1
|
Jakubowska D, Al-Choboq J, Sonzogni L, Bourguignon M, Slonina D, Foray N. Influence of the Nucleo-Shuttling of the ATM Protein on the Response of Skin Fibroblasts from Marfan Syndrome to Ionizing Radiation. Int J Mol Sci 2024; 25:12313. [PMID: 39596376 PMCID: PMC11594578 DOI: 10.3390/ijms252212313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective-tissue disorder affecting multiple systems, such as skeletal, cardiovascular, and ocular systems. MFS is predominantly caused by mutations in the FBN1 gene, which encodes the fibrillin-1 protein, crucial for connective-tissue integrity. FBN1 mutations lead to defective fibrillin, resulting in structurally compromised connective tissues. Additionally, these mutations cause aberrant TGF-β expression, contributing to vascular issues and increased susceptibility to radiation-induced fibrosis. Studies about the potential radiosensitivity of MFS are rare and generally limited to case reports. Here, we aimed to investigate the radiation-induced ATM nucleo-shuttling (RIANS) model to explore the molecular and cellular radiation response in fibroblasts from MFS patients. The results showed that the MFS fibroblast cell lines tested are associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired recognition of DNA double-strand breaks (DSBs) caused by a diminished RIANS. The diminished RIANS is supported by the sequestration of ATM protein in the cytoplasm not only by mutated FBN1 protein but also by overexpressed TGF-β. This report is the first molecular and cellular characterization of the radiation response of MFS fibroblasts and highlights the importance of the FBN1-TGF-β complex after irradiation.
Collapse
Affiliation(s)
- Dagmara Jakubowska
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland;
| | - Joëlle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
- Département de Biophysique et Médecine Nucléaire, Université Paris Saclay, Versailles St. Quentin-en-Yvelines, 78035 Versailles, France
| | - Dorota Slonina
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland;
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
| |
Collapse
|
2
|
Zhan J, Huang L, Niu L, Lu W, Sun C, Liu S, Ding Z, Li E. Regulation of CD73 on NAD metabolism: Unravelling the interplay between tumour immunity and tumour metabolism. Cell Commun Signal 2024; 22:387. [PMID: 39090604 PMCID: PMC11292923 DOI: 10.1186/s12964-024-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CD73, a cell surface-bound nucleotidase, serves as a crucial metabolic and immune checkpoint. Several studies have shown that CD73 is widely expressed on immune cells and plays a critical role in immune escape, cell adhesion and migration as a costimulatory molecule for T cells and a factor in adenosine production. However, recent studies have revealed that the protumour effects of CD73 are not limited to merely inhibiting the antitumour immune response. Nicotinamide adenine dinucleotide (NAD+) is a vital bioactive molecule in organisms that plays essential regulatory roles in diverse biological processes within tumours. Accumulating evidence has demonstrated that CD73 is involved in the transport and metabolism of NAD, thereby regulating tumour biological processes to promote growth and proliferation. This review provides a holistic view of CD73-regulated NAD + metabolism as a complex network and further highlights the emerging roles of CD73 as a novel target for cancer therapies.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Le Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Liyan Niu
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wenhui Lu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Chengpeng Sun
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Shanshan Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi province, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
3
|
Ahn JH, Lee J, Park C, Beom SH, Kim SH, Lee YH, Yun KH, Kim JE, Baek W, Han YD, Kim SK, Ryu HJ, Jung I, Lee J, Yoon HI, Kim HS. Clinical Activity of TGF-β Inhibitor Vactosertib in Combination with Imatinib in Desmoid Tumors: A Multicenter Phase Ib/II Study. Clin Cancer Res 2024; 30:1457-1465. [PMID: 38363333 DOI: 10.1158/1078-0432.ccr-23-2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE The study was to determine the activity and safety of the TGF-β inhibitor vactosertib in combination with imatinib in patients with desmoid tumors. PATIENTS AND METHODS In this investigator-initiated, open-label, multicenter, phase Ib/II trial, patients with desmoid tumors not amenable to locoregional therapies (surgery and/or radiotherapy) or with disease progression following at least one treatment were enrolled. Participants were administered 400 mg imatinib daily in combination with vactosertib (5 days on and 2 days off, twice a day) every 28 days. In phase Ib, the vactosertib dose was set at 100 mg (level -1) and 200 mg (level 1) to determine the recommended phase II dose (RP2D). Phase II assessed the efficacy, with the primary endpoint being progression-free rate (PFR) at 16 weeks. RESULTS No dose-limiting toxicities were observed during phase Ib; therefore RP2D was defined at doses of 400 mg imatinib daily in combination with 200 mg vactosertib. Of the 27 patients evaluated, 7 (25.9%) achieved a confirmed partial response and 19 (70.4%) were stable. The PFR at 16 weeks and 1 year were 96.3% and 81.0%, respectively. Most toxicities were mild to moderate myalgia (n = 10, 37%), anemia (n = 10, 37%), and nausea (n = 9, 33.3%). Common grade 3 to 4 toxicities included neutropenia (n = 6, 22.2%) and anemia (n = 5, 18.5%). CONCLUSIONS The vactosertib and imatinib combination was well tolerated, with promising clinical activity in patients with progressive, locally advanced desmoid tumors. This is the first study investigating a novel target agent, a TGF-β inhibitor, in this rare and difficult-to-treat desmoid tumor.
Collapse
Affiliation(s)
- Jin-Hee Ahn
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Changhee Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Hoon Beom
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Han Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kum-Hee Yun
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeung Eun Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Wooyeol Baek
- Department of Plastic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Kyum Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyang Joo Ryu
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JooHee Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Tuppurainen H, Laurila N, Nätynki M, Eshraghi L, Tervasmäki A, Erichsen L, Sørensen CS, Pylkäs K, Winqvist R, Peltoketo H. PALB2-mutated human mammary cells display a broad spectrum of morphological and functional abnormalities induced by increased TGFβ signaling. Cell Mol Life Sci 2024; 81:173. [PMID: 38597967 PMCID: PMC11006627 DOI: 10.1007/s00018-024-05183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024]
Abstract
Heterozygous mutations in any of three major genes, BRCA1, BRCA2 and PALB2, are associated with high-risk hereditary breast cancer susceptibility frequently seen as familial disease clustering. PALB2 is a key interaction partner and regulator of several vital cellular activities of BRCA1 and BRCA2, and is thus required for DNA damage repair and alleviation of replicative and oxidative stress. Little is however known about how PALB2-deficiency affects cell function beyond that, especially in the three-dimensional setting, and also about its role during early steps of malignancy development. To answer these questions, we have generated biologically relevant MCF10A mammary epithelial cell lines with mutations that are comparable to certain clinically important PALB2 defects. We show in a non-cancerous background how both mono- and biallelically PALB2-mutated cells exhibit gross spontaneous DNA damage and mitotic aberrations. Furthermore, PALB2-deficiency disturbs three-dimensional spheroid morphology, increases the migrational capacity and invasiveness of the cells, and broadly alters their transcriptome profiles. TGFβ signaling and KRT14 expression are enhanced in PALB2-mutated cells and their inhibition and knock down, respectively, lead to partial restoration of cell functions. KRT14-positive cells are also more abundant with DNA damage than KRT14-negative cells. The obtained results indicate comprehensive cellular changes upon PALB2 mutations, even in the presence of half dosage of wild type PALB2 and demonstrate how PALB2 mutations may predispose their carriers to malignancy.
