1
|
Fu S, Yu R, Yang B, Han X, Xu Y, Miao J. Hypoxia-inducible lipid droplet-associated protein (HILPDA) and cystathionine β-synthase (CBS) co-contribute to protecting intestinal epithelial cells from Staphylococcus aureus via regulating lipid droplets formation. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159558. [PMID: 39173873 DOI: 10.1016/j.bbalip.2024.159558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Despite Staphylococcus aureus (S. aureus) being a highly studied zoontic bacterium, its enteropathogenicity remains elusive. Herein, our findings demonstrated that S. aureus infection led to the accumulation of lipid droplets (LDs) in intestinal epithelial cells, accompanied by marked elevation inflammatory response that ultimately decreases intracellular bacterial load. The aforestated phenomenon may be partly attributed to the up-regulation of hypoxia-inducible lipid droplet-associated protein (HILPDA) and the concomitant down-regulation of cystathionine β-synthase (CBS) protein. Moreover, S. aureus infection up-regulated the expression of HILPDA, thereby promoting LDs accumulation, and down-regulated that of CBS, consequently inhibiting microsomal triglyceride transfer protein (MTTP) expression. This process may suppress the transport of LDs to the extracellular environment, further contributing to the formation of intracellular LDs. In summary, the results of this study provide significant insights into the intricate mechanisms through which the host organism combats pathogens and maintains the balance of sulfur and lipid metabolism. These findings not only enhance our understanding of the host's defense mechanisms but also offer promising avenues for the development of novel strategies to combat intestinal infectious diseases.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
3
|
Rao Z, Liu S, Li Z, Wang Q, Gao F, Peng H, Ren D, Zang Y, Li H, Li Y, Hu Q, He D, Xu H. Alarmin-loaded extracellular lipid droplets induce airway neutrophil infiltration during type 2 inflammation. Immunity 2024; 57:2514-2529.e7. [PMID: 39366382 DOI: 10.1016/j.immuni.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/20/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Group 2 innate lymphoid cells (ILC2s) play a crucial role in allergic diseases by coordinating a complex network of various effector cell lineages involved in type 2 inflammation. However, their function in regulating airway neutrophil infiltration, a deleterious symptom of severe asthma, remains unknown. Here, we observed ILC2-dependent neutrophil accumulation in the bronchoalveolar lavage fluid (BALF) of allergic mouse models. Chromatography followed by proteomics analysis identified the alarmin high mobility group box-1 (HMGB1) in the supernatant of lung ILC2s initiated neutrophil chemotaxis. Genetic perturbation of Hmgb1 in ILC2s reduced BALF neutrophil numbers and alleviated airway inflammation. HMGB1 was loaded onto the membrane of lipid droplets (LDs) released from activated lung ILC2s. Genetic inhibition of LD accumulation in ILC2s significantly decreased extracellular HMGB1 abundance and BALF neutrophil infiltration. These findings unveil a previously uncharacterized extracellular LD-mediated immune signaling delivery pathway by which ILC2s regulate airway neutrophil infiltration during allergic inflammation.
Collapse
Affiliation(s)
- Zebing Rao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Shaorui Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Zhicheng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Qiuying Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Feng Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Han Peng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Deshan Ren
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Yang Zang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yan Li
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Qi Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Danyang He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Neuroimmunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
4
|
Soedono S, Julietta V, Nawaz H, Cho KW. Dynamic Roles and Expanding Diversity of Adipose Tissue Macrophages in Obesity. J Obes Metab Syndr 2024; 33:193-212. [PMID: 39324219 PMCID: PMC11443328 DOI: 10.7570/jomes24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024] Open
Abstract
Adipose tissue macrophages (ATMs) are key regulators of adipose tissue (AT) inflammation and insulin resistance in obesity, and the traditional M1/M2 characterization of ATMs is inadequate for capturing their diversity in obese conditions. Single-cell transcriptomic profiling has revealed heterogeneity among ATMs that goes beyond the old paradigm and identified new subsets with unique functions. Furthermore, explorations of their developmental origins suggest that multiple differentiation pathways contribute to ATM variety. These advances raise concerns about how to define ATM functions, how they are regulated, and how they orchestrate changes in AT. This review provides an overview of the current understanding of ATMs and their updated categorization in both mice and humans during obesity. Additionally, diverse ATM functions and contributions in the context of obesity are discussed. Finally, potential strategies for targeting ATM functions as therapeutic interventions for obesity-induced metabolic diseases are addressed.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Vivi Julietta
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Hadia Nawaz
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
5
|
Huang J, Liu M, Zhang H, Sun G, Furey A, Rahman P, Zhai G. Multi-Omics Integrative Analyses Identified Two Endotypes of Hip Osteoarthritis. Metabolites 2024; 14:480. [PMID: 39330487 PMCID: PMC11434176 DOI: 10.3390/metabo14090480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
(1) Background: Osteoarthritis (OA) is a heterogeneous disorder, and subgroup classification of OA remains elusive. The aim of our study was to identify endotypes of hip OA and investigate the altered pathways in the different endotypes. (2) Methods: Metabolomic profiling and genome-wide genotyping were performed on fasting blood. Transcriptomic profiling was performed on RNA extracted from cartilage samples. Machine learning methods were used to identify endotypes of hip OA. Pathway analysis was used to identify the altered pathways between hip endotypes and controls. GWAS was performed on each of the identified metabolites. Transcriptomic data was used to examine the expression levels of identified genes in cartilage. (3) Results: 180 hip OA patients and 120 OA-free controls were classified into three clusters based on metabolomic data. The combination of arginine, ornithine, and the average value of 7 lysophosphatidylcholines had an area under the curve (AUC) of 0.97 (95% CI: 0.96-0.99) to discriminate hip OA from controls, and the combination of γ-aminobutyric acid, spermine, aconitic acid, and succinic acid had an AUC of 0.96 (95% CI: 0.94-0.99) to distinguish two hip OA endotypes. GWAS identified 236 SNPs to be associated with identified metabolites at GWAS significance level. Pro-inflammatory cytokine levels were significantly different between two endotypes (all p < 0.05). (4) Conclusions: Hip OA could be classified into two distinct molecular endotypes. The primary differences between the two endotypes involve changes in pro-inflammatory factors and energy metabolism.
