1
|
Snodgrass RG, Stephensen CB, Laugero KD. Atypical monocyte dynamics in healthy humans in response to fasting and refeeding are distinguished by fasting HDL and postprandial cortisol. Am J Physiol Endocrinol Metab 2024; 327:E229-E240. [PMID: 38958546 PMCID: PMC11427091 DOI: 10.1152/ajpendo.00158.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Monocytes are innate immune cells that are continuously produced in bone marrow which enter and circulate the vasculature. In response to nutrient scarcity, monocytes migrate back to bone marrow, where, upon refeeding, they are rereleased back into the bloodstream to replenish the circulation. In humans, the variability in monocyte behavior in response to fasting and refeeding has not been characterized. To investigate monocyte dynamics in humans, we measured blood monocyte fluctuations in 354 clinically healthy individuals after a 12-h overnight fast and at 3 and 6 h after consuming a mixed macronutrient challenge meal. Using cluster analysis, we identified three distinct monocyte behaviors. Group 1 was characterized by relatively low fasting monocyte counts that markedly increased after consuming the test meal. Group 2 was characterized by relatively high fasting monocyte counts that decreased after meal consumption. Group 3, like Group 1, was characterized by lower fasting monocyte counts but increased to a lesser extent after consuming the meal. Although monocyte fluctuations observed in Groups 1 and 3 align with the current paradigm of monocyte dynamics in response to fasting and refeeding, the atypical dynamic observed in Group 2 does not. Although generally younger in age, Group 2 subjects had lower whole body carbohydrate oxidation rates, lower HDL-cholesterol levels, delayed postprandial declines in salivary cortisol, and reduced postprandial peripheral microvascular endothelial function. These unique characteristics were not explained by group differences in age, sex, or body mass index (BMI). Taken together, these results highlight distinct patterns of monocyte responsiveness to natural fluctuations in dietary fuel availability.NEW & NOTEWORTHY Our study composed of adult volunteers revealed that monocyte dynamics exhibit a high degree of individual variation in response to fasting and refeeding. Although circulating monocytes in most volunteers behaved in ways that align with previous reports, many exhibited atypical dynamics demonstrated by elevated fasting blood monocyte counts that sharply decreased after meal consumption. This group was also distinguished by lower HDL levels, reduced postprandial endothelial function, and a delayed postprandial decline in salivary cortisol.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Immunity and Disease Prevention Research Unit, Western Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Davis, California, United States
- Department of Nutrition, University of California, Davis, California, United States
| | - Charles B Stephensen
- Immunity and Disease Prevention Research Unit, Western Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Davis, California, United States
- Department of Nutrition, University of California, Davis, California, United States
| | - Kevin D Laugero
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Davis, California, United States
- Department of Nutrition, University of California, Davis, California, United States
| |
Collapse
|
2
|
de Freitas FA, Levy D, Reichert CO, Sampaio-Silva J, Giglio PN, de Pádua Covas Lage LA, Demange MK, Pereira J, Bydlowski SP. Influence of Human Bone Marrow Mesenchymal Stem Cells Secretome from Acute Myeloid Leukemia Patients on the Proliferation and Death of K562 and K562-Lucena Leukemia Cell Lineages. Int J Mol Sci 2024; 25:4748. [PMID: 38731966 PMCID: PMC11084554 DOI: 10.3390/ijms25094748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Juliana Sampaio-Silva
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Pedro Nogueira Giglio
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Luís Alberto de Pádua Covas Lage
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Marco Kawamura Demange
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Juliana Pereira
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
- Department of General Physics, Physics Institute, Sao Paulo University, Sao Paulo 05508-090, SP, Brazil
| |
Collapse
|
3
|
Graham A. Modulation of the Cellular microRNA Landscape: Contribution to the Protective Effects of High-Density Lipoproteins (HDL). BIOLOGY 2023; 12:1232. [PMID: 37759631 PMCID: PMC10526091 DOI: 10.3390/biology12091232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
High-density lipoproteins (HDL) play an established role in protecting against cellular dysfunction in a variety of different disease contexts; however, harnessing this therapeutic potential has proved challenging due to the heterogeneous and relative instability of this lipoprotein and its variable cargo molecules. The purpose of this study is to examine the contribution of microRNA (miRNA; miR) sequences, either delivered directly or modulated endogenously, to these protective functions. This narrative review introduces the complex cargo carried by HDL, the protective functions associated with this lipoprotein, and the factors governing biogenesis, export and the uptake of microRNA. The possible mechanisms by which HDL can modulate the cellular miRNA landscape are considered, and the impact of key sequences modified by HDL is explored in diseases such as inflammation and immunity, wound healing, angiogenesis, dyslipidaemia, atherosclerosis and coronary heart disease, potentially offering new routes for therapeutic intervention.
