute Ohio State University Columbus Ohio
| |
Collapse
|
40
|
Park Y, Page N, Salamon I, Li D, Rasin MR. Making sense of mRNA landscapes: Translation control in neurodevelopment. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1674. [PMID: 34137510 DOI: 10.1002/wrna.1674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
Like all other parts of the central nervous system, the mammalian neocortex undergoes temporally ordered set of developmental events, including proliferation, differentiation, migration, cellular identity, synaptogenesis, connectivity formation, and plasticity changes. These neurodevelopmental mechanisms have been characterized by studies focused on transcriptional control. Recent findings, however, have shown that the spatiotemporal regulation of post-transcriptional steps like alternative splicing, mRNA traffic/localization, mRNA stability/decay, and finally repression/derepression of protein synthesis (mRNA translation) have become just as central to the neurodevelopment as transcriptional control. A number of dynamic players act post-transcriptionally in the neocortex to regulate these steps, as RNA binding proteins (RBPs), ribosomal proteins (RPs), long non-coding RNAs, and/or microRNA. Remarkably, mutations in these post-transcriptional regulators have been associated with neurodevelopmental, neurodegenerative, inherited, or often co-morbid disorders, such as microcephaly, autism, epilepsy, intellectual disability, white matter diseases, Rett-syndrome like phenotype, spinocerebellar ataxia, and amyotrophic lateral sclerosis. Here, we focus on the current state, advanced methodologies and pitfalls of this exciting and upcoming field of RNA metabolism with vast potential in understanding fundamental neurodevelopmental processes and pathologies. This article is categorized under: Translation > Translation Regulation RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yongkyu Park
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Nicholas Page
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Iva Salamon
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Mladen-Roko Rasin
- RWJ Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
41
|
Haupt S, Caramia F, Klein SL, Rubin JB, Haupt Y. Sex disparities matter in cancer development and therapy. Nat Rev Cancer 2021; 21:393-407. [PMID: 33879867 PMCID: PMC8284191 DOI: 10.1038/s41568-021-00348-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Curing cancer through precision medicine is the paramount aim of the new wave of molecular and genomic therapies. Currently, whether patients with non-reproductive cancers are male or female according to their sex chromosomes is not adequately considered in patient standard of care. This is a matter of consequence because there is growing evidence that these cancer types generally initiate earlier and are associated with higher overall incidence and rates of death in males compared with females. Gender, in contrast to sex, refers to a chosen sexual identity. Hazardous lifestyle choices (notably tobacco smoking) differ in prevalence between genders, aligned with disproportionate cancer risk. These add to underlying genetic predisposition and influences of sex steroid hormones. Together, these factors affect metabolism, immunity and inflammation, and ultimately the fidelity of the genetic code. To accurately understand how human defences against cancer erode, it is crucial to establish the influence of sex. Our Perspective highlights evidence from basic and translational research indicating that including genetic sex considerations in treatments for patients with cancer will improve outcomes. It is now time to adopt the challenge of overhauling cancer medicine based on optimized treatment strategies for females and males.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Franco Caramia
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joshua B Rubin
- Department of Pediatrics and Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Ygal Haupt
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
42
|
Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins. Int J Mol Sci 2021; 22:ijms22115496. [PMID: 34071057 PMCID: PMC8197113 DOI: 10.3390/ijms22115496] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.
Collapse
|
43
|
Moresco G, Costanza J, Santaniello C, Rondinone O, Grilli F, Prada E, Orcesi S, Coro I, Pichiecchio A, Marchisio P, Miozzo M, Fontana L, Milani D. A novel de novo DDX3X missense variant in a female with brachycephaly and intellectual disability: a case report. Ital J Pediatr 2021; 47:81. [PMID: 33789733 PMCID: PMC8011215 DOI: 10.1186/s13052-021-01033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND De novo pathogenic variants in the DDX3X gene are reported to account for 1-3% of unexplained intellectual disability (ID) in females, leading to the rare disease known as DDX3X syndrome (MRXSSB, OMIM #300958). Besides ID, these patients manifest a variable clinical presentation, which includes neurological and behavioral defects, and abnormal brain MRIs. CASE PRESENTATION We report a 10-year-old girl affected by delayed psychomotor development, delayed myelination, and polymicrogyria (PMG). We identified a novel de novo missense mutation in the DDX3X gene (c.625C > G) by whole exome sequencing (WES). The DDX3X gene encodes a DEAD-box ATP-dependent RNA-helicase broadly implicated in gene expression through regulation of mRNA metabolism. The identified mutation is located just upstream the helicase domain and is suggested to impair the protein activity, thus resulting in the altered translation of DDX3X-dependent mRNAs. The proband, presenting with the typical PMG phenotype related to the syndrome, does not show other clinical signs frequently reported in presence of missense DDX3X mutations that are associated with a most severe clinical presentation. In addition, she has brachycephaly, never described in female DDX3X patients, and macroglossia, that has never been associated with the syndrome. CONCLUSIONS This case expands the knowledge of DDX3X pathogenic variants and the associated DDX3X syndrome phenotypic spectrum.