Collapse
Affiliation(s)
- Jingyi Huang
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Ming Liu
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Hongwei Zhang
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Guang Sun
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Andrew Furey
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
- Office of the Premier, Government of Newfoundland & Labrador, St. John's, NL A1B 4J6, Canada
| | - Proton Rahman
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Guangju Zhai
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
6
|
Wong A, Sun Q, Latif II, Karwi QG. Metabolic flux in macrophages in obesity and type-2 diabetes. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13210. [PMID: 38988822 PMCID: PMC11233469 DOI: 10.3389/jpps.2024.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Recent literature extensively investigates the crucial role of energy metabolism in determining the inflammatory response and polarization status of macrophages. This rapidly expanding area of research highlights the importance of understanding the link between energy metabolism and macrophage function. The metabolic pathways in macrophages are intricate and interdependent, and they can affect the polarization of macrophages. Previous studies suggested that glucose flux through cytosolic glycolysis is necessary to trigger pro-inflammatory phenotypes of macrophages, and fatty acid oxidation is crucial to support anti-inflammatory responses. However, recent studies demonstrated that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully understood yet. How the metabolic flux through different metabolic pathways (glycolysis, glucose oxidation, fatty acid oxidation, ketone oxidation, and amino acid oxidation) is altered by obesity- and type 2 diabetes (T2D)-associated insulin resistance is also not fully defined. This mini-review focuses on the impact of insulin resistance in obesity and T2D on the metabolic flux through the main metabolic pathways in macrophages, which might be linked to changes in their inflammatory responses. We closely evaluated the experimental studies and methodologies used in the published research and highlighted priority research areas for future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Qiuyu Sun
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ismail Ibrahim Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| |
Collapse
|
7
|
Kruglov V, Jang IH, Camell CD. Inflammaging and fatty acid oxidation in monocytes and macrophages. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00038. [PMID: 38249577 PMCID: PMC10798594 DOI: 10.1097/in9.0000000000000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Fatty acid oxidation (FAO), primarily known as β-oxidation, plays a crucial role in breaking down fatty acids within mitochondria and peroxisomes to produce cellular energy and preventing metabolic dysfunction. Myeloid cells, including macrophages, microglia, and monocytes, rely on FAO to perform essential cellular functions and uphold tissue homeostasis. As individuals age, these cells show signs of inflammaging, a condition that includes a chronic onset of low-grade inflammation and a decline in metabolic function. These lead to changes in fatty acid metabolism and a decline in FAO pathways. Recent studies have shed light on metabolic shifts occurring in macrophages and monocytes during aging, correlating with an altered tissue environment and the onset of inflammaging. This review aims to provide insights into the connection of inflammatory pathways and altered FAO in macrophages and monocytes from older organisms. We describe a model in which there is an extended activation of receptor for advanced glycation end products, nuclear factor-κB (NF-κB) and the nod-like receptor family pyrin domain containing 3 inflammasome within macrophages and monocytes. This leads to an increased level of glycolysis, and also promotes pro-inflammatory cytokine production and signaling. As a result, FAO-related enzymes such as 5' AMP-activated protein kinase and peroxisome proliferator-activated receptor-α are reduced, adding to the escalation of inflammation, accumulation of lipids, and heightened cellular stress. We examine the existing body of literature focused on changes in FAO signaling within macrophages and monocytes and their contribution to the process of inflammaging.
Collapse
Affiliation(s)
- Victor Kruglov
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - In Hwa Jang
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina D. Camell
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Deng L, Kersten S, Stienstra R. Triacylglycerol uptake and handling by macrophages: From fatty acids to lipoproteins. Prog Lipid Res 2023; 92:101250. [PMID: 37619883 DOI: 10.1016/j.plipres.2023.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Macrophages are essential innate immune cells and form our first line of immune defense. Also known as professional phagocytes, macrophages interact and take up various particles, including lipids. Defective lipid handling can drive excessive lipid accumulation leading to foam cell formation, a key feature of various cardiometabolic conditions such as atherosclerosis, non-alcoholic fatty liver disease, and obesity. At the same time, intracellular lipid storage and foam cell formation can also be viewed as a protective and anti-lipotoxic mechanism against a lipid-rich environment and associated elevated lipid uptake. Traditionally, foam cell formation has primarily been linked to cholesterol uptake via native and modified low-density lipoproteins. However, other lipids, including non-esterified fatty acids and triacylglycerol (TAG)-rich lipoproteins (very low-density lipoproteins and chylomicrons), can also interact with macrophages. Recent studies have identified multiple pathways mediating TAG uptake and processing by macrophages, including endocytosis and receptor/transporter-mediated internalization and transport. This review will present the current knowledge of how macrophages take up different lipids and lipoprotein particles and address how TAG-rich lipoproteins are processed intracellularly. Understanding how macrophages take up and process different lipid species such as TAG is necessary to design future therapeutic interventions to correct excessive lipid accumulation and associated co-morbidities.
Collapse
Affiliation(s)
- Lei Deng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Deng L, Wu SA, Qi L, Kersten S. HILPDA is a lipotoxic marker in adipocytes that mediates the autocrine negative feedback regulation of triglyceride hydrolysis by fatty acids and alleviates cellular lipotoxic stress. Mol Metab 2023; 75:101773. [PMID: 37422000 PMCID: PMC10391665 DOI: 10.1016/j.molmet.2023.101773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Lipolysis is a key metabolic pathway in adipocytes that renders stored triglycerides available for use by other cells and tissues. Non-esterified fatty acids (NEFAs) are known to exert feedback inhibition on adipocyte lipolysis, but the underlying mechanisms have only partly been elucidated. An essential enzyme in adipocyte lipolysis is ATGL. Here, we examined the role of the ATGL inhibitor HILPDA in the negative feedback regulation of adipocyte lipolysis by fatty acids. METHODS We exposed wild-type, HILPDA-deficient and HILPDA-overexpressing adipocytes and mice to various treatments. HILPDA and ATGL protein levels were determined by Western blot. ER stress was assessed by measuring the expression of marker genes and proteins. Lipolysis was studied in vitro and in vivo by measuring NEFA and glycerol levels. RESULTS We show that HILPDA mediates a fatty acid-induced autocrine feedback loop in which elevated intra- or extracellular fatty acids levels upregulate HILPDA by activation of the ER stress response and the fatty acid receptor 4 (FFAR4). The increased HILPDA levels in turn downregulate ATGL protein levels to suppress intracellular lipolysis, thereby maintaining lipid homeostasis. The deficiency of HILPDA under conditions of excessive fatty acid load disrupts this chain of events, leading to elevated lipotoxic stress in adipocytes. CONCLUSION Our data indicate that HILPDA is a lipotoxic marker in adipocytes that mediates a negative feedback regulation of lipolysis by fatty acids via ATGL and alleviates cellular lipotoxic stress.