Collapse
Affiliation(s)
- Hanna Tuppurainen
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Niina Laurila
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Marjut Nätynki
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Leila Eshraghi
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Garvan Institute of Medical Research, Sydney, Australia
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Louisa Erichsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Northern Finland Laboratory Centre, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| | - Hellevi Peltoketo
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
5
|
Michki NS, Singer BD, Perez JV, Thomas AJ, Natale V, Helmin KA, Wright J, Cheng L, Young LR, Lederman HM, McGrath-Morrow SA. Transcriptional profiling of peripheral blood mononuclear cells identifies inflammatory phenotypes in Ataxia Telangiectasia. Orphanet J Rare Dis 2024; 19:67. [PMID: 38360726 PMCID: PMC10870445 DOI: 10.1186/s13023-024-03073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.
Collapse
Affiliation(s)
- Nigel S Michki
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier V Perez
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron J Thomas
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie Natale
- Forgotten Diseases Research Foundation, Santa Clara, CA, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jennifer Wright
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Leon Cheng
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard M Lederman
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sharon A McGrath-Morrow
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Becker A, Krebs‐Brown A, Vetter C, Reuter T, Rodriguez‐Gutierrez A, You X, Lissy M. Phase I crossover study of DNA-protein kinase inhibitor peposertib in healthy volunteers: Effect of food and pharmacokinetics of an oral suspension. Clin Transl Sci 2023; 16:2628-2639. [PMID: 37905356 PMCID: PMC10719468 DOI: 10.1111/cts.13657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 11/02/2023] Open
Abstract
Peposertib is an orally administered inhibitor of DNA-dependent protein kinase. We evaluated the effect of food on its pharmacokinetics, and examined the pharmacokinetics of an oral suspension (OS) of disintegrated tablets, in a phase I, open-label, crossover three-period study (NCT04702698). Twelve healthy volunteers were randomized to one of six treatment sequences. They received a single dose of peposertib 100 mg as film-coated tablets under fasted or fed conditions ("tablet fasted" or "tablet fed") or as an OS under fasted conditions ("OS fasted"), with washout between treatments. Using healthy volunteers was possible because, despite its mechanism of action being suppression of DNA repair, peposertib has shown no genotoxic effect in animals. A mild food effect was observed with peposertib tablets. Fed-to-fasted ratios were: area under the curve from time 0 to time t (AUC0-t ), 123.81% (90% confidence interval [CI]: 108.04, 141.87%); AUC from zero to infinity (AUC0-∞ ), 110.28% (90% CI 100.71, 120.77%); and maximum concentration (Cmax ) 104.47% (90% CI: 79.15, 137.90%). Cmax was delayed under fed conditions (median time to maximum concentration [Tmax ] was 3.5 h [tablet fed] vs. 1 h [tablet fasted]). OS-to-tablet (fasted) ratios were: AUC0-t , 124.83% (90% CI: 111.50%, 139.76%); AUC0-∞ , 119.05% (90% CI: 104.47, 135.67%); and Cmax 173.29% (90% CI: 135.78, 221.16%). Median Tmax was 0.5 h (OS fasted) versus 1 h (tablet). All treatments were well-tolerated in healthy volunteers. Peposertib tablets can be taken with or without food; if combined with chemotherapy or radiotherapy, the delay in Cmax must be considered to optimize the chemo- or radiosensitizing effect. The peposertib OS form represents an alternative route of administration in patients with specific cancers causing dysphagia. However, the OS form should be part of future dose optimization strategies in relevant settings.
Collapse
Affiliation(s)
| | | | | | - Tanja Reuter
- The healthcare business of Merck KGaADarmstadtGermany
| | | | | | | |
Collapse
|
7
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
8
|
Abdelrahman AM, Mohammed AA, Badawy MMM, El Bassuony WI. Orange peels and Chlorella vulgaris supplementation ameliorate gamma radiation-induced oxidative stress by regulating TGF-β and NOX2/NOX4 signaling pathways. Cell Biochem Funct 2023; 41:1263-1274. [PMID: 37756035 DOI: 10.1002/cbf.3861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Numerous studies revealed that Chlorella vulgaris and orange peels are potential sources for many valuable compounds such as flavonoids, which are natural polyphenols with antioxidant capacities that lessen oxidative stress via suppressing ROS levels. Thus, this study was designed to investigate their radioprotective efficiency either alone or in combination as natural food supplements. Sixty-four male Albino rats were divided into eight groups (n = 8) as follows: control, orange peel (10% in diet), C. vulgaris (1% in diet), orange peel + C. vulgaris, gamma irradiated (2Gy twice per week up to 8Gy), orange peel + gamma irradiation, C. vulgaris + gamma irradiation, and orange peel + C. vulgaris + gamma irradiation. After the experiment, blood serums were collected for biochemical analysis, whole bloods were collected for blood picture, bone marrows were collected for GSH, MDA, TGF-β, NOX2 and NOX4, and liver tissues were collected for histopathological evaluation. Current study revealed that exposure to gamma irradiation induced a significant disturbance in liver function markers (ALT and AST), kidney function markers (urea and creatinine), cholesterol and triglycerides levels in serum. In addition, a significant decrease in WBCs, RBCs, PLT, and Hb in blood of irradiated rats. Moreover, a significant elevation in TGF-β, NOX2, NOX4 activities, and MDA level, while showed a marked decrease in GSH concentration. Furthermore, hepatic inflammation appeared in the histopathological examination. Orange peels or C. vulgaris treatments showed acceptable amelioration in all measured parameters, combination between orange peels and C. vulgaris showed statistically significant additive amelioration in radiation induced disturbance.