Collapse
Affiliation(s)
- Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| |
Collapse
|
4
|
Chen W, Zhang Q, Dai X, Chen X, Zhang C, Bai R, Chen Y, Zhang K, Duan X, Qiao Y, Zhao J, Tian F, Liu K, Dong Z, Lu J. PGC-1α promotes colorectal carcinoma metastasis through regulating ABCA1 transcription. Oncogene 2023; 42:2456-2470. [PMID: 37400530 DOI: 10.1038/s41388-023-02762-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Colorectal cancer (CRC) is a highly aggressive cancer in which metastasis plays a key role. However, the mechanisms underlying metastasis have not been fully elucidated. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a regulator of mitochondrial function, has been reported as a complicated factor in cancer. In this study, we found that PGC-1α was highly expressed in CRC tissues and was positively correlated with lymph node and liver metastasis. Subsequently, PGC-1α knockdown was shown to inhibit CRC growth and metastasis in both in vitro and in vivo studies. Transcriptomic analysis revealed that PGC-1α regulated ATP-binding cassette transporter 1 (ABCA1) mediated cholesterol efflux. Mechanistically, PGC-1α interacted with YY1 to promote ABCA1 transcription, resulting in cholesterol efflux, which subsequently promoted CRC metastasis through epithelial-to-mesenchymal transition (EMT). In addition, the study identified the natural compound isoliquiritigenin (ISL) as an inhibitor that targeted ABCA1 and significantly reduced CRC metastasis induced by PGC-1α. Overall, this study sheds light on how PGC-1α promotes CRC metastasis by regulating ABCA1-mediated cholesterol efflux, providing a basis for further research to inhibit CRC metastasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Chengjuan Zhang
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Fang Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China.
| |
Collapse
|
5
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Liu M, Fang X, Wang H, Ji R, Guo Q, Chen Z, Ren Q, Wang Y, Zhou Y. Characterization of lipid droplet metabolism patterns identified prognosis and tumor microenvironment infiltration in gastric cancer. Front Oncol 2023; 12:1038932. [PMID: 36713557 PMCID: PMC9875057 DOI: 10.3389/fonc.2022.1038932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Background Gastric cancer is one of the common malignant tumors of the digestive system worldwide, posing a serious threat to human health. A growing number of studies have demonstrated the important role that lipid droplets play in promoting cancer progression. However, few studies have systematically evaluated the role of lipid droplet metabolism-related genes (LDMRGs) in patients with gastric cancer. Methods We identified two distinct molecular subtypes in the TCGA-STAD cohort based on LDMRGs expression. We then constructed risk prediction scoring models in the TCGA-STAD cohort by lasso regression analysis and validated the model with the GSE15459 and GSE66229 cohorts. Moreover, we constructed a nomogram prediction model by cox regression analysis and evaluated the predictive efficacy of the model by various methods in STAD. Finally, we identified the key gene in LDMRGs, ABCA1, and performed a systematic multi-omics analysis in gastric cancer. Results Two molecular subtypes were identified based on LDMRGs expression with different survival prognosis and immune infiltration levels. lasso regression models were effective in predicting overall survival (OS) of gastric cancer patients at 1, 3 and 5 years and were validated in the GEO database with consistent results. The nomogram prediction model incorporated additional clinical factors and prognostic molecules to improve the prognostic predictive value of the current TNM staging system. ABCA1 was identified as a key gene in LDMRGs and multi-omics analysis showed a strong correlation between ABCA1 and the prognosis and immune status of patients with gastric cancer. Conclusion This study reveals the characteristics and possible underlying mechanisms of LDMRGs in gastric cancer, contributing to the identification of new prognostic biomarkers and providing a basis for future research.