Collapse
Affiliation(s)
- Lei Deng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands
| | - Shuangcheng Alivia Wu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
Zhang Y, Pang C, Zhang C, Wang Y, Wang P, Chen Y, Wang J, Hu Y, Liu C, Liang H, Xie G, Ou J. HILPDA-mediated lipidomic remodelling promotes radiotherapy resistance in nasopharyngeal carcinoma by accelerating mitophagy. Cell Mol Life Sci 2023; 80:242. [PMID: 37552373 PMCID: PMC11072511 DOI: 10.1007/s00018-023-04891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Radiotherapy resistance is a major obstacle to nasopharyngeal carcinoma (NPC) therapy and contributes to tumour recurrence and metastasis. Lipid metabolism is a key regulatory mechanism in cancer biology; however, its role in NPC radiotherapy resistance remains unclear. In this study, we identified hypoxia-inducible lipid droplet-associated protein (HILPDA) as a newly discovered regulator of radioresistance that induces not only lipid droplet (LD) formation but also intracellular lipid remodelling, notably changing mitochondrial cardiolipin (CL) levels. Additionally, we found that the upregulation of CL promotes mitophagy in response to irradiation exposure. Mechanistically, HILPDA inhibits PINK1-mediated CLS1 ubiquitination and degradation. The combination of a mitophagy inhibitor and irradiation significantly increases the radiosensitivity of NPC cells. Human cancer-derived data confirmed that the HILPDA-CLS1 pathway promotes NPC radioresistance. Collectively, these findings suggest that HILPDA plays a critical role in promoting NPC radioresistance and might be targeted to overcome radiotherapeutic resistance in NPC patients in the clinic.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Radiation Treatment Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chen Pang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Radiation Treatment Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chi Zhang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yijie Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Wang
- Radiation Treatment Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yanrong Chen
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Junyi Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ying Hu
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chengxiang Liu
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Radiation Treatment Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Ganfeng Xie
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Radiation Treatment Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Radiation Treatment Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
12
|
Povero D, Chen Y, Johnson SM, McMahon CE, Pan M, Bao H, Petterson XMT, Blake E, Lauer KP, O'Brien DR, Yu Y, Graham RP, Taner T, Han X, Razidlo GL, Liu J. HILPDA promotes NASH-driven HCC development by restraining intracellular fatty acid flux in hypoxia. J Hepatol 2023; 79:378-393. [PMID: 37061197 PMCID: PMC11238876 DOI: 10.1016/j.jhep.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND & AIMS The prevalence of non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) is rising rapidly, yet its underlying mechanisms remain unclear. Herein, we aim to determine the role of hypoxia-inducible lipid droplet associated protein (HILPDA)/hypoxia-inducible gene 2 (HIG2), a selective inhibitor of intracellular lipolysis, in NASH-driven HCC. METHODS The clinical significance of HILPDA was assessed in human NASH-driven HCC specimens by immunohistochemistry and transcriptomics analyses. The oncogenic effect of HILPDA was assessed in human HCC cells and in 3D epithelial spheroids upon exposure to free fatty acids and either normoxia or hypoxia. Lipidomics profiling of wild-type and HILPDA knockout HCC cells was assessed via shotgun and targeted approaches. Wild-type (Hilpdafl/fl) and hepatocyte-specific Hilpda knockout (HilpdaΔHep) mice were fed a Western diet and high sugar in drinking water while receiving carbon tetrachloride to induce NASH-driven HCC. RESULTS In patients with NASH-driven HCC, upregulated HILPDA expression is strongly associated with poor survival. In oxygen-deprived and lipid-loaded culture conditions, HILPDA promotes viability of human hepatoma cells and growth of 3D epithelial spheroids. Lack of HILPDA triggered flux of polyunsaturated fatty acids to membrane phospholipids and of saturated fatty acids to ceramide synthesis, exacerbating lipid peroxidation and apoptosis in hypoxia. The apoptosis induced by HILPDA deficiency was reversed by pharmacological inhibition of ceramide synthesis. In our experimental mouse model of NASH-driven HCC, HilpdaΔHep exhibited reduced hepatic steatosis and tumorigenesis but increased oxidative stress in the liver. Single-cell analysis supports a dual role of hepatic HILPDA in protecting HCC cells and facilitating the establishment of a pro-tumorigenic immune microenvironment in NASH. CONCLUSIONS Hepatic HILPDA is a pivotal oncometabolic factor in the NASH liver microenvironment and represents a potential novel therapeutic target. IMPACT AND IMPLICATIONS Non-alcoholic steatohepatitis (NASH, chronic metabolic liver disease caused by buildup of fat, inflammation and damage in the liver) is emerging as the leading risk factor and the fastest growing cause of hepatocellular carcinoma (HCC), the most common form of liver cancer. While curative therapeutic options exist for HCC, it frequently presents at a late stage when such options are no longer effective and only systemic therapies are available. However, systemic therapies are still associated with poor efficacy and some side effects. In addition, no approved drugs are available for NASH. Therefore, understanding the underlying metabolic alterations occurring during NASH-driven HCC is key to identifying new cancer treatments that target the unique metabolic needs of cancer cells.
Collapse
Affiliation(s)
- Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Meixia Pan
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanmei Bao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuan-Mai T Petterson
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Emily Blake
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Kimberly P Lauer
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Daniel R O'Brien
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Yue Yu
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Rondell P Graham
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Timucin Taner
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Xianlin Han
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|
13
|
Liu L, Liu T, Jia R, Zhang L, Lv Z, He Z, Qu Y, Sun S, Tai F. Downregulation of fatty acid oxidation led by Hilpda increases G2/M arrest/delay-induced kidney fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166701. [PMID: 36990128 DOI: 10.1016/j.bbadis.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Hypoxia-regulated proximal tubular epithelial cells (PTCs) G2/M phase arrest/delay was involved in production of renal tubulointerstitial fibrosis (TIF). TIF is a common pathological manifestation of progression in patients with chronic kidney disease (CKD), and is often accompanied by lipid accumulation in renal tubules. However, cause-effect relationship between hypoxia-inducible lipid droplet-associated protein (Hilpda), lipid accumulation, G2/M phase arrest/delay and TIF remains unclear. Here we found that overexpression of Hilpda downregulated adipose triglyceride lipase (ATGL) promoted triglyceride overload in the form of lipid accumulation, leading to defective fatty acid β-oxidation (FAO), ATP depletion in a human PTC cell line (HK-2) under hypoxia and in mice kidney tissue treated with unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Hilpda-induced lipid accumulation caused mitochondrial dysfunction, enhanced expression of profibrogenic factors TGF-β1, α-SMA and Collagen I elevation, and reduced expression of G2/M phase-associated gene CDK1, as well as increased CyclinB1/D1 ratio, resulted in G2/M phase arrest/delay and profibrogenic phenotypes. Hilpda deficiency in HK-2 cell and kidney of mice with UUO had sustained expression of ATGL and CDK1 and reduced expression of TGF-β1, Collagen I and CyclinB1/D1 ratio, resulting in the amelioration of lipid accumulation and G2/M arrest/delay and subsequent TIF. Expression of Hilpda correlated with lipid accumulation, was positively associated with tubulointerstitial fibrosis in tissue samples from patients with CKD. Our findings suggest that Hilpda deranges fatty acid metabolism in PTCs, which leads to G2/M phase arrest/delay and upregulation of profibrogenic factors, and consequently promote TIF which possibly underlie pathogenesis of CKD.
Collapse
|
14
|
Campbell LE, Anderson AM, Chen Y, Johnson SM, McMahon CE, Liu J. Identification of motifs and mechanisms for lipid droplet targeting of the lipolytic inhibitors G0S2 and HIG2. J Cell Sci 2022; 135:285951. [PMID: 36420951 PMCID: PMC10112975 DOI: 10.1242/jcs.260236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G0S2 and HIG2 are two selective inhibitors of ATGL (also known as PNPLA2), the key enzyme for intracellular lipolysis. Whereas G0S2 regulates triglyceride (TG) mobilization in adipocytes and hepatocytes, HIG2 functions to enhance intracellular TG accumulation under hypoxic conditions. A homologous hydrophobic domain (HD) is shared by G0S2 and HIG2 (also known as HILPDA) for binding to ATGL. However, the determinants of their lipid droplet (LD) localization are unknown. Here, we study how G0S2 and HIG2 are targeted to LDs, and identify both ATGL-independent and -dependent mechanisms. Structural prediction and studies in cells reveal that ATGL-independent localization of G0S2 to both the endoplasmic reticulum (ER) and LDs is mediated by a hairpin structure consisting of two hydrophobic sequences. Positively charged residues in the hinge region play a crucial role in sorting G0S2, which initially localizes to ER, to LDs. Interestingly, the role of these positive charges becomes dispensable when ATGL is co-expressed. In comparison, HIG2, which lacks a similar hairpin structure, is dependent on ATGL for its full LD targeting. Thus, our studies identify specific structural features and mechanisms for mediating accumulation of these two ATGL inhibitors on LDs.
Collapse
Affiliation(s)
- Latoya E Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| | - Aaron M Anderson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Nance SA, Muir L, Lumeng C. Adipose tissue macrophages: Regulators of adipose tissue immunometabolism during obesity. Mol Metab 2022; 66:101642. [PMID: 36402403 PMCID: PMC9703629 DOI: 10.1016/j.molmet.2022.101642] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adipose tissue macrophages (ATMs) are a well characterized regulator of adipose tissue inflammatory tone. Previously defined by the M1 vs M2 classification, we now have a better understanding of ATM diversity that departs from the old paradigm and reports a spectrum of ATM function and phenotypes in both brown and white adipose tissue. SCOPE OF REVIEW This review provides an updated overview of ATM activation and function, ATM diversity in humans and rodents, and novel ATM functions that contribute to metabolic homeostasis and disease. MAJOR CONCLUSIONS While the paradigm that resident ATMs predominate in the lean state and obesity leads to the accumulation of lipid-associated and inflammatory ATMs still broadly remains rigorously supported, the details of this model continue to be refined and single cell data provide new insight into ATM subtypes and states.
