1
|
Koller TO, Berger MJ, Morici M, Paternoga H, Bulatov T, Di Stasi A, Dang T, Mainz A, Raulf K, Crowe-McAuliffe C, Scocchi M, Mardirossian M, Beckert B, Vázquez-Laslop N, Mankin AS, Süssmuth RD, Wilson DN. Paenilamicins are context-specific translocation inhibitors of protein synthesis. Nat Chem Biol 2024; 20:1691-1700. [PMID: 39420228 PMCID: PMC11581978 DOI: 10.1038/s41589-024-01752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The paenilamicins are a group of hybrid nonribosomal peptide-polyketide compounds produced by the honey bee pathogen Paenibacillus larvae that display activity against Gram-positive pathogens, such as Staphylococcus aureus. While paenilamicins have been shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here we determine structures of paenilamicin PamB2-stalled ribosomes, revealing a unique binding site on the small 30S subunit located between the A- and P-site transfer RNAs (tRNAs). In addition to providing a precise description of interactions of PamB2 with the ribosome, the structures also rationalize the resistance mechanisms used by P. larvae. We further demonstrate that PamB2 interferes with the translocation of messenger RNA and tRNAs through the ribosome during translation elongation, and that this inhibitory activity is influenced by the presence of modifications at position 37 of the A-site tRNA. Collectively, our study defines the paenilamicins as a class of context-specific translocation inhibitors.
Collapse
Affiliation(s)
- Timm O Koller
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Max J Berger
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Timur Bulatov
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Tam Dang
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Karoline Raulf
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Sehgal E, Wohlenberg C, Soukup EM, Viscardi MJ, Serrão VHB, Arribere JA. High-resolution reconstruction of a C. elegans ribosome sheds light on evolutionary dynamics and tissue specificity. RNA (NEW YORK, N.Y.) 2024; 30:1513-1528. [PMID: 39209556 PMCID: PMC11482609 DOI: 10.1261/rna.080103.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Caenorhabditis elegans is an important model organism for human health and disease, with foundational contributions to the understanding of gene expression and tissue patterning in animals. An invaluable tool in modern gene expression research is the presence of a high-resolution ribosome structure, though no such structure exists for C. elegans Here, we present a high-resolution single-particle cryogenic electron microscopy (cryo-EM) reconstruction and molecular model of a C. elegans ribosome, revealing a significantly streamlined animal ribosome. Many facets of ribosome structure are conserved in C. elegans, including overall ribosomal architecture and the mechanism of cycloheximide, whereas other facets, such as expansion segments and eL28, are rapidly evolving. We identify uL5 and uL23 as two instances of tissue-specific ribosomal protein paralog expression conserved in Caenorhabditis, suggesting that C. elegans ribosomes vary across tissues. The C. elegans ribosome structure will provide a basis for future structural, biochemical, and genetic studies of translation in this important animal system.
Collapse
Affiliation(s)
- Enisha Sehgal
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Chloe Wohlenberg
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Evan M Soukup
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Marcus J Viscardi
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Vitor Hugo Balasco Serrão
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- Biomolecular Cryoelectron Microscopy Facility, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Joshua A Arribere
- Department of MCD Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- RNA Center, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- Genomics Institute, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
3
|
Rajan KS, Aryal S, Hiregange DG, Bashan A, Madmoni H, Olami M, Doniger T, Cohen-Chalamish S, Pescher P, Taoka M, Nobe Y, Fedorenko A, Bose T, Zimermann E, Prina E, Aharon-Hefetz N, Pilpel Y, Isobe T, Unger R, Späth GF, Yonath A, Michaeli S. Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification. Cell Rep 2024; 43:114203. [PMID: 38722744 PMCID: PMC11156624 DOI: 10.1016/j.celrep.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel; The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mika Olami
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Pascal Pescher
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Aliza Fedorenko
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Ella Zimermann
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Eric Prina
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Noa Aharon-Hefetz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Ada Yonath
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
4
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk. Nat Commun 2024; 15:4272. [PMID: 38769321 PMCID: PMC11106087 DOI: 10.1038/s41467-024-48163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.