Collapse
Affiliation(s)
- Abour M Abdelrahman
- Home Economic Department, Faculty of Specific Education, Ain Shams University, Cairo, Egypt
| | - Asmaa A Mohammed
- Department of Medical and Radiological Research, Nuclear Materials Authority, Cairo, Egypt
| | - Monda M M Badawy
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Walaa I El Bassuony
- Medical and Radiological Department, Nuclear Materials Authority, Cairo, Egypt
| |
Collapse
|
9
|
Tuersuntuoheti A, Li Q, Teng Y, Li X, Huang R, Lu Y, Li K, Liang J, Miao S, Wu W, Song W. YWK-II/APLP2 inhibits TGF-β signaling by interfering with the TGFBR2-Hsp90 interaction. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119548. [PMID: 37479189 DOI: 10.1016/j.bbamcr.2023.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Transforming growth factor-β (TGF-β) regulates multiple cellular biological processes by activating TGF-β type I receptors (TGFBR1) and type II receptors (TGFBR2), and Hsp90 stabilizes these receptors through specific interactions. In many malignancies, one of the most deregulated signaling pathways is the TGF-β signaling pathway, which is often inactivated by mutations or deregulation of TGF-β type II receptors (TGFBR2). However, the molecular mechanisms are not well understood. In this study, we show that YWK-II/APLP2, an immediately early response gene for TGF-β signaling, inhibits TGF-β signaling by promoting the degradation of the TGFBR2 protein. Knockdown of YWK-II/APLP2 increases the TGFBR2 protein level and sensitizes cells to TGF-β stimulation, while YWK-II/APLP2 overexpression destabilizes TGFBR2 and desensitizes cells to TGF-β. Mechanistically, YWK-II/APLP2 is associated with TGFBR2 in a TGF-β activity-dependent manner, binds to Hsp90 to interfere with the interaction between TGFBR2 and Hsp90, and leads to enhanced ubiquitination and degradation of TGFBR2. Taken together, YWK-II/APLP2 is involved in negatively regulating the duration and intensity of TGF-β/Smad signaling and suggests that aberrantly high expression of YWK-II/APLP2 in malignancies may antagonize the growth inhibition mediated by TGF-β signaling and play a role in carcinogenesis.
Collapse
Affiliation(s)
- Amannisa Tuersuntuoheti
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qinshan Li
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yu Teng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
10
|
De Chiara L, Semeraro R, Mazzinghi B, Landini S, Molli A, Antonelli G, Angelotti ML, Melica ME, Maggi L, Conte C, Peired AJ, Cirillo L, Raglianti V, Magi A, Annunziato F, Romagnani P, Lazzeri E. Polyploid tubular cells initiate a TGF-β1 controlled loop that sustains polyploidization and fibrosis after acute kidney injury. Am J Physiol Cell Physiol 2023; 325:C849-C861. [PMID: 37642236 PMCID: PMC10635654 DOI: 10.1152/ajpcell.00081.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Polyploidization of tubular cells (TC) is triggered by acute kidney injury (AKI) to allow survival in the early phase after AKI, but in the long run promotes fibrosis and AKI-chronic kidney disease (CKD) transition. The molecular mechanism governing the link between polyploid TC and kidney fibrosis remains to be clarified. In this study, we demonstrate that immediately after AKI, expression of cell cycle markers mostly identifies a population of DNA-damaged polyploid TC. Using transgenic mouse models and single-cell RNA sequencing we show that, unlike diploid TC, polyploid TC accumulate DNA damage and survive, eventually resting in the G1 phase of the cell cycle. In vivo and in vitro single-cell RNA sequencing along with sorting of polyploid TC shows that these cells acquire a profibrotic phenotype culminating in transforming growth factor (TGF)-β1 expression and that TGF-β1 directly promotes polyploidization. This demonstrates that TC polyploidization is a self-sustained mechanism. Interactome analysis by single-cell RNA sequencing revealed that TGF-β1 signaling fosters a reciprocal activation loop among polyploid TC, macrophages, and fibroblasts to sustain kidney fibrosis and promote CKD progression. Collectively, this study contributes to the ongoing revision of the paradigm of kidney tubule response to AKI, supporting the existence of a tubulointerstitial cross talk mediated by TGF-β1 signaling produced by polyploid TC following DNA damage.NEW & NOTEWORTHY Polyploidization in tubular epithelial cells has been neglected until recently. Here, we showed that polyploidization is a self-sustained mechanism that plays an important role during chronic kidney disease development, proving the existence of a cross talk between infiltrating cells and polyploid tubular cells. This study contributes to the ongoing revision of kidney adaptation to injury, posing polyploid tubular cells at the center of the process.
Collapse
Affiliation(s)
- Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Alice Molli
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Giulia Antonelli
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Carolina Conte
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Anna Julie Peired
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Valentina Raglianti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), Careggi University Hospital, Florence, Italy
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, IRCCS, Florence, Italy
| | - Elena Lazzeri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
11
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
12
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
13
|
Eggermont C, Gutierrez GJ, De Grève J, Giron P. Inhibition of PLK1 Destabilizes EGFR and Sensitizes EGFR-Mutated Lung Cancer Cells to Small Molecule Inhibitor Osimertinib. Cancers (Basel) 2023; 15:cancers15092589. [PMID: 37174055 PMCID: PMC10177332 DOI: 10.3390/cancers15092589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Tyrosine kinase inhibitors (TKI) targeting the epidermal growth factor receptor (EGFR) have significantly prolonged survival in EGFR-mutant non-small cell lung cancer patients. However, the development of resistance mechanisms prohibits the curative potential of EGFR TKIs. Combination therapies emerge as a valuable approach to preventing or delaying disease progression. Here, we investigated the combined inhibition of polo-like kinase 1 (PLK1) and EGFR in TKI-sensitive EGFR-mutant NSCLC cells. The pharmacological inhibition of PLK1 destabilized EGFR levels and sensitized NSCLC cells to Osimertinib through induction of apoptosis. In addition, we found that c-Cbl, a ubiquitin ligase of EGFR, is a direct phosphorylation target of PLK1 and PLK1 impacts the stability of c-Cbl in a kinase-dependent manner. In conclusion, we describe a novel interaction between mutant EGFR and PLK1 that may be exploited in the clinic. Co-targeting PLK1 and EGFR may improve and prolong the clinical response to EGFR TKI in patients with an EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Carolien Eggermont
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Gustavo J Gutierrez
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Centre for Medical Genetics, Research Group Reproduction and Genetics, Clinical Sciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Philippe Giron
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Centre for Medical Genetics, Research Group Reproduction and Genetics, Clinical Sciences, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
14
|
Pal R, Dutta S. Association Study of Transforming Growth Factor Beta 1 + 29 T/C exon 1 Polymorphism in Breast Cancer Patients from North Indian Population. Appl Biochem Biotechnol 2023; 195:3671-3680. [PMID: 36951937 DOI: 10.1007/s12010-023-04438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND TGFB1 cytokine is involved in normal mammary epithelial development as well as in breast tumorigenesis. It has role in both breast tumor suppression and progression. TGFB1 gene has several single nucleotide polymorphisms (SNPs) many of which modulate the activity of TGFB1. Our aim in this study was to analyze TGFB1 + 29 polymorphism in breast cancer individuals from North Indian population. METHODS TGFB1 + 29 T/C polymorphism was analyzed using Sanger sequencing in 285 breast cancer patients and age matched 363 healthy controls from North Indian population. Next, transcript expression of 13 apoptotic genes, TRAIL, DR4, DR5, DcR1, DcR2, Bcl2, cytochrome c, Casp8L, Casp8, FlipS, FlipL, Casp3s and Casp3 were carried out in 77 breast tumor tissues obtained from 77 individuals. RESULTS TGFB1 + 29 CC genotype provided protection against the development of breast cancer (P = 0.012). This was mainly attributable to higher age group (> 45 years) women (P = 0.016). Individuals having CC protector genotype showed significantly higher expression of TGFB1 transcript compared to the TT and TC risk genotypes (P = 0.044). Furthermore, we observed that TGFB1 + 29 CC genotype showed increased TRAIL mediated apoptosis via the extrinsic pathway in breast tumor patients with age greater than 45 years (P = 0.027). CONCLUSION TGFB1 + 29 homozygous mutant CC genotype is related to protection against breast cancer in North Indian women population greater than 45 years of age.