Collapse
Affiliation(s)
- Sierra A. Nance
- Molecular & Integrative Physiology, University of Michigan Medical School, United States,Department of Pediatrics, University of Michigan Medical School, United States
| | - Lindsey Muir
- Computational Medicine and Bioinformatics, University of Michigan Medical School, United States
| | - Carey Lumeng
- Molecular & Integrative Physiology, University of Michigan Medical School, United States,Department of Pediatrics, University of Michigan Medical School, United States,Corresponding author. 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI 48109, United States.
| |
Collapse
|
16
|
Chen X, Jaiswal A, Costliow Z, Herbst P, Creasey EA, Oshiro-Rapley N, Daly MJ, Carey KL, Graham DB, Xavier RJ. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells. Nat Immunol 2022; 23:1063-1075. [PMID: 35668320 PMCID: PMC9720675 DOI: 10.1038/s41590-022-01231-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/26/2022] [Indexed: 02/08/2023]
Abstract
Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP-CREB-DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.
Collapse
Affiliation(s)
- Xiangjun Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Experimental Medicine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Paula Herbst
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Creasey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Noriko Oshiro-Rapley
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Experimental Medicine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | | | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Experimental Medicine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
17
|
Duan X, Yang L, Wang L, Liu Q, Zhang K, Liu S, Liu C, Gao Q, Li L, Qin G, Zhang Y. m6A demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer. Cell Biosci 2022; 12:60. [PMID: 35568876 PMCID: PMC9107638 DOI: 10.1186/s13578-022-00798-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Background Epitranscriptomics studies have contributed greatly to the development of research on human cancers. In recent years, N6-methyladenosine (m6A), an RNA modification on the N-6 position of adenosine, has been found to play a potential role in epigenetic regulation. Therefore, we aimed to evaluate the regulation of cancer progression properties by m6A. Results We found that m6A demethylase fat mass and obesity-associated protein (FTO) was highly expressed in esophageal cancer (EC) stem-like cells, and that its level was also substantially increased in EC tissues, which was closely correlated with a poor prognosis in EC patients. FTO knockdown significantly inhibited the proliferation, invasion, stemness, and tumorigenicity of EC cells, whereas FTO overexpression promoted these characteristics. Furthermore, integrated transcriptome and meRIP-seq analyses revealed that HSD17B11 may be a target gene regulated by FTO. Moreover, FTO promoted the formation of lipid droplets in EC cells by enhancing HSD17B11 expression. Furthermore, depleting YTHDF1 increased the protein level of HSD17B11. Conclusions These data indicate that FTO may rely on the reading protein YTHDF1 to affect the translation pathway of the HSD17B11 gene to regulate the formation of lipid droplets in EC cells, thereby promoting the development of EC. The understanding of the role of epitranscriptomics in the development of EC will lay a theoretical foundation for seeking new anticancer therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00798-3.
Collapse
Affiliation(s)
- Xiaoran Duan
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, 450052, Henan, P.R. China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, Henan, P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, P.R. China
| | - Liuya Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Qinghua Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Kai Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Chaojun Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Qun Gao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, 450052, Henan, P.R. China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, Henan, P.R. China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, P.R. China.
| |
Collapse
|
18
|
Triglyceride breakdown from lipid droplets regulates the inflammatory response in macrophages. Proc Natl Acad Sci U S A 2022; 119:e2114739119. [PMID: 35302892 PMCID: PMC8944848 DOI: 10.1073/pnas.2114739119] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play important roles in cellular energy homeostasis, tightly regulating the accumulation and release of lipids. In macrophages, lipids accumulate in LDs during inflammation. However, it is unclear how inflammatory activation promotes the accumulation of lipids in LDs, and how the dynamic between lipid accumulation and breakdown could drive or inhibit inflammation. Elucidating the role of lipid accumulation during inflammation may provide important knowledge to influence inflammatory processes during health and disease. We identify the importance of the hypoxia-inducible lipid droplet–associated protein and the intracellular adipose triglyceride lipase in the regulation of lipid accumulation and breakdown in inflammatory macrophages. Furthermore, we determine the regulatory effect of lipid breakdown from LDs in supporting inflammation. In response to inflammatory activation by pathogens, macrophages accumulate triglycerides in intracellular lipid droplets. The mechanisms underlying triglyceride accumulation and its exact role in the inflammatory response of macrophages are not fully understood. Here, we aim to further elucidate the mechanism and function of triglyceride accumulation in the inflammatory response of activated macrophages. Lipopolysaccharide (LPS)-mediated activation markedly increased triglyceride accumulation in macrophages. This increase could be attributed to up-regulation of the hypoxia-inducible lipid droplet–associated (HILPDA) protein, which down-regulated adipose triglyceride lipase (ATGL) protein levels, in turn leading to decreased ATGL-mediated triglyceride hydrolysis. The reduction in ATGL-mediated lipolysis attenuated the inflammatory response in macrophages after ex vivo and in vitro activation, and was accompanied by decreased production of prostaglandin-E2 (PGE2) and interleukin-6 (IL-6). Overall, we provide evidence that LPS-mediated activation of macrophages suppresses lipolysis via induction of HILPDA, thereby reducing the availability of proinflammatory lipid precursors and suppressing the production of PGE2 and IL-6.
Collapse
|
19
|
Vogel A, Brunner JS, Hajto A, Sharif O, Schabbauer G. Lipid scavenging macrophages and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159066. [PMID: 34626791 DOI: 10.1016/j.bbalip.2021.159066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Macrophages are professional phagocytes, indispensable for maintenance of tissue homeostasis and integrity. Depending on their resident tissue, macrophages are exposed to highly diverse metabolic environments. Adapted to their niche, they can contribute to local metabolic turnover through metabolite uptake, conversion, storage and release. Disturbances in tissue homeostasis caused by infection, inflammation or damage dramatically alter the local milieu, impacting macrophage activation status and metabolism. In the case of persisting stimuli, defective macrophage responses ensue, which can promote tissue damage and disease. Especially relevant herein are disbalances in lipid rich environments, where macrophages are crucially involved in lipid uptake and turnover, preventing lipotoxicity. Lipid uptake is to a large extent facilitated by macrophage expressed scavenger receptors that are dynamically regulated and important in many metabolic diseases. Here, we review the receptors mediating lipid uptake and summarize recent findings on their role in health and disease. We further highlight the underlying pathways driving macrophage lipid acquisition and their impact on myeloid metabolic remodelling.
Collapse
Affiliation(s)
- Andrea Vogel
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Julia Stefanie Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Alexander Hajto
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria.
| |
Collapse
|
20
|
He T, Liu W, Shen CA. Anti-inflammatory properties of pigment epithelium-derived factor. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221138857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inflammation is part of the complex biological response to harmful stimuli, such as cell damage, pathogens, or irritants. An excessive inflammatory response can lead to a variety of diseases. Pigment epithelium-derived factor (PEDF) is an endogenous glycoprotein that belongs to the superfamily of serine protease inhibitors and has multiple biological activities. Accumulating evidence suggests that PEDF participates in various inflammatory-related diseases, such as diabetic retinopathy, atherosclerosis, nonalcoholic steatohepatitis, and retinal diseases. However, the mechanism is still incompletely understood. In this paper, we review the anti-inflammatory properties of PEDF and discuss the underlying mechanisms. PEDF can exert its anti-inflammatory effects by downregulating the expression of inflammatory factors, promoting the synthesis of anti-inflammatory factors, inhibiting the activation of proinflammatory pathways and activating anti-inflammatory pathways. Examining the function of PEDF in inflammation addresses the need for further investigation and subsequent target-specific strategies for inflammatory disorders.