Collapse
Affiliation(s)
- Mengxiao Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xidong Fang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Haoying Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xinan, China
| | - Rui Ji
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Ren
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Fan J, To KKW, Chen ZS, Fu L. ABC transporters affects tumor immune microenvironment to regulate cancer immunotherapy and multidrug resistance. Drug Resist Updat 2023; 66:100905. [PMID: 36463807 DOI: 10.1016/j.drup.2022.100905] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Multidrug resistance (MDR) is the phenomenon in which cancer cells simultaneously develop resistance to a broad spectrum of structurally and mechanistically unrelated drugs. MDR severely hinders the effective treatment of cancer and is the major cause of chemotherapy failure. ATP-binding cassette (ABC) transporters are extensively expressed in various body tissues, and actively transport endogenous and exogenous substrates through biological membranes. Overexpression of ABC transporters is frequently observed in MDR cancer cells, which promotes efflux of chemotherapeutic drugs and reduces their intracellular accumulation. Increasing evidence suggests that ABC transporters regulate tumor immune microenvironment (TIME) by transporting various cytokines, thus controlling anti-tumor immunity and sensitivity to anticancer drugs. On the other hand, the expression of various ABC transporters is regulated by cytokines and other immune signaling molecules. Targeted inhibition of ABC transporter expression or function can enhance the efficacy of immune checkpoint inhibitors by promoting anticancer immune microenvironment. This review provides an update on the recent research progress in this field.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China;Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China;Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
8
|
Ogasawara F, Ueda K. ABCA1 and cholesterol transfer protein Aster-A promote an asymmetric cholesterol distribution in the plasma membrane. J Biol Chem 2022; 298:102702. [PMID: 36395885 PMCID: PMC9747601 DOI: 10.1016/j.jbc.2022.102702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cholesterol is a major and essential component of the mammalian cell plasma membrane (PM), and the loss of cholesterol homeostasis leads to various pathologies. Cellular cholesterol uptake and synthesis are regulated by a cholesterol sensor in the endoplasmic reticulum (ER). However, it remains unclear how changes in the cholesterol level of the PM are recognized. Here, we show that the sensing of cholesterol in the PM depends on ABCA1 and the cholesterol transfer protein Aster-A, which cooperatively maintain the asymmetric transbilayer cholesterol distribution in the PM. We demonstrate that ABCA1 translocates (flops) cholesterol from the inner leaflet of the PM to the outer leaflet of the PM to maintain a low inner leaflet cholesterol level. We also found that when inner cholesterol levels were increased, Aster-A was recruited to the PM-ER contact site to transfer cholesterol to the ER. These results suggest that ABCA1 could promote an asymmetric cholesterol distribution to suppress Aster-A recruitment to the PM-ER contact site to maintain intracellular cholesterol homeostasis.
Collapse
|
9
|
Xu A, Han F, Zhang Y, Zhou T, Gao T. Comparative Transcriptomic Analyses Revealed the Effects of Poly (I:C) on the Liver and Spleen of Argyrosomus japonicus. Int J Mol Sci 2022; 23:ijms23179801. [PMID: 36077207 PMCID: PMC9455969 DOI: 10.3390/ijms23179801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Poly (I:C) can work as an immunostimulant and a viral vaccine; however, its functional mechanism in aquatic animals needs to be further investigated. In this study, comparative transcriptomic analyses were performed to investigate the effects of poly (I:C) on Argyrosomus japonicus at 12 h and 48 h postinjection. A total of 194 and 294 differentially expressed genes were obtained in the liver and spleen, respectively. At 12 h, poly (I:C) injection could significantly influence the function of the metabolism-related pathways and immune-related pathways in the liver through the upregulation of the genes GST, LPIN, FOXO1, CYP24A1, ECM1, and SGK1, and the downregulation of the genes IL-1β, CXC19, TNFAIP3, and IRF1. At 48 h, poly (I:C) could enhance the liver energy metabolism by upregulating the genes TXNRD and ECM1, while it also induced some injury in the cells with the downregulation of the genes HBA and CYP24A1. In the spleen, poly (I:C) could regulate the fish immunity and inflammatory response by upregulating the genes DDIT4, C3, EFNA, and MNK, and by downregulating the genes ABCA1, SORT1, TNF, TLR2, IL8, and MHCII at 12 h, and at 48 h, the poly (I:C) had a similar influence as that in the liver. Intersection analyses demonstrated that CYP24A1 and ECM1 were the main functional genes that contributed to the health of the liver. Ten and four genes participated in maintaining the health of the two tissues after 12 h and 48 h, respectively. In summary, our results provided a new insight into ploy (I:C) application in A. japonicus, and it also helped us to better understand the fish response mechanism to the viral vaccine injection.