Collapse
Affiliation(s)
- Ranjana Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
- Department of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Siddhartha Dutta
- Department of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Yang L, Du X, Wang S, Lin C, Li Q, Li Q. A regulatory network controlling ovarian granulosa cell death. Cell Death Discov 2023; 9:70. [PMID: 36806197 PMCID: PMC9941584 DOI: 10.1038/s41420-023-01346-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Follicular atresia triggered by granulosa cell (GC) apoptosis severely reduces female fertility and accelerates reproductive aging. GC apoptosis is a complex process regulated by multiple factors, regulatory axes, and signaling pathways. Here, we report a novel, small regulatory network involved in GC apoptosis and follicular atresia. miR-187, a miRNA down-regulated during follicular atresia in sows, maintains TGFBR2 mRNA stability in sow GCs by directly binding to its 5'-UTR. miR-187 activates the transforming growth factor-β (TGF-β) signaling pathway and suppresses GC apoptosis via TGFBR2 activation. NORHA, a pro-apoptotic lncRNA expressed in sow GCs, inhibits TGFBR2-mediated activation of the TGF-β signaling pathway by sponging miR-187. In contrast, NORFA, a functional lncRNA associated with sow follicular atresia and GC apoptosis, enhances miR-187 and TGFBR2 expression by inhibiting NORHA and activating NFIX. Our findings define a simple regulatory network that controls GC apoptosis and follicular atresia, providing new insights into the mechanisms of GC apoptosis, follicular atresia, and female fertility.
Collapse
Affiliation(s)
- Liu Yang
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xing Du
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Siqi Wang
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chenggang Lin
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiqi Li
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Liu J, Jin J, Liang T, Feng XH. To Ub or not to Ub: a regulatory question in TGF-β signaling. Trends Biochem Sci 2022; 47:1059-1072. [PMID: 35810076 DOI: 10.1016/j.tibs.2022.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
The transforming growth factor β (TGF-β) superfamily controls a wide spectrum of biological processes in metazoans, including cell proliferation, apoptosis, differentiation, cell-fate determination, and embryonic development. Deregulation of TGF-β-Smad signaling contributes to developmental anomalies and a variety of disorders and diseases such as tumorigenesis, fibrotic disorders, and immune diseases. In cancer, TGF-β has dual effects through its antiproliferative and prometastatic actions. At the cellular level, TGF-β functions mainly through the canonical Smad-dependent pathway in a cell type-specific and context-dependent manner. Accumulating evidence has demonstrated that ubiquitination plays a vital role in regulating TGF-β-Smad signaling. We summarize current progress on ubiquitination (Ub) and the ubiquitin ligases that regulate TGF-β-Smad signaling.
Collapse
Affiliation(s)
- Jinquan Liu
- Ministry of Education (MOE) Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianping Jin
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin-Hua Feng
- Ministry of Education (MOE) Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
17
|
Huang Y, Chen X, Jiang Z, Luo Q, Wan L, Hou X, Yu K, Zhuang J. Transcriptome Sequencing Reveals Tgf-β-Mediated Noncoding RNA Regulatory Mechanisms Involved in DNA Damage in the 661W Photoreceptor Cell Line. Genes (Basel) 2022; 13:2140. [PMID: 36421815 PMCID: PMC9691224 DOI: 10.3390/genes13112140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 10/08/2023] Open
Abstract
Transforming growth factor β (Tgf-β), a pleiotropic cytokine, can enhance DNA repair in various cells, including cancer cells and neurons. The noncoding regulatory system plays an important role in Tgf-β-mediated biological activities, whereas few studies have explored its role in DNA damage and repair. In this study, we suggested that Tgf-β improved while its inhibitor LSKL impaired DNA repair and cell viability in UV-irradiated 661W cells. Moreover, RNA-seq was carried out, and a total of 106 differentially expressed (DE)-mRNAs and 7 DE-lncRNAs were identified between UV/LSKL and UV/ctrl 661W cells. Gene ontology and Reactome analysis confirmed that the DE-mRNAs were enriched in multiple DNA damaged- and repair-related biological functions and pathways. We then constructed a ceRNA network that included 3 lncRNAs, 19 miRNAs, and 29 mRNAs with a bioinformatics prediction. Through RT-qPCR and further functional verification, 2 Tgf-β-mediated ceRNA axes (Gm20559-miR-361-5p-Oas2/Gbp7) were further identified. Gm20559 knockout or miR-361-5p mimics markedly impaired DNA repair and cell viability in UV-irradiated 661W cells, which confirms the bioinformatics results. In summary, this study revealed that Tgf-β could reduce DNA damage in 661W cells, provided a Tgf-β-associated ceRNA network for DNA damage and repair, and suggested that the molecular signatures may be useful candidates as targets of treatment for photoreceptor pathology.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhigao Jiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Qian Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Linxi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiangtao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
18
|
Potential Molecular Mechanisms behind the Ultra-High Dose Rate "FLASH" Effect. Int J Mol Sci 2022; 23:ijms232012109. [PMID: 36292961 PMCID: PMC9602825 DOI: 10.3390/ijms232012109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
FLASH radiotherapy, or the delivery of a dose at an ultra-high dose rate (>40 Gy/s), has recently emerged as a promising tool to enhance the therapeutic index in cancer treatment. The remarkable sparing of normal tissues and equivalent tumor control by FLASH irradiation compared to conventional dose rate irradiation—the FLASH effect—has already been demonstrated in several preclinical models and even in a first patient with T-cell cutaneous lymphoma. However, the biological mechanisms responsible for the differential effect produced by FLASH irradiation in normal and cancer cells remain to be elucidated. This is of great importance because a good understanding of the underlying radiobiological mechanisms and characterization of the specific beam parameters is required for a successful clinical translation of FLASH radiotherapy. In this review, we summarize the FLASH investigations performed so far and critically evaluate the current hypotheses explaining the FLASH effect, including oxygen depletion, the production of reactive oxygen species, and an altered immune response. We also propose a new theory that assumes an important role of mitochondria in mediating the normal tissue and tumor response to FLASH dose rates.