Collapse
Affiliation(s)
- Ting He
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Burns and Plastic Surgery, Beijing, China
| | - Wei Liu
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Burns and Plastic Surgery, Beijing, China
| | - Chuan-an Shen
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Burns and Plastic Surgery, Beijing, China
| |
Collapse
|
21
|
Zhang W, Xu L, Zhu L, Liu Y, Yang S, Zhao M. Lipid Droplets, the Central Hub Integrating Cell Metabolism and the Immune System. Front Physiol 2021; 12:746749. [PMID: 34925055 PMCID: PMC8678573 DOI: 10.3389/fphys.2021.746749] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid droplets (LDs) are commonly found in various biological cells and are organelles related to cell metabolism. LDs, the number and size of which are heterogeneous across cell type, are primarily composed of polar lipids and proteins on the surface with neutral lipids in the core. Neutral lipids stored in LDs can be degraded by lipolysis and lipophagocytosis, which are regulated by various proteins. The process of LD formation can be summarized in four steps. In addition to energy production, LDs play an extremely pivotal role in a variety of physiological and pathological processes, such as endoplasmic reticulum stress, lipid toxicity, storage of fat-soluble vitamins, regulation of oxidative stress, and reprogramming of cell metabolism. Interestingly, LDs, the hub of integration between metabolism and the immune system, are involved in antitumor immunity, anti-infective immunity (viruses, bacteria, parasites, etc.) and some metabolic immune diseases. Herein, we summarize the role of LDs in several major immune cells as elucidated in recent years, including T cells, dendritic cells, macrophages, mast cells, and neutrophils. Additionally, we analyze the role of the interaction between LDs and immune cells in two typical metabolic immune diseases: atherosclerosis and Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya Hospital, Central South University, Changsha, China
| | - Linyong Xu
- School of Life Sciences, Central South University, Changsha, China
| | - Ling Zhu
- School of Life Sciences, Central South University, Changsha, China
| | - Yifan Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Siwei Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Pereira-Dutra FS, Bozza PT. Lipid droplets diversity and functions in inflammation and immune response. Expert Rev Proteomics 2021; 18:809-825. [PMID: 34668810 DOI: 10.1080/14789450.2021.1995356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lipid droplets (LDs) are dynamic and evolutionary conserved lipid-enriched organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell- and stimulus-regulated. Far beyond being simply a deposit of neutral lipids, accumulating evidence demonstrate that LDs act as spatial and temporal local for lipid and protein compartmentalization and signaling organization. AREAS COVERED This review focuses on the progress in our understanding of LD protein diversity and LD functions in the context of cell signaling and immune responses, highlighting the relationship between LD composition with the multiple roles of this organelle in immunometabolism, inflammation and host-response to infection. EXPERT OPINION LDs are essential platforms for various cellular processes, including metabolic regulation, cell signaling, and immune responses. The functions of LD in infection and inflammatory disease are associated with the dynamic and complexity of their proteome. Our contemporary view place LDs as critical regulators of different inflammatory and infectious diseases and key markers of leukocyte activation.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Remodeling of Macrophages in White Adipose Tissue under the Conditions of Obesity as well as Lipolysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9980877. [PMID: 34504646 PMCID: PMC8423577 DOI: 10.1155/2021/9980877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022]
Abstract
Adipose tissue macrophages (ATM) are a major source of low-grade inflammation in obesity, and yet reasons driving ATM accumulation in white adipose tissue (WAT) are not fully understood. Emerging evidence suggested that ATM underwent extensive remodeling in obesity. In addition to abundance, ATM in obesity were lipid-laden and metabolically reprogrammed, which in turn was tightly related to their functional alterations and persistence in obesity. Herein, we aimed to discuss that activation of lipid sensing signaling associated with metabolic reprogramming in ATM was indispensible for their migration, retention, or proliferation in obesity. Likewise, lipolysis also induced similar but transient ATM remodeling. Therefore, we assumed that obesity might share overlapping mechanisms with lipolysis in remodeling ATM. Formation of crown-like structures (CLS) in WAT was presumably a common event initiating ATM remodeling, with a spectrum of lipid metabolites released from adipocytes being potential signaling molecules. Moreover, adipose interlerkin-6 (IL-6) exhibited homologous alterations by obesity and lipolysis. Thus, we postulated a positive feedback loop between ATM and adipocytes via IL-6 signaling backing ATM persistence by comparison of ATM remodeling under obesity and lipolysis. An elucidation of ATM persistence could help to provide novel therapeutic targets for obesity-associated inflammation.
Collapse
|
24
|
DeBerge M, Lantz C, Dehn S, Sullivan DP, van der Laan AM, Niessen HW, Flanagan ME, Brat DJ, Feinstein MJ, Kaushal S, Wilsbacher LD, Thorp EB. Hypoxia-inducible factors individually facilitate inflammatory myeloid metabolism and inefficient cardiac repair. J Exp Med 2021; 218:e20200667. [PMID: 34325467 PMCID: PMC8329871 DOI: 10.1084/jem.20200667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are activated in parenchymal cells in response to low oxygen and as such have been proposed as therapeutic targets during hypoxic insult, including myocardial infarction (MI). HIFs are also activated within macrophages, which orchestrate the tissue repair response. Although isoform-specific therapeutics are in development for cardiac ischemic injury, surprisingly, the unique role of myeloid HIFs, and particularly HIF-2α, is unknown. Using a murine model of myocardial infarction and mice with conditional genetic loss and gain of function, we uncovered unique proinflammatory roles for myeloid cell expression of HIF-1α and HIF-2α during MI. We found that HIF-2α suppressed anti-inflammatory macrophage mitochondrial metabolism, while HIF-1α promoted cleavage of cardioprotective MerTK through glycolytic reprogramming of macrophages. Unexpectedly, combinatorial loss of both myeloid HIF-1α and HIF-2α was catastrophic and led to macrophage necroptosis, impaired fibrogenesis, and cardiac rupture. These findings support a strategy for selective inhibition of macrophage HIF isoforms and promotion of anti-inflammatory mitochondrial metabolism during ischemic tissue repair.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Connor Lantz
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shirley Dehn
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David P. Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Anja M. van der Laan
- Department of Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans W.M. Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Margaret E. Flanagan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Daniel J. Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Matthew J. Feinstein
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sunjay Kaushal
- Division of Cardiac Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| | - Lisa D. Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
- The Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| |
Collapse
|
25
|
Petkevicius K, Bidault G, Virtue S, Jenkins B, van Dierendonck XAMH, Dugourd A, Saez-Rodriguez J, Stienstra R, Koulman A, Vidal-Puig A. Norepinephrine promotes triglyceride storage in macrophages via beta2-adrenergic receptor activation. FASEB J 2021; 35:e21266. [PMID: 33484195 PMCID: PMC7898725 DOI: 10.1096/fj.202001101r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Tissue‐resident macrophages are required for homeostasis, but also contribute to tissue dysfunction in pathophysiological states. The sympathetic neurotransmitter norepinephrine (NE) induces an anti‐inflammatory and tissue‐reparative phenotype in macrophages. As NE has a well‐established role in promoting triglyceride lipolysis in adipocytes, and macrophages accumulate triglyceride droplets in various physiological and disease states, we investigated the effect of NE on primary mouse bone marrow‐derived macrophage triglyceride metabolism. Surprisingly, our data show that in contrast to the canonical role of NE in stimulating lipolysis, NE acting via beta2‐adrenergic receptors (B2ARs) in macrophages promotes extracellular fatty acid uptake and their storage as triglycerides and reduces free fatty acid release from triglyceride‐laden macrophages. We demonstrate that these responses are mediated by a B2AR activation‐dependent increase in Hilpda and Dgat1 gene expression and activity. We further show that B2AR activation favors the storage of extracellular polyunsaturated fatty acids. Finally, we present evidence that macrophages isolated from hearts after myocardial injury, for which survival critically depends on leukocyte B2ARs, have a transcriptional signature indicative of a transient triglyceride accumulation. Overall, we describe a novel and unexpected role of NE in promoting triglyceride storage in macrophages that could have potential implications in multiple diseases.