Collapse
Affiliation(s)
- Vivek Singh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Tokyo, Japan
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Asem Hassan
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Andreas Naschberger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Keiichi Izumikawa
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Juni Andréll
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Antoni Barrientos
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Westlake University, Hangzhou, China.
| |
Collapse
|
5
|
Fedry J, Silva J, Vanevic M, Fronik S, Mechulam Y, Schmitt E, des Georges A, Faller WJ, Förster F. Visualization of translation reorganization upon persistent ribosome collision stress in mammalian cells. Mol Cell 2024; 84:1078-1089.e4. [PMID: 38340715 PMCID: PMC7615912 DOI: 10.1016/j.molcel.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/06/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Aberrantly slow ribosomes incur collisions, a sentinel of stress that triggers quality control, signaling, and translation attenuation. Although each collision response has been studied in isolation, the net consequences of their collective actions in reshaping translation in cells is poorly understood. Here, we apply cryoelectron tomography to visualize the translation machinery in mammalian cells during persistent collision stress. We find that polysomes are compressed, with up to 30% of ribosomes in helical polysomes or collided disomes, some of which are bound to the stress effector GCN1. The native collision interface extends beyond the in vitro-characterized 40S and includes the L1 stalk and eEF2, possibly contributing to translocation inhibition. The accumulation of unresolved tRNA-bound 80S and 60S and aberrant 40S configurations identifies potentially limiting steps in collision responses. Our work provides a global view of the translation machinery in response to persistent collisions and a framework for quantitative analysis of translation dynamics in situ.
Collapse
Affiliation(s)
- Juliette Fedry
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands; MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Joana Silva
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mihajlo Vanevic
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Stanley Fronik
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Amédée des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA; Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA; Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
6
|
Bulygin KN, Malygin AA, Graifer DM. Functional involvement of a conserved motif in the middle region of the human ribosomal protein eL42 in translation. Biochimie 2024; 218:96-104. [PMID: 37716853 DOI: 10.1016/j.biochi.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Ribosomal protein eL42 (formerly known as L36A), a small protein of the large (60S) subunit of the eukaryotic ribosome, is a component of its exit (E) site. The residue K53 of this protein resides within the motif QSGYGGQTK mainly conserved in eukaryotes, and it is located in the immediate vicinity of the CCA-terminus of the ribosome-bound tRNA in the hybrid P/E state. To examine the role of this eL42 motif in translation, we obtained HEK293T cells producing the wild-type FLAG-tagged protein or its mutant forms with either single substitutions of conserved amino acid residues in the above motif, or simultaneous replacements in positions 45 and 51 or 45 and 53. Examination of the level of exogenous eL42 in fractions of polysome profiles from the target protein-producing cells by the Western blotting revealed that neither single substitution affects the assembly of 60S ribosomal subunits and 80S ribosomes or critically decreases the level of polysomes, but the latter was observed with the double replacements. Analysis of tRNAs bound to 80S ribosomes containing eL42 with double substitutions and examination their peptidyl transferase activity enabled estimation the stage of the elongation cycle, in which amino acid residues of the conserved eL42 motif are involved. We clearly show that cooperative interactions implicating the eL42 residues Q45, Q51, and K53 play a critical role in the ability of the human ribosome to perform properly elongation cycle at the step of deacylated tRNA dissociation from the E site in the human cell.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
7
|
Tidu A, Martin F. The interplay between cis- and trans-acting factors drives selective mRNA translation initiation in eukaryotes. Biochimie 2024; 217:20-30. [PMID: 37741547 DOI: 10.1016/j.biochi.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Translation initiation consists in the assembly of the small and large ribosomal subunits on the start codon. This important step directly modulates the general proteome in living cells. Recently, genome wide studies revealed unexpected translation initiation events from unsuspected novel open reading frames resulting in the synthesis of a so-called 'dark proteome'. Indeed, the identification of the start codon by the translation machinery is a critical step that defines the translational landscape of the cell. Therefore, translation initiation is a highly regulated process in all organisms. In this review, we focus on the various cis- and trans-acting factors that rule the regulation of translation initiation in eukaryotes. Recent discoveries have shown that the guidance of the translation machinery for the choice of the start codon require sophisticated molecular mechanisms. In particular, the 5'UTR and the coding sequences contain cis-acting elements that trigger the use of AUG codons but also non-AUG codons to initiate protein synthesis. The use of these alternative start codons is also largely influenced by numerous trans-acting elements that drive selective mRNA translation in response to environmental changes.