Collapse
Affiliation(s)
- Giada Moresco
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca′ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jole Costanza
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca′ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carlo Santaniello
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca′ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ornella Rondinone
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca′ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Grilli
- Fondazione IRCCS Ca′ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisabetta Prada
- Fondazione IRCCS Ca′ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Ilaria Coro
- Fondazione IRCCS Ca′ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Paola Marchisio
- Fondazione IRCCS Ca′ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Monica Miozzo
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca′ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Laura Fontana
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca′ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca′ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
44
|
Cieśla M, Ngoc PCT, Cordero E, Martinez ÁS, Morsing M, Muthukumar S, Beneventi G, Madej M, Munita R, Jönsson T, Lövgren K, Ebbesson A, Nodin B, Hedenfalk I, Jirström K, Vallon-Christersson J, Honeth G, Staaf J, Incarnato D, Pietras K, Bosch A, Bellodi C. Oncogenic translation directs spliceosome dynamics revealing an integral role for SF3A3 in breast cancer. Mol Cell 2021; 81:1453-1468.e12. [PMID: 33662273 DOI: 10.1016/j.molcel.2021.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/02/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Splicing is a central RNA-based process commonly altered in human cancers; however, how spliceosomal components are co-opted during tumorigenesis remains poorly defined. Here we unravel the core splice factor SF3A3 at the nexus of a translation-based program that rewires splicing during malignant transformation. Upon MYC hyperactivation, SF3A3 levels are modulated translationally through an RNA stem-loop in an eIF3D-dependent manner. This ensures accurate splicing of mRNAs enriched for mitochondrial regulators. Altered SF3A3 translation leads to metabolic reprogramming and stem-like properties that fuel MYC tumorigenic potential in vivo. Our analysis reveals that SF3A3 protein levels predict molecular and phenotypic features of aggressive human breast cancers. These findings unveil a post-transcriptional interplay between splicing and translation that governs critical facets of MYC-driven oncogenesis.
Collapse
Affiliation(s)
- Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Eugenia Cordero
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22363 Lund, Sweden
| | - Álvaro Sejas Martinez
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Mikkel Morsing
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22363 Lund, Sweden
| | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Giulia Beneventi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Magdalena Madej
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Terese Jönsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Kristina Lövgren
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Ebbesson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Björn Nodin
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Jirström
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Gabriella Honeth
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Danny Incarnato
- Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22363 Lund, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
45
|
Pryszlak M, Wiggans M, Chen X, Jaramillo JE, Burns SE, Richards LM, Pugh TJ, Kaplan DR, Huang X, Dirks PB, Pearson BJ. The DEAD-box helicase DDX56 is a conserved stemness regulator in normal and cancer stem cells. Cell Rep 2021; 34:108903. [PMID: 33789112 DOI: 10.1016/j.celrep.2021.108903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/28/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Across the animal kingdom, adult tissue homeostasis is regulated by adult stem cell activity, which is commonly dysregulated in human cancers. However, identifying key regulators of stem cells in the milieu of thousands of genes dysregulated in a given cancer is challenging. Here, using a comparative genomics approach between planarian adult stem cells and patient-derived glioblastoma stem cells (GSCs), we identify and demonstrate the role of DEAD-box helicase DDX56 in regulating aspects of stemness in four stem cell systems: planarians, mouse neural stem cells, human GSCs, and a fly model of glioblastoma. In a human GSC line, DDX56 localizes to the nucleolus, and using planarians, when DDX56 is lost, stem cells dysregulate expression of ribosomal RNAs and lose nucleolar integrity prior to stem cell death. Together, a comparative genomic approach can be used to uncover conserved stemness regulators that are functional in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Michael Pryszlak