Collapse
Affiliation(s)
- Kasparas Petkevicius
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Guillaume Bidault
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Sam Virtue
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Benjamin Jenkins
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Xanthe A M H van Dierendonck
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Computational Biomedicine, Faculty of Medicine & Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Computational Biomedicine, Faculty of Medicine & Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Albert Koulman
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
26
|
Petkevicius K, Bidault G, Virtue S, Newland SA, Dale M, Dugourd A, Saez-Rodriguez J, Mallat Z, Vidal-Puig A. Macrophage beta2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. Mol Metab 2021; 48:101220. [PMID: 33774223 PMCID: PMC8086137 DOI: 10.1016/j.molmet.2021.101220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Neuroimmune interactions between the sympathetic nervous system (SNS) and macrophages are required for the homeostasis of multiple tissues, including the adipose tissue. It has been proposed that the SNS maintains adipose tissue macrophages (ATMs) in an anti-inflammatory state via direct norepinephrine (NE) signaling to macrophages. This study aimed to investigate the physiological importance of this paradigm by utilizing a mouse model in which the adrenergic signaling from the SNS to macrophages, but not to other adipose tissue cells, was disrupted. METHODS We generated a macrophage-specific B2AR knockout mouse (Adrb2ΔLyz2) by crossing Adrb2fl/fl and Lyz2Cre/+ mice. We have previously shown that macrophages isolated from Adrb2ΔLyz2 animals do not respond to NE stimulation in vitro. Herein we performed a metabolic phenotyping of Adrb2ΔLyz2 mice on either chow or high-fat diet (HFD). We also assessed the adipose tissue function of Adrb2ΔLyz2 animals during fasting and cold exposure. Finally, we transplanted Adrb2ΔLyz2 bone marrow to low-density lipoprotein receptor (LDLR) knockout mice and investigated the development of atherosclerosis during Western diet feeding. RESULTS We demonstrated that SNS-associated ATMs have a transcriptional profile indicative of activated beta-2 adrenergic receptor (B2AR), the main adrenergic receptor isoform in myeloid cells. However, Adrb2ΔLyz2 mice have unaltered energy balance on a chow or HFD. Furthermore, Adrb2ΔLyz2 mice show similar levels of adipose tissue inflammation and function during feeding, fasting, or cold exposure, and develop insulin resistance during HFD at the same rate as controls. Finally, macrophage-specific B2AR deletion does not affect the development of atherosclerosis on an LDL receptor-null genetic background. CONCLUSIONS Overall, our data suggest that the SNS does not directly modulate the phenotype of adipose tissue macrophages in either lean mice or mouse models of cardiometabolic disease. Instead, sympathetic nerve activity exerts an indirect effect on adipose tissue macrophages through the modulation of adipocyte function.
Collapse
MESH Headings
- Adipocytes/metabolism
- Adipose Tissue, White/metabolism
- Animals
- Atherosclerosis/complications
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Bone Marrow Transplantation/methods
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Diet, Western/adverse effects
- Disease Models, Animal
- Female
- Insulin Resistance/genetics
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Panniculitis/genetics
- Panniculitis/metabolism
- Phenotype
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/genetics
- Sympathetic Nervous System/metabolism
Collapse
Affiliation(s)
- Kasparas Petkevicius
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom.
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom
| | - Sam Virtue
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom
| | - Stephen A Newland
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin Dale
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine & Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine & Heidelberg University Hospital, Heidelberg, Germany
| | - Ziad Mallat
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, Cambridge, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, United Kingdom.
| |
Collapse
|
27
|
Michailidou Z, Gomez-Salazar M, Alexaki VI. Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease. J Innate Immun 2021; 14:4-30. [PMID: 33849008 DOI: 10.1159/000515117] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.
Collapse
Affiliation(s)
- Zoi Michailidou
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Mario Gomez-Salazar
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
28
|
Li R, Cao C, Zheng Z, Yang X, Tan CP, Xu Y, Liu Y. Palm oil consumption and its repercussion on endogenous fatty acids distribution. Food Funct 2021; 12:2020-2031. [PMID: 33565560 DOI: 10.1039/d0fo02511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The consumption of saturated lipids in combination with a sedentary lifestyle increases the risk of obesity and metabolic syndrome. However, the distribution of endogenous fatty acids (FA) after the consumption of saturated lipids and the connection between FA distribution and lipid metabolism-related genes relative expression have not been fully elucidated to date. In this study, we characterized FA profiles in the liver and visceral fats of Sprague Dawley (SD) rats fed with a high-palm-oil diet. The investigation showed that the levels of C16:0 and C18:1 (n-9) increased significantly (P < 0.05) in the liver of the high-palm-oil group (POG), while C16:1 (n-7) and C18:2 (n-6) accumulated markedly (P < 0.05) in the visceral fats of the control group (CN). A correlation analysis indicated a negative correlation between C16:0 and C16:1 (n-7) in the epididymal fat of POG. Our study also demonstrated that the intake of saturated lipids caused changes in lipid metabolism-related gene expression, especially stearoyl-CoA desaturase (SCD), which was upregulated at the third week but was inhibited in the subsequent weeks in the POG liver and perirenal fat. The SCD had a notable positive correlation with C16:1 (n-7) in the POG liver and perirenal fat but a significant negative correlation with C16:0 in the POG epididymal fat. In conclusion, the results of this study indicate that a high-C16:0 diet may result in adaptive SCD expression, and these findings may help to elucidate the effects of dietary fat on lipid metabolism.