Collapse
Affiliation(s)
- Antonin Tidu
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France.
| |
Collapse
|
8
|
Zhao X, Ma D, Ishiguro K, Saito H, Akichika S, Matsuzawa I, Mito M, Irie T, Ishibashi K, Wakabayashi K, Sakaguchi Y, Yokoyama T, Mishima Y, Shirouzu M, Iwasaki S, Suzuki T, Suzuki T. Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Cell 2023; 186:5517-5535.e24. [PMID: 37992713 DOI: 10.1016/j.cell.2023.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.
Collapse
Affiliation(s)
- Xuewei Zhao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Ding Ma
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Saito
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Shinichiro Akichika
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Ikuya Matsuzawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Mari Mito
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toru Irie
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Kota Ishibashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Kimi Wakabayashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yuichiro Mishima
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Shintaro Iwasaki
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan.
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan.
| |
Collapse
|
9
|
Musalgaonkar S, Yelland J, Chitale R, Rao S, Ozadam H, Cenik C, Taylor D, Johnson A. The Ribosome Assembly Factor Reh1 is Released from the Polypeptide Exit Tunnel in the Pioneer Round of Translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563604. [PMID: 37961559 PMCID: PMC10634756 DOI: 10.1101/2023.10.23.563604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Assembly of functional ribosomal subunits and successfully delivering them to the translating pool is a prerequisite for protein synthesis and cell growth. In S. cerevisiae, the ribosome assembly factor Reh1 binds to pre-60S subunits at a late stage during their cytoplasmic maturation. Previous work shows that the C-terminus of Reh1 inserts into the polypeptide exit tunnel (PET) of the pre-60S subunit. Unlike canonical assembly factors, which associate exclusively with pre-60S subunits, we observed that Reh1 sediments with polysomes in addition to free 60S subunits. We therefore investigated the intriguing possibility that Reh1 remains associated with 60S subunits after the release of the anti-association factor Tif6 and after subunit joining. Here, we show that Reh1-bound nascent 60S subunits associate with 40S subunits to form actively translating ribosomes. Using selective ribosome profiling, we found that Reh1-bound ribosomes populate open reading frames near start codons. Reh1-bound ribosomes are also strongly enriched for initiator tRNA, indicating they are associated with early elongation events. Using single particle cryo-electron microscopy to image cycloheximide-arrested Reh1-bound 80S ribosomes, we found that Reh1-bound 80S contain A site peptidyl tRNA, P site tRNA and eIF5A indicating that Reh1 does not dissociate from 60S until early stages of translation elongation. We propose that Reh1 is displaced by the elongating peptide chain. These results identify Reh1 as the last assembly factor released from the nascent 60S subunit during its pioneer round of translation.
Collapse
|
10
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Structure of mitoribosome reveals mechanism of mRNA binding, tRNA interactions with L1 stalk, roles of cofactors and rRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542018. [PMID: 37503168 PMCID: PMC10369894 DOI: 10.1101/2023.05.24.542018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNA Val . The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transition in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide the most complete description so far of the structure and function of the human mitoribosome.