Collapse
Affiliation(s)
- Anle Xu
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fei Han
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yuan Zhang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Tao Zhou
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: ; Tel.: +86-1-35-8707-2063
| |
Collapse
|
10
|
Yang Y, Liu X, Wang X, Zhang J, Li S, Ma X. Comprehensive Analysis of ABCA Family Members in Lung Adenocarcinoma with Prognostic Values. Mol Biotechnol 2022; 64:1441-1453. [PMID: 35759117 DOI: 10.1007/s12033-022-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
ATP-binding cassette subfamily A (ABCA) has received wide recognition because it possesses the capacity to translocate its derivatives, xenobiotics, vitamins, and cholesterol across biological membranes. Some ABCA members have causative relevance to inborn diseases, and a number of studies have explored their functions in cancer progression and metastasis. Here, we explored the interrelation between ABCA genes and lung adenocarcinoma (LUAD). We specified the expression and functions of ABCA members in LUAD using the GEPIA, GEO, Human Protein Atlas, UALCAN, TIMER, and Kaplan-Meier Plotter databases. ABCA5, ABCA6, ABCA8, ABCA9, and ABCA10 were found to be significantly less expressed in LUAD and correlated with TP53 mutation in patients with LUAD. Furthermore, ABCA5, ABCA6, and ABCA8 were relevant to overall survival of patients with LUAD. In conclusion, this study showed that ABCA members may be related to the TP53 mutation of LUAD. Moreover, it may serve as a potential marker for the prognosis of LUAD.
Collapse
Affiliation(s)
- Yanxia Yang
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China.,Affiliated Hospital of Northwest University for Nationalities, Lanzhou, 730000, Gansu, China
| | - Xiaoping Liu
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China.,Affiliated Hospital of Northwest University for Nationalities, Lanzhou, 730000, Gansu, China
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China.,Affiliated Hospital of Northwest University for Nationalities, Lanzhou, 730000, Gansu, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China.,Affiliated Hospital of Northwest University for Nationalities, Lanzhou, 730000, Gansu, China
| | - Shuhua Li
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China.,Affiliated Hospital of Northwest University for Nationalities, Lanzhou, 730000, Gansu, China
| | - Xueping Ma
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China. .,Affiliated Hospital of Northwest University for Nationalities, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
11
|
Dong W, Wong KHY, Liu Y, Levy-Sakin M, Hung WC, Li M, Li B, Jin SC, Choi J, Lopez-Giraldez F, Vaka D, Poon A, Chu C, Lao R, Balamir M, Movsesyan I, Malloy MJ, Zhao H, Kwok PY, Kane JP, Lifton RP, Pullinger CR. Whole-exome sequencing reveals damaging gene variants associated with hypoalphalipoproteinemia. J Lipid Res 2022; 63:100209. [PMID: 35460704 PMCID: PMC9126845 DOI: 10.1016/j.jlr.2022.100209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Low levels of high density lipoprotein-cholesterol (HDL-C) are associated with an elevated risk of arteriosclerotic coronary heart disease. Heritability of HDL-C levels is high. In this research discovery study, we used whole-exome sequencing to identify damaging gene variants that may play significant roles in determining HDL-C levels. We studied 204 individuals with a mean HDL-C level of 27.8 ± 6.4 mg/dl (range: 4-36 mg/dl). Data were analyzed by statistical gene burden testing and by filtering against candidate gene lists. We found 120 occurrences of probably damaging variants (116 heterozygous; four homozygous) among 45 of 104 recognized HDL candidate genes. Those with the highest prevalence of damaging variants were ABCA1 (n = 20), STAB1 (n = 9), OSBPL1A (n = 8), CPS1 (n = 8), CD36 (n = 7), LRP1 (n = 6), ABCA8 (n = 6), GOT2 (n = 5), AMPD3 (n = 5), WWOX (n = 4), and IRS1 (n = 4). Binomial analysis for damaging missense or loss-of-function variants identified the ABCA1 and LDLR genes at genome-wide significance. In conclusion, whole-exome sequencing of individuals with low HDL-C showed the burden of damaging rare variants in the ABCA1 and LDLR genes is particularly high and revealed numerous occurrences in HDL candidate genes, including many genes identified in genome-wide association study reports. Many of these genes are involved in cancer biology, which accords with epidemiologic findings of the association of HDL deficiency with increased risk of cancer, thus presenting a new area of interest in HDL genomics.