Collapse
Affiliation(s)
- Ruizhi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Chen Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Xiaoyan Yang
- Shandong Bohi Industry Co., Ltd., No.333, Binhe Road, Boxing Industrial Park, Binzhou City, Shandong Province, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Malaysia
| | - Yongjiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Mei J, Yang R, Yang Q, Wan W, Wei X. Proteomic screening identifies the direct targets of chrysin anti-lipid depot in adipocytes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113361. [PMID: 32891819 DOI: 10.1016/j.jep.2020.113361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Overweight/obesity was mentioned by many countries as an obstacle to good health and long life, which increases risk of diseases and disorders. Previous studies suggested that the chronic low-grade inflammation present in the body was considered as the essential pathogenesis for obesity. Chrysin is extracted from traditional Chinese medicine Oroxylum indicum (Linn.) Kurz and plays a superior anti-obesity role. Chrysin could reduce the lipid depot by inhibiting the obesity-related inflammation in adipose tissue. However, the target protein for chrysin to exert its anti-obesity role are not verified. AIM OF STUDY The present study aimed to screen and validate the target protein for chrysin to reduce the lipid depot in palmitic acid-induced 3T3-L1 adipocytes. MATERIALS AND METHODS Obesity model was established employing 0.5 mmol/L palmitic acid-induced 3T3-L1 adipocytes through "Cocktails" method. Two-dimensional gel electrophoresis (2-DE) combined with liquid chromatography-mass spectrometry (LC-MS) was applied to analyze the differentially expressed proteins for chrysin intervention by lipid formation in adipocytes. Gene silencing was utilized to decrease gene expression of the candidate proteins, then production of triglyceride in 3T3-L1 was detected by triglycerides assay to determine the target proteins. Ultraviolet (UV) absorption together with fluorescence spectra validated the direct target proteins of chrysin. They also computed the correlation constants of combination between chrysin and the target proteins. Molecular docking was further employed to identify the main binding amino acids between chrysin and the target protein. RESULTS 2-DE combined with LC-MS screened four candidate proteins which were related to metabolism and inflammation. The production of triglycerides in 3T3-L1 was reduced after decreasing gene expression of Annexin A2 (ANXA2), 60 kDa heat shock protein (HSP-60) and succinyl-CoA:3-ketoacid coenzyme A transferase 1 (SCOT-S), respectively. UV spectrum showed that the absorbance spectra of ANXA2 from 260 to 300 nm shifted upwards along with the increase in chrysin concentration, meanwhile the absorbance spectra of HSP-60 from 200 to 220 nm and from 265 to 280 nm shifted slightly upwards along with the increase in chrysin concentrations. The results indicated the conjugated structures between chrysin and ANXA2 or HSP-60. Fluorescence quenching further suggested a spontaneous interaction between chrysin and ANXA2 or HSP-60. Finally, molecular docking identified the main binding amino acids between ANXA2 and chrysin were Ser22, Tyr24, Pro267, Val298, Asp299, and Lys302. CONCLUSIONS Chrysin can reduce the amount of triglycerides by directly downregulating the inflammation-related target proteins ANXA2 and HSP-60, exerting an anti-obesity role.
Collapse
Affiliation(s)
- Jie Mei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiaohong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wencheng Wan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyong Wei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
30
|
de la Rosa Rodriguez MA, Deng L, Gemmink A, van Weeghel M, Aoun ML, Warnecke C, Singh R, Borst JW, Kersten S. Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Mol Metab 2021; 47:101168. [PMID: 33465519 PMCID: PMC7881268 DOI: 10.1016/j.molmet.2021.101168] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Storage of triglycerides in lipid droplets is governed by a set of lipid droplet-associated proteins. One of these lipid droplet-associated proteins, hypoxia-inducible lipid droplet-associated (HILPDA), was found to impair lipid droplet breakdown in macrophages and cancer cells by inhibiting adipose triglyceride lipase. Here, we aimed to better characterize the role and mechanism of action of HILPDA in hepatocytes. Methods We performed studies in HILPDA-deficient and HILPDA-overexpressing liver cells, liver slices, and mice. The functional role and physical interactions of HILPDA were investigated using a variety of biochemical and microscopic techniques, including real-time fluorescence live-cell imaging and Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM). Results Levels of HILPDA were markedly induced by fatty acids in several hepatoma cell lines. Hepatocyte-specific deficiency of HILPDA in mice modestly but significantly reduced hepatic triglycerides in mice with non-alcoholic steatohepatitis. Similarly, deficiency of HILPDA in mouse liver slices and primary hepatocytes reduced lipid storage and accumulation of fluorescently-labeled fatty acids in lipid droplets, respectively, which was independent of adipose triglyceride lipase. Fluorescence microscopy showed that HILPDA partly colocalizes with lipid droplets and with the endoplasmic reticulum, is especially abundant in perinuclear areas, and mainly associates with newly added fatty acids. Real-time fluorescence live-cell imaging further revealed that HILPDA preferentially localizes to lipid droplets that are being remodeled. Overexpression of HILPDA in liver cells increased the activity of diacylglycerol acyltransferases (DGAT) and DGAT1 protein levels, concurrent with increased lipid storage. Confocal microscopy coupled to FRET-FLIM analysis demonstrated that HILPDA physically interacts with DGAT1 in living liver cells. The stimulatory effect of HILPDA on lipid storage via DGAT1 was corroborated in adipocytes. Conclusions Our data indicate that HILPDA physically interacts with DGAT1 and increases DGAT activity. Our findings suggest a novel regulatory mechanism by which fatty acids promote triglyceride synthesis and storage. HILPDA expression is induced by fatty acids in hepatoma cells. HILPDA deficiency modestly decreases liver triglyceride storage in mice with NASH. HILPDA preferentially associates with newly synthesized lipid droplets and active lipid droplets. HILPDA promotes lipid storage at least in part independently of ATGL. HILPDA physically interacts and induces DGAT1.
Collapse
Affiliation(s)
- Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Lei Deng
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center+, Maastricht, 6200 MD, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands
| | - Marie Louise Aoun
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY, 10461, USA
| | - Christina Warnecke
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY, 10461, USA
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Research Facility, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands.
| |
Collapse
|
31
|
Fonteh AN, Chiang AJ, Arakaki X, Edminster SP, Harrington MG. Accumulation of Cerebrospinal Fluid Glycerophospholipids and Sphingolipids in Cognitively Healthy Participants With Alzheimer's Biomarkers Precedes Lipolysis in the Dementia Stage. Front Neurosci 2020; 14:611393. [PMID: 33390893 PMCID: PMC7772205 DOI: 10.3389/fnins.2020.611393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Insight into lipids' roles in Alzheimer's disease (AD) pathophysiology is limited because brain membrane lipids have not been characterized in cognitively healthy (CH) individuals. Since age is a significant risk factor of AD, we hypothesize that aging renders the amyloid precursor protein (APP) more susceptible to abnormal processing because of deteriorating membrane lipids. To reflect brain membranes, we studied their lipid components in cerebrospinal fluid (CSF) and brain-derived CSF nanoparticle membranes. Based on CSF Aβ42/Tau levels established biomarkers of AD, we define a subset of CH participants with normal Aβ42/Tau (CH-NAT) and another group with abnormal or pathological Aβ42/Tau (CH-PAT). We report that glycerophospholipids are differentially metabolized in the CSF supernatant fluid and nanoparticle membrane fractions from CH-NAT, CH-PAT, and AD participants. Phosphatidylcholine molecular species from the supernatant fraction of CH-PAT were higher than in the CH-NAT and AD participants. Sphingomyelin levels in the supernatant fraction were lower in the CH-PAT and AD than in the CH-NAT group. The decrease in sphingomyelin corresponded with an increase in ceramide and dihydroceramide and an increase in the ceramide to sphingomyelin ratio in AD. In contrast to the supernatant fraction, sphingomyelin is higher in the nanoparticle fraction from the CH-PAT group, accompanied by lower ceramide and dihydroceramide and a decrease in the ratio of ceramide to sphingomyelin in CH-PAT compared with CH-NAT. On investigating the mechanism for the lipid changes in AD, we observed that phospholipase A2 (PLA2) activity was higher in the AD group than the CH groups. Paradoxically, acid and neutral sphingomyelinase (SMase) activities were lower in AD compared to the CH groups. Considering external influences on lipids, the clinical groups did not differ in their fasting blood lipids or dietary lipids, consistent with the CSF lipid changes originating from brain pathophysiology. The lipid accumulation in a prodromal AD biomarker positive stage identifies perturbation of lipid metabolism and disturbances in APP/Amyloid beta (Aβ) as early events in AD pathophysiology. Our results identify increased lipid turnover in CH participants with AD biomarkers, switching to a predominantly lipolytic state in dementia. This knowledge may be useful for targeting and testing new AD treatments.