Collapse
|
11
|
Ochkasova A, Arbuzov G, Malygin A, Graifer D. Two "Edges" in Our Knowledge on the Functions of Ribosomal Proteins: The Revealed Contributions of Their Regions to Translation Mechanisms and the Issues of Their Extracellular Transport by Exosomes. Int J Mol Sci 2023; 24:11458. [PMID: 37511213 PMCID: PMC10380927 DOI: 10.3390/ijms241411458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ribosomal proteins (RPs), the constituents of the ribosome, belong to the most abundant proteins in the cell. A highly coordinated network of interactions implicating RPs and ribosomal RNAs (rRNAs) forms the functionally competent structure of the ribosome, enabling it to perform translation, the synthesis of polypeptide chain on the messenger RNA (mRNA) template. Several RPs contact ribosomal ligands, namely, those with transfer RNAs (tRNAs), mRNA or translation factors in the course of translation, and the contribution of a number of these particular contacts to the translation process has recently been established. Many ribosomal proteins also have various extra-ribosomal functions unrelated to translation. The least-understood and -discussed functions of RPs are those related to their participation in the intercellular communication via extracellular vesicles including exosomes, etc., which often carry RPs as passengers. Recently reported data show that such a kind of communication can reprogram a receptor cell and change its phenotype, which is associated with cancer progression and metastasis. Here, we review the state-of-art ideas on the implications of specific amino acid residues of RPs in the particular stages of the translation process in higher eukaryotes and currently available data on the transport of RPs by extracellular vesicles and its biological effects.
Collapse
Affiliation(s)
- Anastasia Ochkasova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Grigory Arbuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Smirnova J, Loerke J, Kleinau G, Schmidt A, Bürger J, Meyer EH, Mielke T, Scheerer P, Bock R, Spahn CMT, Zoschke R. Structure of the actively translating plant 80S ribosome at 2.2 Å resolution. NATURE PLANTS 2023; 9:987-1000. [PMID: 37156858 PMCID: PMC10281867 DOI: 10.1038/s41477-023-01407-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
In plant cells, translation occurs in three compartments: the cytosol, the plastids and the mitochondria. While the structures of the (prokaryotic-type) ribosomes in plastids and mitochondria are well characterized, high-resolution structures of the eukaryotic 80S ribosomes in the cytosol have been lacking. Here the structure of translating tobacco (Nicotiana tabacum) 80S ribosomes was solved by cryo-electron microscopy with a global resolution of 2.2 Å. The ribosome structure includes two tRNAs, decoded mRNA and the nascent peptide chain, thus providing insights into the molecular underpinnings of the cytosolic translation process in plants. The map displays conserved and plant-specific rRNA modifications and the positions of numerous ionic cofactors, and it uncovers the role of monovalent ions in the decoding centre. The model of the plant 80S ribosome enables broad phylogenetic comparisons that reveal commonalities and differences in the ribosomes of plants and those of other eukaryotes, thus putting our knowledge about eukaryotic translation on a firmer footing.
Collapse
Affiliation(s)
- Julia Smirnova
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Justus Loerke
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea Schmidt
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Etienne H Meyer
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Bock
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Reimo Zoschke
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
13
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Majumdar S, Emmerich A, Krakovka S, Mandava CS, Svärd SG, Sanyal S. Insights into translocation mechanism and ribosome evolution from cryo-EM structures of translocation intermediates of Giardia intestinalis. Nucleic Acids Res 2023; 51:3436-3451. [PMID: 36912103 PMCID: PMC10123126 DOI: 10.1093/nar/gkad176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Giardia intestinalis is a protozoan parasite that causes diarrhea in humans. Using single-particle cryo-electron microscopy, we have determined high-resolution structures of six naturally populated translocation intermediates, from ribosomes isolated directly from actively growing Giardia cells. The highly compact and uniquely GC-rich Giardia ribosomes possess eukaryotic rRNAs and ribosomal proteins, but retain some bacterial features. The translocation intermediates, with naturally bound tRNAs and eukaryotic elongation factor 2 (eEF2), display characteristic ribosomal intersubunit rotation and small subunit's head swiveling-universal for translocation. In addition, we observe the eukaryote-specific 'subunit rolling' dynamics, albeit with limited features. Finally, the eEF2·GDP state features a uniquely positioned 'leaving phosphate (Pi)' that proposes hitherto unknown molecular events of Pi and eEF2 release from the ribosome at the final stage of translocation. In summary, our study elucidates the mechanism of translocation in the protists and illustrates evolution of the translation machinery from bacteria to eukaryotes from both the structural and mechanistic perspectives.