Collapse
|
19
|
Koch MS, Zdioruk M, Nowicki MO, Griffith AM, Aguilar-Cordova E, Aguilar LK, Guzik BW, Barone F, Tak PP, Schregel K, Hoetker MS, Lederer JA, Chiocca EA, Tabatabai G, Lawler SE. Perturbing DDR signaling enhances cytotoxic effects of local oncolytic virotherapy and modulates the immune environment in glioma. Mol Ther Oncolytics 2022; 26:275-288. [PMID: 36032633 PMCID: PMC9391522 DOI: 10.1016/j.omto.2022.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
CAN-2409 is a replication-deficient adenovirus encoding herpes simplex virus (HSV) thymidine kinase (tk) currently in clinical trials for treatment of glioblastoma. The expression of tk in transduced cancer cells results in conversion of the pro-drug ganciclovir into a toxic metabolite causing DNA damage, inducing immunogenic cell death and immune activation. We hypothesize that CAN-2409 combined with DNA-damage-response inhibitors could amplify tumor cell death, resulting in an improved response. We investigated the effects of ATR inhibitor AZD6738 in combination with CAN-2409 in vitro using cytotoxicity, cytokine, and fluorescence-activated cell sorting (FACS) assays in glioma cell lines and in vivo with an orthotopic syngeneic murine glioma model. Tumor immune infiltrates were analyzed by cytometry by time of flight (CyTOF). In vitro, we observed a significant increase in the DNA-damage marker γH2AX and decreased expression of PD-L1, pro-tumorigenic cytokines (interleukin-1β [IL-1β], IL-4), and ligand NKG2D after combination treatment compared with monotherapy or control. In vivo, long-term survival was increased after combination treatment (66.7%) compared with CAN-2409 (50%) and control. In a tumor re-challenge, long-term immunity after combination treatment was not improved. Our results suggest that ATR inhibition could amplify CAN-2409's efficacy in glioblastoma through increased DNA damage while having complex immunological ramifications, warranting further studies to determine the ideal conditions for maximized therapeutic benefit.
Collapse
Affiliation(s)
- Marilin S. Koch
- Harvey Cushing Neurooncology Research Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Mykola Zdioruk
- Harvey Cushing Neurooncology Research Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Michal O. Nowicki
- Harvey Cushing Neurooncology Research Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Alec M. Griffith
- Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | - Laura K. Aguilar
- Candel Therapeutics, 117 Kendrick St, Suite 450, Needham, MA 02494, USA
| | - Brian W. Guzik
- Candel Therapeutics, 117 Kendrick St, Suite 450, Needham, MA 02494, USA
| | - Francesca Barone
- Candel Therapeutics, 117 Kendrick St, Suite 450, Needham, MA 02494, USA
| | - Paul Peter Tak
- Candel Therapeutics, 117 Kendrick St, Suite 450, Needham, MA 02494, USA
| | - Katharina Schregel
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Michael S. Hoetker
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | - James A. Lederer
- Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - E. Antonio Chiocca
- Harvey Cushing Neurooncology Research Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institut for Clinical Brain Research, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 6, 72076 Tübingen, Germany
| | - Sean E. Lawler
- Harvey Cushing Neurooncology Research Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
20
|
Baboota RK, Rawshani A, Bonnet L, Li X, Yang H, Mardinoglu A, Tchkonia T, Kirkland JL, Hoffmann A, Dietrich A, Boucher J, Blüher M, Smith U. BMP4 and Gremlin 1 regulate hepatic cell senescence during clinical progression of NAFLD/NASH. Nat Metab 2022; 4:1007-1021. [PMID: 35995996 PMCID: PMC9398907 DOI: 10.1038/s42255-022-00620-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
The role of hepatic cell senescence in human non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) is not well understood. To examine this, we performed liver biopsies and extensive characterization of 58 individuals with or without NAFLD/NASH. Here, we show that hepatic cell senescence is strongly related to NAFLD/NASH severity, and machine learning analysis identified senescence markers, the BMP4 inhibitor Gremlin 1 in liver and visceral fat, and the amount of visceral adipose tissue as strong predictors. Studies in liver cell spheroids made from human stellate and hepatocyte cells show BMP4 to be anti-senescent, anti-steatotic, anti-inflammatory and anti-fibrotic, whereas Gremlin 1, which is particularly highly expressed in visceral fat in humans, is pro-senescent and antagonistic to BMP4. Both senescence and anti-senescence factors target the YAP/TAZ pathway, making this a likely regulator of senescence and its effects. We conclude that senescence is an important driver of human NAFLD/NASH and that BMP4 and Gremlin 1 are novel therapeutic targets.
Collapse
Affiliation(s)
- Ritesh K Baboota
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Aidin Rawshani
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Laurianne Bonnet
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Section of Bariatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Jeremie Boucher
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
21
|
Hesperidin Exhibits Protective Effects against PM2.5-Mediated Mitochondrial Damage, Cell Cycle Arrest, and Cellular Senescence in Human HaCaT Keratinocytes. Molecules 2022; 27:molecules27154800. [PMID: 35956749 PMCID: PMC9369620 DOI: 10.3390/molecules27154800] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Particulate matter 2.5 (PM2.5) exposure can trigger adverse health outcomes in the human skin, such as skin aging, wrinkles, pigment spots, and atopic dermatitis. PM2.5 is associated with mitochondrial damage and the generation of reactive oxygen species (ROS). Hesperidin is a bioflavonoid that exhibits antioxidant and anti-inflammatory properties. This study aimed to determine the mechanism underlying the protective effect of hesperidin on human HaCaT keratinocytes against PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence. Human HaCaT keratinocytes were pre-treated with hesperidin and then treated with PM2.5. Hesperidin attenuated PM2.5-induced mitochondrial and DNA damage, G0/G1 cell cycle arrest, and SA-βGal activity, the protein levels of cell cycle regulators, and matrix metalloproteinases (MMPs). Moreover, treatment with a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, along with hesperidin markedly restored PM2.5-induced cell cycle arrest and cellular senescence. In addition, hesperidin significantly reduced the activation of MMPs, including MMP-1, MMP-2, and MMP-9, by inhibiting the activation of activator protein 1. In conclusion, hesperidin ameliorates PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence in human HaCaT keratinocytes via the ROS/JNK pathway.