Collapse
Affiliation(s)
- Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| | | | | | | | | |
Collapse
|
32
|
Povero D, Johnson SM, Liu J. Hypoxia, hypoxia-inducible gene 2 (HIG2)/HILPDA, and intracellular lipolysis in cancer. Cancer Lett 2020; 493:71-79. [PMID: 32818550 PMCID: PMC11218043 DOI: 10.1016/j.canlet.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
Tumor tissues are chronically exposed to hypoxia owing to aberrant vascularity. Hypoxia induces metabolic alterations in cancer, thereby promoting aggressive malignancy and metastasis. While previous efforts largely focused on adaptive responses in glucose and glutamine metabolism, recent studies have begun to yield important insight into the hypoxic regulation of lipid metabolic reprogramming in cancer. Emerging evidence points to lipid droplet (LD) accumulation as a hallmark of hypoxic cancer cells. One critical underlying mechanism involves the inhibition of adipose triglyceride lipase (ATGL)-mediated intracellular lipolysis by a small protein encoded by hypoxia-inducible gene 2 (HIG2), also known as hypoxia inducible lipid droplet associated (HILPDA). In this review we summarize and discuss recent key findings on hypoxia-dependent regulation of metabolic adaptations especially lipolysis in cancer. We also pose several questions and hypotheses pertaining to the metabolic impact of lipolytic regulation in cancer under hypoxia and during hypoxia-reoxygenation transition.
Collapse
Affiliation(s)
- Davide Povero
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA
| | - Scott M Johnson
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jun Liu
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA.
| |
Collapse
|
33
|
Gallerand A, Stunault MI, Merlin J, Guinamard RR, Yvan-Charvet L, Ivanov S. Myeloid Cell Diversity and Impact of Metabolic Cues during Atherosclerosis. IMMUNOMETABOLISM 2020; 2:immunometab20200028. [PMID: 39649554 PMCID: PMC7617020 DOI: 10.20900/immunometab20200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Myeloid cells are key contributors to tissue, immune and metabolic homeostasis and their alteration fuels inflammation and associated disorders such as atherosclerosis. Conversely, in a classical chicken-and-egg situation, systemic and local metabolism, together with receptor-mediated activation, regulate intracellular metabolism and reprogram myeloid cell functions. Those regulatory loops are notable during the development of atherosclerotic lesions. Therefore, understanding the intricate metabolic mechanisms regulating myeloid cell biology could lead to innovative approaches to prevent and treat cardiovascular diseases. In this review, we will attempt to summarize the different metabolic factors regulating myeloid cell homeostasis and contribution to atherosclerosis, the most frequent cardiovascular disease.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Marion I. Stunault
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Johanna Merlin
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Rodolphe R. Guinamard
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Laurent Yvan-Charvet
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Stoyan Ivanov
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| |
Collapse
|
34
|
Dahik VD, Frisdal E, Le Goff W. Rewiring of Lipid Metabolism in Adipose Tissue Macrophages in Obesity: Impact on Insulin Resistance and Type 2 Diabetes. Int J Mol Sci 2020; 21:ijms21155505. [PMID: 32752107 PMCID: PMC7432680 DOI: 10.3390/ijms21155505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and its two major comorbidities, insulin resistance and type 2 diabetes, represent worldwide health issues whose incidence is predicted to steadily rise in the coming years. Obesity is characterized by an accumulation of fat in metabolic tissues resulting in chronic inflammation. It is now largely accepted that adipose tissue inflammation underlies the etiology of these disorders. Adipose tissue macrophages (ATMs) represent the most enriched immune fraction in hypertrophic, chronically inflamed adipose tissue, and these cells play a key role in diet-induced type 2 diabetes and insulin resistance. ATMs are triggered by the continuous influx of dietary lipids, among other stimuli; however, how these lipids metabolically activate ATM depends on their nature, composition and localization. This review will discuss the fate and molecular programs elicited within obese ATMs by both exogenous and endogenous lipids, as they mediate the inflammatory response and promote or hamper the development of obesity-associated insulin resistance and type 2 diabetes.
Collapse
|
35
|
Liu Z, Wang J, Liu L, Yuan H, Bu Y, Feng J, Liu Y, Yang G, Zhao M, Yuan Y, Zhang H, Yun H, Zhang X. Chronic ethanol consumption and HBV induce abnormal lipid metabolism through HBx/SWELL1/arachidonic acid signaling and activate Tregs in HBV-Tg mice. Am J Cancer Res 2020; 10:9249-9267. [PMID: 32802190 PMCID: PMC7415795 DOI: 10.7150/thno.46005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Chronic ethanol consumption as a public health problem worldwide boosts the development of chronic liver diseases in hepatitis B virus (HBV)-infected patients. Arachidonic acid metabolite prostaglandin E2 (PGE2) activates regulatory T cells (Tregs) function. Here, we aim to investigate the underlying mechanism by which chronic ethanol consumption enriches the HBV-induced abnormal lipid metabolism and Tregs. Methods: The si-RNAs were used to weaken the expression of SWELL1 in HepG2, HepG2.2.15 and K180 cancer cell lines, followed by RNA sequencing from HepG2 cells. Arachidonic acid metabolite PGE2 and LTD4 were measured by ELISA assay in vivo and in vitro. Western blot analysis and RT-qPCR were used to examine HBx and SWELL1 and transcriptional factor Sp1 in clinical HCC samples and cell lines. The effect of chronic ethanol consumption on Tregs was tested by flow cytometry in HBV-Tg mice. The splenic Tregs were collected and analyzed by RNA sequencing. Results: The cooperative effect of ethanol and HBV in abnormal lipid metabolism was observed in vivo and in vitro. The depression of SWELL1 (or HBx) resulted in the reduction of lipid content and arachidonic acid metabolite, correlating with suppression of relative gene atlas. Ethanol and SWELL1 elevated the levels of PGE2 or LTD4 in the liver of mice and cell lines. Interestingly, the ethanol modulated abnormal lipid metabolism through activating HBx/Sp1/SWELL1/arachidonic acid signaling. Chronic ethanol consumption remarkably increased the population of PBL Tregs and splenic Tregs in HBV-Tg mice, consistently with the enhanced expression of PD-L1 in vivo and in vitro. Mechanically, RNA-seq data showed that multiple genes were altered in the transcriptomic atlas of Tregs sorting from ethanol-fed mice or HBV-Tg mice. Conclusion: The chronic ethanol intake enriches the HBV-enhanced abnormal lipid metabolism through HBx/SWELL1/arachidonic acid signaling and activates Tregs in mice.
Collapse
|
36
|
de la Rosa Rodriguez MA, Kersten S. Regulation of lipid droplet homeostasis by hypoxia inducible lipid droplet associated HILPDA. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158738. [PMID: 32417386 DOI: 10.1016/j.bbalip.2020.158738] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022]
Abstract
Nearly all cell types have the ability to store excess energy as triglycerides in specialized organelles called lipid droplets. The formation and degradation of lipid droplets is governed by a diverse set of enzymes and lipid droplet-associated proteins. One of the lipid droplet-associated proteins is Hypoxia Inducible Lipid Droplet Associated (HILPDA). HILPDA was originally discovered in a screen to identify novel hypoxia-inducible proteins. Apart from hypoxia, levels of HILPDA are induced by fatty acids and adrenergic agonists. HILPDA is a small protein of 63 amino acids in humans and 64 amino acids in mice. Inside cells, HILPDA is located in the endoplasmic reticulum and around lipid droplets. Gain- and loss-of-function experiments have demonstrated that HILPDA promotes lipid storage in hepatocytes, macrophages and cancer cells. HILPDA increases lipid droplet accumulation at least partly by inhibiting triglyceride hydrolysis via ATGL and stimulating triglyceride synthesis via DGAT1. Overall, HILPDA is a novel regulatory signal that adjusts triglyceride storage and the intracellular availability of fatty acids to the external fatty acid supply and the capacity for oxidation.
Collapse
Affiliation(s)
- Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|