Collapse
Affiliation(s)
- Soneya Majumdar
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Andrew Emmerich
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Sascha Krakovka
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
15
|
Fedry J, Silva J, Vanevic M, Fronik S, Mechulam Y, Schmitt E, des Georges A, Faller W, Förster F. Visualization of translation reorganization upon persistent collision stress in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533914. [PMID: 36993420 PMCID: PMC10055323 DOI: 10.1101/2023.03.23.533914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Aberrantly slow mRNA translation leads to ribosome stalling and subsequent collision with the trailing neighbor. Ribosome collisions have recently been shown to act as stress sensors in the cell, with the ability to trigger stress responses balancing survival and apoptotic cell-fate decisions depending on the stress level. However, we lack a molecular understanding of the reorganization of translation processes over time in mammalian cells exposed to an unresolved collision stress. Here we visualize the effect of a persistent collision stress on translation using in situ cryo electron tomography. We observe that low dose anisomycin collision stress leads to the stabilization of Z-site bound tRNA on elongating 80S ribosomes, as well as to the accumulation of an off-pathway 80S complex possibly resulting from collision splitting events. We visualize collided disomes in situ, occurring on compressed polysomes and revealing a stabilized geometry involving the Z-tRNA and L1 stalk on the stalled ribosome, and eEF2 bound to its collided rotated-2 neighbor. In addition, non-functional post-splitting 60S complexes accumulate in the stressed cells, indicating a limiting Ribosome associated Quality Control clearing rate. Finally, we observe the apparition of tRNA-bound aberrant 40S complexes shifting with the stress timepoint, suggesting a succession of different initiation inhibition mechanisms over time. Altogether, our work visualizes the changes of translation complexes under persistent collision stress in mammalian cells, indicating how perturbations in initiation, elongation and quality control processes contribute to an overall reduced protein synthesis.
Collapse
Affiliation(s)
- Juliette Fedry
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mihajlo Vanevic
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Stanley Fronik
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Amédée des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - William Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
16
|
Baymukhametov TN, Lyabin DN, Chesnokov YM, Sorokin II, Pechnikova E, Vasiliev A, Afonina Z. Polyribosomes of circular topology are prevalent in mammalian cells. Nucleic Acids Res 2022; 51:908-918. [PMID: 36583341 PMCID: PMC9881139 DOI: 10.1093/nar/gkac1208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Polyribosomes, the groups of ribosomes simultaneously translating a single mRNA molecule, are very common in both, prokaryotic and eukaryotic cells. Even in early EM studies, polyribosomes have been shown to possess various spatial conformations, including a ring-shaped configuration which was considered to be functionally important. However, a recent in situ cryo-ET analysis of predominant regular inter-ribosome contacts did not confirm the abundance of ring-shaped polyribosomes in a cell cytoplasm. To address this discrepancy, here we analyzed the cryo-ET structure of polyribosomes in diluted lysates of HeLa cells. It was shown that the vast majority of the ribosomes were combined into polysomes and were proven to be translationally active. Tomogram analysis revealed that circular polyribosomes are indeed very common in the cytoplasm, but they mostly possess pseudo-regular structures without specific inter-ribosomal contacts. Although the size of polyribosomes varied widely, most circular polysomes were relatively small in size (4-8 ribosomes). Our results confirm the recent data that it is cellular mRNAs with short ORF that most commonly form circular structures providing an enhancement of translation.
Collapse
Affiliation(s)
- Timur N Baymukhametov
- Structural biology department, National Research Center ‘Kurchatov Institute’, Moscow 123182, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research RAS, Pushchino, Moscow Region 142290, Russia
| | - Yury M Chesnokov
- Probe and Electron Microscopy Resource Center, National Research Center ‘Kurchatov Institute’, Moscow 123182, Russia
| | - Ivan I Sorokin
- Institute of Protein Research RAS, Pushchino, Moscow Region 142290, Russia
| | - Evgeniya V Pechnikova
- Probe and Electron Microscopy Resource Center, National Research Center ‘Kurchatov Institute’, Moscow 123182, Russia,Electron Microscopy Laboratory, Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ RAS, Moscow 119333, Russia
| | - Alexander L Vasiliev
- Probe and Electron Microscopy Resource Center, National Research Center ‘Kurchatov Institute’, Moscow 123182, Russia,Electron Microscopy Laboratory, Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ RAS, Moscow 119333, Russia
| | - Zhanna A Afonina
- To whom correspondence should be addressed. Tel: +7 985 7232812; Fax: +7 4967 318435;
| |
Collapse
|
17
|
Abstract
Developing mathematical representations of biological systems that can allow predictions is a challenging and important research goal. It is demonstrated here how the ribosome, the nano-machine responsible for synthesizing all proteins necessary for cellular life, can be represented as a bipartite network. Ten ribosomal structures from Bacteria and six from Eukarya are explored. Ribosomal networks are found to exhibit unique properties despite variations in the nodes and edges of the different graphs. The ribosome is shown to exhibit very large topological redundancies, demonstrating mathematical resiliency. These results can potentially explain how it can function consistently despite changes in composition and connectivity. Furthermore, this representation can be used to analyze ribosome function within the large machinery of network theory, where the degrees of freedom are the possible interactions, and can be used to provide new insights for translation regulation and therapeutics.