Collapse
|
22
|
Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat Commun 2022; 13:3275. [PMID: 35672400 PMCID: PMC9174232 DOI: 10.1038/s41467-022-30630-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/03/2022] [Indexed: 01/07/2023] Open
Abstract
Tissue fibrosis and organ dysfunction are hallmarks of age-related diseases including heart failure, but it remains elusive whether there is a common pathway to induce both events. Through single-cell RNA-seq, spatial transcriptomics, and genetic perturbation, we elucidate that high-temperature requirement A serine peptidase 3 (Htra3) is a critical regulator of cardiac fibrosis and heart failure by maintaining the identity of quiescent cardiac fibroblasts through degrading transforming growth factor-β (TGF-β). Pressure overload downregulates expression of Htra3 in cardiac fibroblasts and activated TGF-β signaling, which induces not only cardiac fibrosis but also heart failure through DNA damage accumulation and secretory phenotype induction in failing cardiomyocytes. Overexpression of Htra3 in the heart inhibits TGF-β signaling and ameliorates cardiac dysfunction after pressure overload. Htra3-regulated induction of spatio-temporal cardiac fibrosis and cardiomyocyte secretory phenotype are observed specifically in infarct regions after myocardial infarction. Integrative analyses of single-cardiomyocyte transcriptome and plasma proteome in human reveal that IGFBP7, which is a cytokine downstream of TGF-β and secreted from failing cardiomyocytes, is the most predictable marker of advanced heart failure. These findings highlight the roles of cardiac fibroblasts in regulating cardiomyocyte homeostasis and cardiac fibrosis through the Htra3-TGF-β-IGFBP7 pathway, which would be a therapeutic target for heart failure. Cardiac fibrosis is a hallmark of heart failure. Here the authors use single-cell RNA-sequencing, spatial transcriptomics, and genetic manipulations, to show that Htra3 regulates cardiac fibrosis by keeping fibroblasts quiescent and by degrading TGF-beta.
Collapse
|
23
|
Fink M, Wrana JL. Regulation of homeostasis and regeneration in the adult intestinal epithelium by the TGF-β superfamily. Dev Dyn 2022; 252:445-462. [PMID: 35611490 DOI: 10.1002/dvdy.500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The delicate balance between the homeostatic maintenance and regenerative capacity of the intestine makes this a fascinating tissue of study. The intestinal epithelium undergoes continuous homeostatic renewal but is also exposed to a diverse array of stresses that can range from physiological processes such as digestion, to exposure to infectious agents, drugs, radiation therapy, and inflammatory stimuli. The intestinal epithelium has thus evolved to efficiently maintain and reinstate proper barrier function that is essential for intestinal integrity and function. Factors governing homeostatic epithelial turnover are well described, however, the dynamic regenerative mechanisms that occur following injury are the subject of intense ongoing investigations. The TGF-β superfamily is a key regulator of both homeostatic renewal and regenerative processes of the intestine. Here we review the roles of TGF-β and BMP on the adult intestinal epithelium during self-renewal and injury to provide a framework for understanding how this major family of morphogens can tip the scale between intestinal health and disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Yang L, Wang S, Pan Z, Du X, Li Q. TGFBR2 is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells. J Cell Physiol 2022; 237:2969-2979. [PMID: 35578792 DOI: 10.1002/jcp.30776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
The ubiquitin-specific peptidase 9 X-linked (USP9X) is one of the highly conserved members belonging to the ubiquitin-specific proteases (USPs) family, which has been reported to control substrates-mediated biological functions through deubiquitinating and stabilizing substrates. Here, we have found that TGFBR2, the type II receptor of the transforming growth factor beta (TGF-β) signaling pathway, is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells (GCs). Mechanically, USP9X positively influences the expression of TGFBR2 at different levels through two independent ways: (i) directly targets and deubiquitinates TGFBR2, which maintains the protein stability of TGFBR2 through avoiding degradation mediated by ubiquitin-proteasome system; (ii) indirectly maintains TGFBR2 messenger RNA (mRNA) expression via SMAD4/miR-143 axis. Specifically, SMAD4, another substrate of USP9X, acts as a transcription factor and suppresses miR-143 which inhibits the mRNA level of TGFBR2 by directly binding to its 3'-untranslated region. Functionally, the maintenance of TGFBR2 by USP9X activates the TGF-β signaling pathway, which further represses GC apoptosis. Our study highlights a functional micro-regulatory network composed of deubiquitinase (USP9X), small noncoding RNA (miR-143) and the TGF-β signaling pathway, which plays a crucial role in the regulation of GC apoptosis and female fertility.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siqi Wang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengxiang Pan
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Sci Rep 2022; 12:5760. [PMID: 35388101 PMCID: PMC8986772 DOI: 10.1038/s41598-022-09779-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
To combat the various DNA lesions and their harmful effects, cells have evolved different strategies, collectively referred as DNA damage response (DDR). The DDR largely relies on intranuclear protein networks, which sense DNA lesions, recruit DNA repair enzymes, and coordinates several aspects of the cellular response, including a temporary cell cycle arrest. In addition, external cues mediated by the surface EGF receptor (EGFR) through downstream signaling pathways contribute to the cellular DNA repair capacity. However, cell cycle progression driven by EGFR activation should be reconciled with cell cycle arrest necessary for effective DNA repair. Here, we show that in damaged cells, the expression of Mig-6 (mitogen-inducible gene 6), a known regulator of EGFR signaling, is reduced resulting in heightened EGFR phosphorylation and downstream signaling. These changes in Mig-6 expression and EGFR signaling do not occur in cells deficient of Mre-11, a component of the MRN complex, playing a central role in double-strand break (DSB) repair or when cells are treated with the MRN inhibitor, mirin. RNAseq and functional analysis reveal that DNA damage induces a shift in cell response to EGFR triggering that potentiates DDR-induced p53 pathway and cell cycle arrest. These data demonstrate that the cellular response to EGFR triggering is skewed by components of the DDR, thus providing a plausible explanation for the paradox of the known role played by a growth factor such as EGFR in the DNA damage repair.