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Mallory Wiggans
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Xin Chen
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada
| | - Julia E Jaramillo
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Sarah E Burns
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada
| | - Laura M Richards
- Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - David R Kaplan
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Xi Huang
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON M5G 0A4, Canada
| | - Peter B Dirks
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON M5G 0A4, Canada
| | - Bret J Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
| |
Collapse
|
46
|
Abstract
The DEAD-box helicase family member DDX3X (DBX, DDX3) functions in nearly all stages of RNA metabolism and participates in the progression of many diseases, including virus infection, inflammation, intellectual disabilities and cancer. Over two decades, many studies have gradually unveiled the role of DDX3X in tumorigenesis and tumour progression. In fact, DDX3X possesses numerous functions in cancer biology and is closely related to many well-known molecules. In this review, we describe the function of DDX3X in RNA metabolism, cellular stress response, innate immune response, metabolic stress response in pancreatic β cells and embryo development. Then, we focused on the role of DDX3X in cancer biology and systematically demonstrated its functions in various aspects of tumorigenesis and development. To provide a more intuitive understanding of the role of DDX3X in cancer, we summarized its functions and specific mechanisms in various types of cancer and presented its involvement in cancer-related signalling pathways.
Collapse
|
47
|
Melixetian M, Bossi D, Mihailovich M, Punzi S, Barozzi I, Marocchi F, Cuomo A, Bonaldi T, Testa G, Marine JC, Leucci E, Minucci S, Pelicci PG, Lanfrancone L. Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Rep 2021; 22:e50852. [PMID: 33586907 PMCID: PMC7926219 DOI: 10.15252/embr.202050852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Punzi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Federica Marocchi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
48
|
Yang P, Li J, Peng C, Tan Y, Chen R, Peng W, Gu Q, Zhou J, Wang L, Tang J, Feng Y, Sun Y. TCONS_00012883 promotes proliferation and metastasis via DDX3/YY1/MMP1/PI3K-AKT axis in colorectal cancer. Clin Transl Med 2020; 10:e211. [PMID: 33135346 PMCID: PMC7568852 DOI: 10.1002/ctm2.211] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/07/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as key regulators in multiple cancers, including colorectal cancer (CRC). However, the biological functions and molecular mechanisms underlying most lncRNAs in CRC remain largely unknown. Methods A novel lncRNA (TCONS_00012883) was identified using RNA sequencing. The level of TCONS_00012883 expression in CRC was analyzed by qRT‐PCR. The biological functions of TCONS_00012883 in CRC were investigated by a series of in vitro and in vivo experiments: CCK8, colony formation, EdU, flow cytometric assays, transwell assays, and mouse xenograft. The molecular mechanisms of TCONS_00012883 were demonstrated by RNA pulldown, mass spectrometry analysis, RIP, coimmunoprecipitation, RNA sequencing, chromatin immunoprecipitation, and rescue experiments. Results Elevated expression of TCONS_00012883 was confirmed in CRC and positively associated with a poor prognosis. Functionally, gain‐ and loss‐of‐function assays indicated that TCONS_00012883 promoted proliferation and metastasis of CRC cell lines in vitro and in vivo. Mechanistically, RNA pulldown and mass spectrometry analysis showed that DEAD‐box helicase 3 (DDX3) was the protein partner of TCONS_00012883. Furthermore, RNA sequencing assay revealed that matrix metallopeptidase 1 (MMP1) was the downstream of TCONS_00012883. Intriguingly, we found that transcription factor (YY1) could serve as a bridge between TCONS_00012883, DDX3, and MMP1. Conclusions TCONS_00012883 significantly promoted CRC progression via the DDX3/YY1/MMP1 axis, and thus, may act as a major role in diagnosis and therapy of CRC.