Collapse
|
18
|
A distinct mammalian disome collision interface harbors K63-linked polyubiquitination of uS10 to trigger hRQT-mediated subunit dissociation. Nat Commun 2022; 13:6411. [PMID: 36302773 PMCID: PMC9613687 DOI: 10.1038/s41467-022-34097-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Translational stalling events that result in ribosome collisions induce Ribosome-associated Quality Control (RQC) in order to degrade potentially toxic truncated nascent proteins. For RQC induction, the collided ribosomes are first marked by the Hel2/ZNF598 E3 ubiquitin ligase to recruit the RQT complex for subunit dissociation. In yeast, uS10 is polyubiquitinated by Hel2, whereas eS10 is preferentially monoubiquitinated by ZNF598 in human cells for an unknown reason. Here, we characterize the ubiquitination activity of ZNF598 and its importance for human RQT-mediated subunit dissociation using the endogenous XBP1u and poly(A) translation stallers. Cryo-EM analysis of a human collided disome reveals a distinct composite interface, with substantial differences to yeast collided disomes. Biochemical analysis of collided ribosomes shows that ZNF598 forms K63-linked polyubiquitin chains on uS10, which are decisive for mammalian RQC initiation. The human RQT (hRQT) complex composed only of ASCC3, ASCC2 and TRIP4 dissociates collided ribosomes dependent on the ATPase activity of ASCC3 and the ubiquitin-binding capacity of ASCC2. The hRQT-mediated subunit dissociation requires the K63-linked polyubiquitination of uS10, while monoubiquitination of eS10 or uS10 is not sufficient. Therefore, we conclude that ZNF598 functionally marks collided mammalian ribosomes by K63-linked polyubiquitination of uS10 for the trimeric hRQT complex-mediated subunit dissociation.
Collapse
|
19
|
Bulygin KN, Malygin AA, Graifer DM, Karpova GG. The functional role of the eukaryote-specific motif YxxPKxYxK of the human ribosomal protein eS26 in translation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194842. [PMID: 35817369 DOI: 10.1016/j.bbagrm.2022.194842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
The protein eS26 is a structural component of the eukaryotic small ribosomal subunit involved in the formation of the mRNA binding channel in the region of the exit site. By applying site-directed cross-linking to mammalian 80S ribosomes, it has been shown that the same mRNA nucleotide residues are implicated in the interaction with both eS26 and translation initiation factor 3 (eIF3) and that contacts of the protein with mRNAs are mediated by its eukaryote-specific motif YxxPKxYxK. To examine the role of eS26 in translation, we transfected HEK293T cells with plasmid constructs encoding the wild-type FLAG-labeled protein (wt-eS26FLAG) or its forms with either a single substitution of any conserved amino acid residue in the above motif, or a simultaneous replacement of all the five ones (5A). The western blot analysis of fractions of polysome profiles from the transfected cells revealed no effects of the single mutations in eS26, but showed that the replacement of the five conserved residues led to the increased share of the light polysome fraction compared to that detected with control, wt-eS26FLAG-producing cells. In addition, the above fraction exhibited the enhanced content of the eIF3e subunit that is known to promote selective translation. These findings, together with real-time PCR data on the relative contents of specific mRNAs in light and heavy polysomes from cells producing the mutant 5A compared to those from control cells, suggest a possible involvement of the YxxPKxYxK motif of eS26 in the fine regulation of translation to maintain the required balance of synthesized proteins.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
20
|