Collapse
|
26
|
Chen P, Liu C, Zhang J, Chen X, Liu X, He S, He A, Chen S, Qiu J, Li Y, Jiang Z, Yu K, Zhuang J. Tsp-1 is involved in DNA stability through Tgf-β1 activation domain in cone photoreceptor 661 W cells. Cell Tissue Res 2022; 388:259-271. [PMID: 35260935 DOI: 10.1007/s00441-022-03606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Thrombospondin-1 (Tsp-1), a matricellular protein, could protect retinal neurons from endogenous or exogenous insults; however, its underlying mechanism remains unclear. Thus, this study aimed to investigate Tsp-1-mediated neuron-protection effect in retinal cells. Our data showed that Tsp-1 downregulation would aggravate UV irradiation-induced DNA damage in 661 W cells and cone photoreceptor cells. The increasing levels of poly (ADP ribose) polymer (PAR) and γ-H2AX in Tsp-1-silenced 661 W cells indicate severe DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). By utilizing an error-prone substrate, Tsp-1 silencing significantly increased deleted DNA end joining in 661 W cells with spontaneous DNA damage (SDD). Moreover, Tsp-1 is indirectly involved in DNA stability in 661 W cells as UV treatment caused a significant Tsp-1 decreasing in cytoplasm, but no obvious Tsp-1 alteration in cell nuclear of 661 W cells. Furthermore, our data indicate that Tgf-β1 activation domain in Tsp-1 plays a critical role in DNA stability in 661 W cells through expressing mutated exogenous Tsp-1 and Tgf-β inhibitor, LSKL. Therefore, this study provides new insights into the mechanism of the neuroprotective action positively mediated by Tsp-1, which might be a therapeutic target for the treatment of retinal pathology.
Collapse
Affiliation(s)
- Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shengyu He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Anqi He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shuilian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zihua Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Lund PJ, Lopes M, Sidoli S, Coradin M, Vitorino FNDL, da Cunha JPC, Garcia BA. FGF-2 induces a failure of cell cycle progression in cells harboring amplified K-Ras, revealing new insights into oncogene-induced senescence. Mol Omics 2021; 17:725-739. [PMID: 34636387 PMCID: PMC8511509 DOI: 10.1039/d1mo00019e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paradoxically, oncogenes that drive cell cycle progression may also trigger pathways leading to senescence, thereby inhibiting the growth of tumorigenic cells. Knowledge of how these pathways operate, and how tumor cells may evade these pathways, is important for understanding tumorigenesis. The Y1 cell line, which harbors an amplification of the proto-oncogene Ras, rapidly senesces in response to the mitogen fibroblast growth factor-2 (FGF-2). To gain a more complete picture of how FGF-2 promotes senescence, we employed a multi-omics approach to analyze histone modifications, mRNA and protein expression, and protein phosphorylation in Y1 cells treated with FGF-2. Compared to control cells treated with serum alone, FGF-2 caused a delayed accumulation of acetylation on histone H4 and higher levels of H3K27me3. Sequencing analysis revealed decreased expression of cell cycle-related genes with concomitant loss of H3K27ac. At the same time, FGF-2 promoted the expression of p21, various cytokines, and MAPK-related genes. Nuclear envelope proteins, particularly lamin B1, displayed increased phosphorylation in response to FGF-2. Proteome analysis suggested alterations in cellular metabolism, as evident by modulated expression of enzymes involved in purine biosynthesis, tRNA aminoacylation, and the TCA cycle. We propose that Y1 cells senesce due to an inability to progress through the cell cycle, which may stem from DNA damage or TGFb signaling. Altogether, the phenotype of Y1 cells is consistent with rapidly established oncogene-induced senescence, demonstrating the synergy between growth factors and oncogenes in driving senescence and bringing additional insight into this tumor suppressor mechanism.
Collapse
Affiliation(s)
- Peder J Lund
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariana Lopes
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratório de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariel Coradin
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Francisca Nathália de Luna Vitorino
- Laboratório de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Niu M, He Y, Xu J, Ding L, He T, Yi Y, Fu M, Guo R, Li F, Chen H, Chen YG, Xiao ZXJ. Noncanonical TGF-β signaling leads to FBXO3-mediated degradation of ΔNp63α promoting breast cancer metastasis and poor clinical prognosis. PLoS Biol 2021; 19:e3001113. [PMID: 33626035 PMCID: PMC7939357 DOI: 10.1371/journal.pbio.3001113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/08/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a critical role in promoting epithelial-to-mesenchymal transition (EMT), cell migration, invasion, and tumor metastasis. ΔNp63α, the major isoform of p63 protein expressed in epithelial cells, is a key transcriptional regulator of cell adhesion program and functions as a critical metastasis suppressor. It has been documented that the expression of ΔNp63α is tightly controlled by oncogenic signaling and is frequently reduced in advanced cancers. However, whether TGF-β signaling regulates ΔNp63α expression in promoting metastasis is largely unclear. In this study, we demonstrate that activation of TGF-β signaling leads to stabilization of E3 ubiquitin ligase FBXO3, which, in turn, targets ΔNp63α for proteasomal degradation in a Smad-independent but Erk-dependent manner. Knockdown of FBXO3 or restoration of ΔNp63α expression effectively rescues TGF-β-induced EMT, cell motility, and tumor metastasis in vitro and in vivo. Furthermore, clinical analyses reveal a significant correlation among TGF-β receptor I (TβRI), FBXO3, and p63 protein expression and that high expression of TβRI/FBXO3 and low expression of p63 are associated with poor recurrence-free survival (RFS). Together, these results demonstrate that FBXO3 facilitates ΔNp63α degradation to empower TGF-β signaling in promoting tumor metastasis and that the TβRI-FBXO3-ΔNp63α axis is critically important in breast cancer development and clinical prognosis. This study suggests that FBXO3 may be a potential therapeutic target for advanced breast cancer treatment.
Collapse
Affiliation(s)
- Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Xu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liangping Ding
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengyuan Fu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rongtian Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Le BV, Podszywalow-Bartnicka P, Maifrede S, Sullivan-Reed K, Nieborowska-Skorska M, Golovine K, Yao JC, Nejati R, Cai KQ, Caruso LB, Swatler J, Dabrowski M, Lian Z, Valent P, Paietta EM, Levine RL, Fernandez HF, Tallman MS, Litzow MR, Huang J, Challen GA, Link D, Tempera I, Wasik MA, Piwocka K, Skorski T. TGFβR-SMAD3 Signaling Induces Resistance to PARP Inhibitors in the Bone Marrow Microenvironment. Cell Rep 2020; 33:108221. [PMID: 33027668 DOI: 10.1016/j.celrep.2020.108221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic lethality triggered by PARP inhibitor (PARPi) yields promising therapeutic results. Unfortunately, tumor cells acquire PARPi resistance, which is usually associated with the restoration of homologous recombination, loss of PARP1 expression, and/or loss of DNA double-strand break (DSB) end resection regulation. Here, we identify a constitutive mechanism of resistance to PARPi. We report that the bone marrow microenvironment (BMM) facilitates DSB repair activity in leukemia cells to protect them against PARPi-mediated synthetic lethality. This effect depends on the hypoxia-induced overexpression of transforming growth factor beta receptor (TGFβR) kinase on malignant cells, which is activated by bone marrow stromal cells-derived transforming growth factor beta 1 (TGF-β1). Genetic and/or pharmacological targeting of the TGF-β1-TGFβR kinase axis results in the restoration of the sensitivity of malignant cells to PARPi in BMM and prolongs the survival of leukemia-bearing mice. Our finding may lead to the therapeutic application of the TGFβR inhibitor in patients receiving PARPis.