Collapse
Affiliation(s)
- Weilai Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Karen H Y Wong
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Youbin Liu
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Wei-Chien Hung
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mo Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | | | - Dedeepya Vaka
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Annie Poon
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Catherine Chu
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Richard Lao
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Melek Balamir
- Department of Internal Medicine, Istanbul University, Istanbul, Turkey
| | - Irina Movsesyan
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - John P Kane
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Physiological Nursing, University of California, San Francisco, CA, USA.
| |
Collapse
|
12
|
Sun Y, Li X. Cholesterol efflux mechanism revealed by structural analysis of human ABCA1 conformational states. NATURE CARDIOVASCULAR RESEARCH 2022; 1:238-245. [PMID: 37181814 PMCID: PMC10181854 DOI: 10.1038/s44161-022-00022-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/25/2022] [Indexed: 05/16/2023]
Abstract
ATP-binding cassette transporter A1 (ABCA1) utilizes energy derived from ATP hydrolysis to export cholesterol and phospholipids from macrophages. ABCA1 plays a central role in the biosynthesis of high-density lipoprotein (HDL), which mediates reverse cholesterol transport and prevents detrimental lipid deposition. Mutations in ABCA1 cause Tangier disease characterized by a remarkable reduction in the amount of HDL in blood. Here we present cryo-electron microscopy structures of human ABCA1 in ATP-bound and nucleotide-free states. Structural comparison reveals that ATP molecules pull the nucleotide-binding domains together, inducing movements of transmembrane helices 1, 2, 7 and 8 through a series of salt-bridge interactions. Subsequently, extracellular domains (ECDs) undergo a rotation and introduce conformational changes in the ECD-transmembrane interface. In addition, while we observe a sterol-like molecule in ECDs, no such density was observed in the structure of an HDL-deficiency mutant ABCA1Y482C, demonstrating the physiological importance of ECDs and a putative interaction mode between ABCA1 and its lipid acceptors. Thus, these structures, along with cholesterol efflux assays, advance the understanding ABCA1-mediated reverse cholesterol transport.
Collapse
Affiliation(s)
- Yingyuan Sun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Xi Y, Yani Z, Jing M, Yinhang W, Xiaohui H, Jing Z, Quan Q, Shuwen H. Mechanisms of induction of tumors by cholesterol and potential therapeutic prospects. Biomed Pharmacother 2021; 144:112277. [PMID: 34624674 DOI: 10.1016/j.biopha.2021.112277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggested that cholesterol is an important integrant of cell membranes, that plays a key role in tumor progression, immune dysregulation, and pathological changes in epigenetic mechanisms. Based on these theories, there is a growing interest on targeting cholesterol in the treatment of cancer. Here, we comprehensively reviewed the major function of cholesterol on oncogenicity, the therapeutic targets of cholesterol and its metabolites in cancer, and provide detailed insight into the essential roles of cholesterol in mediating immune and epigenetic mechanisms of the tumor microenvironment. It is also worth mentioning that the gut microbiome is an indispensable component of cancer mediation because of its role in cholesterol metabolism. Finally, we summarized recent studies on the potential targets of cholesterol and their metabolism, to provide more therapeutic interventions in oncology.
Collapse
Affiliation(s)
- Yang Xi
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| | - Zhou Yani
- Graduate School of Medical College of Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, Zhejiang 310029, China.
| | - Mao Jing
- Graduate School of Medical College of Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, Zhejiang 310029, China.
| | - Wu Yinhang
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China.