Gao H, Zhao L, Zhong B, Zhang B, Gong Z, Zhao B, Liu Y, Zhao Q, Zhang L, Zhang Y. In-Depth In Vivo Crosslinking in Minutes by a Compact, Membrane-Permeable, and Alkynyl-Enrichable Crosslinker. Anal Chem 2022; 94:7551-7558. [PMID: 35575683 DOI: 10.1021/acs.analchem.2c00335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical crosslinking coupled with mass spectrometry (CXMS) has emerged as a powerful technique to obtain the dynamic conformations and interaction interfaces of protein complexes. Limited by the poor cell membrane permeability, chemical reactivity, and biocompatibility of crosslinkers, in vivo crosslinking to capture the dynamics of protein complexes with finer temporal resolution and higher coverage is attractive but challenging. In this work, a trifunctional crosslinker bis(succinimidyl) with propargyl tag (BSP), involving compact size, proper amphipathy, and enrichment capacity, was developed to enable better cell membrane permeability and efficient crosslinking in 5 min without obvious cellular interference. Followed by a two-step enrichment method based on click chemistry at the peptide level, 13,098 crosslinked peptides (5068 inter-crosslinked peptides and 8030 intra-crosslinked peptides) were identified under the data threshold of peptide-spectrum matches (PSMs) ≥2 on the basic of the FDR control of 1%, which was the most comprehensive dataset for homo species cells by a non-cleavable crosslinker. Besides, the interactome network comprising 1519 proteins connected by 2913 interaction edges in various intracellular compartments, as well as 80S ribosome structural dynamics, were characterized, showing the great potential of our in vivo crosslinking approach in minutes. All these results demonstrated that our developed BSP could provide a valuable toolkit for the in-depth in vivo analysis of protein-protein interactions (PPIs) and protein architectures with finer temporal resolution.
Collapse
Affiliation(s)
- Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Beirong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhou Gong
- CAS Innovation Academy for Precision Measurement Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yi Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
21
|
Huang S, Bhattacharya A, Ghelfi MD, Li H, Fritsch C, Chenoweth DM, Goldman YE, Cooperman BS. Ataluren binds to multiple protein synthesis apparatus sites and competitively inhibits release factor-dependent termination. Nat Commun 2022; 13:2413. [PMID: 35523781 PMCID: PMC9076611 DOI: 10.1038/s41467-022-30080-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic diseases are often caused by nonsense mutations, but only one TRID (translation readthrough inducing drug), ataluren, has been approved for clinical use. Ataluren inhibits release factor complex (RFC) termination activity, while not affecting productive binding of near-cognate ternary complex (TC, aa-tRNA.eEF1A.GTP). Here we use photoaffinity labeling to identify two sites of ataluren binding within rRNA, proximal to the decoding center (DC) and the peptidyl transfer center (PTC) of the ribosome, which are directly responsible for ataluren inhibition of termination activity. A third site, within the RFC, has as yet unclear functional consequences. Using single molecule and ensemble fluorescence assays we also demonstrate that termination proceeds via rapid RFC-dependent hydrolysis of peptidyl-tRNA followed by slow release of peptide and tRNA from the ribosome. Ataluren is an apparent competitive inhibitor of productive RFC binding, acting at or before the hydrolysis step. We propose that designing more potent TRIDs which retain ataluren's low toxicity should target areas of the RFC binding site proximal to the DC and PTC which do not overlap the TC binding site.