Collapse
Affiliation(s)
- Bac Viet Le
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | | | - Silvia Maifrede
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Sullivan-Reed
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Margaret Nieborowska-Skorska
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Konstantin Golovine
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Juo-Chin Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lisa Beatrice Caruso
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Julian Swatler
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | - Michal Dabrowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Bioinformatics, Warsaw, Poland
| | - Zhaorui Lian
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna and Ludwig-Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | - Elisabeth M Paietta
- Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hugo F Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL, USA
| | - Martin S Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Italo Tempera
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland.
| | - Tomasz Skorski
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Circadian Dysregulation of the TGFβ/SMAD4 Pathway Modulates Metastatic Properties and Cell Fate Decisions in Pancreatic Cancer Cells. iScience 2020; 23:101551. [PMID: 33083720 PMCID: PMC7522758 DOI: 10.1016/j.isci.2020.101551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Impairment of circadian rhythms impacts carcinogenesis. SMAD4, a clock-controlled gene and central component of the TGFβ canonical pathway, is frequently mutated in pancreatic ductal adenocarcinoma (PDA), leading to decreased survival. Here, we used an in vitro PDA model of SMAD4-positive and SMAD4-negative cells to investigate the interplay between circadian rhythms, the TGFβ canonical signaling pathway, and its impact on tumor malignancy. Our data show that TGFβ1, SMAD3, SMAD4, and SMAD7 oscillate in a circadian fashion in SMAD4-positive PDA cells, whereas altering the clock impairs the mRNA dynamics of these genes. Furthermore, the expression of the clock genes DEC1, DEC2, and CRY1 varied depending on SMAD4 status. TGFβ pathway activation resulted in an altered clock, cell-cycle arrest, accelerated apoptosis rate, enhanced invasiveness, and chemosensitivity. Our data suggest that the impact of TGFβ on the clock is SMAD4-dependent, and S MAD3, SMAD4, DEC1, and CRY1 involved in this cross-talk affect PDA patient survival.
Collapse
|
31
|
Gonzalez-Rajal A, Hastings JF, Watkins DN, Croucher DR, Burgess A. Breathing New Life into the Mechanisms of Platinum Resistance in Lung Adenocarcinoma. Front Cell Dev Biol 2020; 8:305. [PMID: 32457904 PMCID: PMC7225257 DOI: 10.3389/fcell.2020.00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Jordan F. Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - D. Neil Watkins
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - David R. Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Concord, NSW, Australia
- The University of Sydney Concord Clinical School, Faculty of Medicine and Health, Sydney, NSW, Australia
| |
Collapse
|
32
|
Park D, Yoon G, Kim E, Lee T, Kim K, Lee PCW, Chang E, Choi S. Wip1 regulates Smad4 phosphorylation and inhibits TGF-β signaling. EMBO Rep 2020; 21:e48693. [PMID: 32103600 PMCID: PMC7202204 DOI: 10.15252/embr.201948693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor Smad4, a key mediator of the TGF-β/BMP pathways, is essential for development and tissue homeostasis. Phosphorylation of Smad4 in its linker region catalyzed by the mitogen-activated protein kinase (MAPK) plays a pivotal role in regulating its transcriptional activity and stability. In contrast, roles of Smad4 dephosphorylation as a control mechanism of TGF-β/BMP signaling and the phosphatases responsible for its dephosphorylation remain so far elusive. Here, we identify Wip1 as a Smad4 phosphatase. Wip1 selectively binds and dephosphorylates Smad4 at Thr277, a key MAPK phosphorylation site, thereby regulating its nuclear accumulation and half-life. In Xenopus embryos, Wip1 limits mesoderm formation and favors neural induction by inhibiting TGF-β/BMP signals. Wip1 restrains TGF-β-induced growth arrest, migration, and invasion in human cells and enhances the tumorigenicity of cancer cells by repressing the antimitogenic activity of Smad4. We propose that Wip1-dependent dephosphorylation of Smad4 is critical for the regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Dong‐Seok Park
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Gang‐Ho Yoon
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Eun‐Young Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Taehyeong Lee
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Kyuhee Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Peter CW Lee
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Eun‐Ju Chang
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Sun‐Cheol Choi
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
33
|
Abstract
Members of the transforming growth factor-β (TGF-β) family play key roles in embryogenesis and in maintaining tissue homeostasis, and their perturbation can result in a broad range of diseases. One way TGF-β family signaling pathways are kept in check is by reversible (de)phosphorylation of intracellular Smad effectors. In this issue of EMBO Reports, Park et al [1] identify the phosphatase wild-type p53-induced phosphatase 1 (Wip1) as a negative regulator of TGF-β family signaling. Mechanistically, Wip1 constrains TGF-β family signaling through direct dephosphorylation of Thr277, an activating MAP kinase phosphorylation site located in the linker region of the common mediator Smad4.
Collapse
Affiliation(s)
- Peter Ten Dijke
- Department Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - David Baker
- Department Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
34
|
Farhood B, Khodamoradi E, Hoseini-Ghahfarokhi M, Motevaseli E, Mirtavoos-Mahyari H, Eleojo Musa A, Najafi M. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol Res 2020; 155:104745. [PMID: 32145401 DOI: 10.1016/j.phrs.2020.104745] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
Emerging evidences show that changes in tumor stroma can adapt cancer cells to radiotherapy, thereby leading to a reduction in tumor response to treatment. On the other hand, radiotherapy is associated with severe reactions in normal tissues which limit the amount radiation dose received by tumor. These challenges open a window in radiobiology and radiation oncology to explore mechanisms for improving tumor response and also alleviate side effects of radiotherapy. Transforming growth factor beta (TGF-β) is a well-known and multitasking cytokine that regulates a wide range of reactions and interactions within tumor and normal tissues. Within tumor microenvironment (TME), TGF-β is the most potent suppressor of immune system activity against cancer cells. This effect is mediated through stimulation of CD4+ which differentiates to T regulatory cells (Tregs), infiltration of fibroblasts and differentiation into cancer associated fibroblasts (CAFs), and also polarization of macrophages to M2 cells. These changes lead to suppression of cytotoxic CD8 + T lymphocytes (CTLs) and natural killer (NK) cells to kill cancer cells. TGF-β also plays a key role in the angiogenesis, invasion and DNA damage responses (DDR) in cancer cells. In normal tissues, TGF-β triggers the expression of a wide range of pro-oxidant and pro-fibrosis genes, leading to fibrosis, genomic instability and some other side effects. These properties of TGF-β make it a potential target to preserve normal tissues and sensitize tumor via its inhibition. In the current review, we aim to explain the mechanisms of upregulation of TGF-β and its consequences in both tumor and normal tissues.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|