Collapse
Affiliation(s)
- Peng Yang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chaofan Peng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqian Tan
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ranran Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Peng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiou Gu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahui Zhou
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yueming Sun
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Huh SJ, Oh SY, Lee S, Lee JH, Kim SH, Pak MK, Kim HJ. Mutational analysis of extranodal marginal zone lymphoma using next generation sequencing. Oncol Lett 2020; 20:205. [PMID: 32963611 PMCID: PMC7491050 DOI: 10.3892/ol.2020.12068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Extranodal marginal zone lymphoma is a type of low-grade B-cell lymphoma that can be classified as a mucosal-associated lymphoid tissue (MALT) lymphoma. Recently, second-generation or next-generation sequencing (NGS), which allows simultaneous sequencing of hundreds to billions of DNA strands, has been a focus of attention and is rapidly being adopted in various fields. In the present study, paraffin-embedded tissue samples of gastric MALT lymphoma (n=1) and small intestine MALT lymphoma (n=4) were selected, and DNA was extracted from the tissue samples. After performing quality control, NGS was performed using HemaSCAN™, a custom panel of 426 genes, including essential blood cancer genes. NGS revealed single nucleotide variations (SNVs), short insertions and deletions (InDels) and copy number variations (CNVs). These genomic variants were reported as annotated, known or novel variants. An annotated variant, an erb-b2 receptor tyrosine kinase 2 gene amplification, was observed in one patient. Known and novel variants, including SNVs of SET binding protein 6 (SETBP6), Runt-related transcription factor 1 and Kelch-like ECH-associated protein 1 genes, InDel of the marker of proliferation Ki-67 gene, and CNVs of the zinc finger protein 703 and NOTCH1 genes, were observed in ≥2 patients. Additionally, InDels with frameshift mutations were identified in the B-cell lymphoma/leukemia 10, DEAD-box helicase 3 X-linked, forkhead box O3 and mucin 2, oligomeric mucus/gel-forming genes in one patient. Since few NGS studies have been performed on MALT lymphoma, the current results were unable to determine if the different mutations that were identified are ‘actionable’ (that is, potentially responsive to a targeted therapy) Further studies are required to determine the associations between genetic mutations and the development of MALT lymphoma.
Collapse
Affiliation(s)
- Seok Jae Huh
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Sung Yong Oh
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Suee Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Ji Hyun Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Sung Hyun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Min Kyung Pak
- Department of Pathology, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Hyo-Jin Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| |
Collapse
|
50
|
Diefenbach RJ, Lee JH, Menzies AM, Carlino MS, Long GV, Saw RPM, Howle JR, Spillane AJ, Scolyer RA, Kefford RF, Rizos H. Design and Testing of a Custom Melanoma Next Generation Sequencing Panel for Analysis of Circulating Tumor DNA. Cancers (Basel) 2020; 12:E2228. [PMID: 32785074 PMCID: PMC7465941 DOI: 10.3390/cancers12082228] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Detection of melanoma-associated mutations using circulating tumor DNA (ctDNA) from plasma is a potential alternative to using genomic DNA from invasive tissue biopsies. In this study, we developed a custom melanoma next-generation sequencing (NGS) panel which includes 123 amplicons in 30 genes covering driver and targetable mutations and alterations associated with treatment resistance. Analysis of a cohort of 74 stage III and IV treatment-naïve melanoma patients revealed that sensitivity of ctDNA detection was influenced by the amount of circulating-free DNA (cfDNA) input and stage of melanoma. At the recommended cfDNA input quantity of 20 ng (available in 28/74 patients), at least one cancer-associated mutation was detected in the ctDNA of 84% of stage IV patients and 47% of stage III patients with a limit of detection for mutant allele frequency (MAF) of 0.2%. This custom melanoma panel showed significant correlation with droplet digital PCR (ddPCR) and provided a more comprehensive melanoma mutation profile. Our custom panel could be further optimized by replacing amplicons spanning the TERT promoter, which did not perform well due to the high GC content. To increase the detection rate to 90% of stage IV melanoma and decrease the sensitivity to 0.1% MAF, we recommend increasing the volume of plasma to 8 mL to achieve minimal recommended cfDNA input and the refinement of poorly performing amplicons. Our panel can also be expanded to include new targetable and treatment resistance mutations to improve the tracking of treatment response and resistance in melanoma patients treated with systemic drug therapies.
Collapse
Affiliation(s)
- Russell J. Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
| | - Jenny H. Lee
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
| | - Alexander M. Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Matteo S. Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2145, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Robyn P. M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Julie R. Howle
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2145, Australia
| | - Andrew J. Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Breast and Melanoma Surgery Department, Division of Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, NSW 2050, Australia
| | - Richard F. Kefford
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
| |
Collapse
|