| | - Hou Xiaohui
- Graduate School of Nursing, Huzhou University, No. 1 Bachelor Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| | - Zhuang Jing
- Department of Nursing, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| | - Qi Quan
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| | - Han Shuwen
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
14
|
Thurm C, Schraven B, Kahlfuss S. ABC Transporters in T Cell-Mediated Physiological and Pathological Immune Responses. Int J Mol Sci 2021; 22:ijms22179186. [PMID: 34502100 PMCID: PMC8431589 DOI: 10.3390/ijms22179186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent a heterogeneous group of ATP-dependent transport proteins, which facilitate the import and/or export of various substrates, including lipids, sugars, amino acids and peptides, ions, and drugs. ABC transporters are involved in a variety of physiological processes in different human tissues. More recent studies have demonstrated that ABC transporters also regulate the development and function of different T cell populations, such as thymocytes, Natural Killer T cells, CD8+ T cells, and CD4+ T helper cells, including regulatory T cells. Here, we review the current knowledge on ABC transporters in these T cell populations by summarizing how ABC transporters regulate the function of the individual cell types and how this affects the immunity to viruses and tumors, and the course of autoimmune diseases. Furthermore, we provide a perspective on how a better understanding of the function of ABC transporters in T cells might provide promising novel avenues for the therapy of autoimmunity and to improve immunity to infection and cancer.
Collapse
Affiliation(s)
- Christoph Thurm
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
15
|
Ghosh A, Chakrabarti R, Shukla PC. Inadvertent nucleotide sequence alterations during mutagenesis: highlighting the vulnerabilities in mouse transgenic technology. J Genet Eng Biotechnol 2021; 19:30. [PMID: 33570721 PMCID: PMC7877310 DOI: 10.1186/s43141-021-00130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
In the last three decades, researchers have utilized genome engineering to alter the DNA sequence in the living cells of a plethora of organisms, ranging from plants, fishes, mice, to even humans. This has been conventionally achieved by using methodologies such as single nucleotide insertion/deletion in coding sequences, exon(s) deletion, mutations in the promoter region, introducing stop codon for protein truncation, and addition of foreign DNA for functional elucidation of genes. However, recent years have witnessed the advent of novel techniques that use programmable site-specific nucleases like CRISPR/Cas9, TALENs, ZFNs, Cre/loxP system, and gene trapping. These have revolutionized the field of experimental transgenesis as well as contributed to the existing knowledge base of classical genetics and gene mapping. Yet there are certain experimental/technological barriers that we have been unable to cross while creating genetically modified organisms. Firstly, while interfering with coding strands, we inadvertently change introns, antisense strands, and other non-coding elements of the gene and genome that play integral roles in the determination of cellular phenotype. These unintended modifications become critical because introns and other non-coding elements, although traditionally regarded as “junk DNA,” have been found to play a major regulatory role in genetic pathways of several crucial cellular processes, development, homeostasis, and diseases. Secondly, post-insertion of transgene, non-coding RNAs are generated by host organism against the inserted foreign DNA or from the inserted transgene/construct against the host genes. The potential contribution of these non-coding RNAs to the resulting phenotype has not been considered. We aim to draw attention to these inherent flaws in the transgenic technology being employed to generate mutant mice and other model organisms. By overlooking these aspects of the whole gene and genetic makeup, perhaps our current understanding of gene function remains incomplete. Thus, it becomes important that, while using genetic engineering techniques to generate a mutant organism for a particular gene, we should carefully consider all the possible elements that may play a potential role in the resulting phenotype. This perspective highlights the commonly used mouse strains and the most probable associated complexities that have not been considered previously, resulting in possible limitations in the currently utilized transgenic technology. This work also warrants the use of already established mouse lines in further research.
Collapse
Affiliation(s)
- Anuran Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rituparna Chakrabarti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
16
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
17
|
Ogasawara F, Kodan A, Ueda K. ABC proteins in evolution. FEBS Lett 2020; 594:3876-3881. [PMID: 33002191 DOI: 10.1002/1873-3468.13945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) proteins play diverse roles in all living organisms, making them an attractive model for evolution. Early evolution of ancestral unicellular organisms entailed the acquisition of at least three types of ABC proteins: type 1 ABC proteins to import nutrients, and type 2 and 3 ABC proteins to generate the outer cell membrane by flopping and loading lipids onto acceptors, respectively. To export various toxic lipophilic compounds, cells evolutionarily acquired a fourth type of ABC protein. This suggests that ABC proteins may have played an important role in evolution, especially when life became terrestrial, protecting plants and animals from water loss and pathogen infection. ABC proteins are also assumed to have accelerated the evolution of vertebrates by allowing cholesterol to function for intramembrane signaling. In this review, we discuss the roles of ABC proteins in the evolution of bacteria, plants, and animals.
Collapse
Affiliation(s)
- Fumihiko Ogasawara
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Japan
| | - Atsushi Kodan
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Japan
| | - Kazumitsu Ueda
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Japan
| |
Collapse
|