Collapse
Affiliation(s)
- Shijie Huang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- GSK, 14200 Shady Grove Rd, Rockville, MD, 20850, USA
| | - Arpan Bhattacharya
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mikel D Ghelfi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clark Fritsch
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Xiang JS, Mueller JR, Luo EC, Yee BA, Schafer D, Schmok JC, Tan FE, Rothamel K, McVicar RN, Kwong EM, Jones KL, Her HL, Chen CY, Vu AQ, Jin W, Park SS, Le P, Brannan KW, Kofman ER, Li Y, Tankka AT, Dong KD, Song Y, Carlin AF, Van Nostrand EL, Leibel SL, Yeo GW. Discovery and functional interrogation of SARS-CoV-2 protein-RNA interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.21.481223. [PMID: 35233578 PMCID: PMC8887137 DOI: 10.1101/2022.02.21.481223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The betacoronvirus has a positive sense RNA genome which encodes for several RNA binding proteins. Here, we use enhanced crosslinking and immunoprecipitation to investigate SARS-CoV-2 protein interactions with viral and host RNAs in authentic virus-infected cells. SARS-CoV-2 proteins, NSP8, NSP12, and nucleocapsid display distinct preferences to specific regions in the RNA viral genome, providing evidence for their shared and separate roles in replication, transcription, and viral packaging. SARS-CoV-2 proteins expressed in human lung epithelial cells bind to 4773 unique host coding RNAs. Nine SARS-CoV-2 proteins upregulate target gene expression, including NSP12 and ORF9c, whose RNA substrates are associated with pathways in protein N-linked glycosylation ER processing and mitochondrial processes. Furthermore, siRNA knockdown of host genes targeted by viral proteins in human lung organoid cells identify potential antiviral host targets across different SARS-CoV-2 variants. Conversely, NSP9 inhibits host gene expression by blocking mRNA export and dampens cytokine productions, including interleukin-1α/β. Our viral protein-RNA interactome provides a catalog of potential therapeutic targets and offers insight into the etiology of COVID-19 as a safeguard against future pandemics.
Collapse
Affiliation(s)
- Joy S. Xiang
- Institute of Molecular and Cellular Biology, A*STAR, Singapore
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jasmine R. Mueller
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Brian A. Yee
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jonathan C. Schmok
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Frederick E. Tan
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Katherine Rothamel
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Rachael N. McVicar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elizabeth M. Kwong
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Krysten L. Jones
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Chun-Yuan Chen
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Anthony Q. Vu
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Samuel S. Park
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Phuong Le
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kristopher W. Brannan
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Eric R. Kofman
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Yanhua Li
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexandra T. Tankka
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kevin D. Dong
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Yan Song
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Aaron F. Carlin
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Eric L. Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra L. Leibel
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Rössler I, Weigl S, Fernández-Fernández J, Martín-Villanueva S, Strauss D, Hurt E, de la Cruz J, Pertschy B. The C-terminal tail of ribosomal protein Rps15 is engaged in cytoplasmic pre-40S maturation. RNA Biol 2021; 19:560-574. [PMID: 35438042 PMCID: PMC9037480 DOI: 10.1080/15476286.2022.2064073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
The small ribosomal subunit protein Rps15/uS19 is involved in early nucleolar ribosome biogenesis and subsequent nuclear export of pre-40S particles to the cytoplasm. In addition, the C-terminal tail of Rps15 was suggested to play a role in mature ribosomes, namely during translation elongation. Here, we show that Rps15 not only functions in nucleolar ribosome assembly but also in cytoplasmic pre-40S maturation, which is indicated by a strong genetic interaction between Rps15 and the 40S assembly factor Ltv1. Specifically, mutations either in the globular or C-terminal domain of Rps15 when combined with the non-essential ltv1 null allele are lethal or display a strong growth defect. However, not only rps15 ltv1 double mutants but also single rps15 C-terminal deletion mutants exhibit an accumulation of the 20S pre-rRNA in the cytoplasm, indicative of a cytoplasmic pre-40S maturation defect. Since in pre-40S particles, the C-terminal tail of Rps15 is positioned between assembly factors Rio2 and Tsr1, we further tested whether Tsr1 is genetically linked to Rps15, which indeed could be demonstrated. Thus, the integrity of the Rps15 C-terminal tail plays an important role during late pre-40S maturation, perhaps in a quality control step to ensure that only 40S ribosomal subunits with functional Rps15 C-terminal tail can efficiently enter translation. As mutations in the C-terminal tail of human RPS15 have been observed in connection with chronic lymphocytic leukaemia, it is possible that apart from defects in translation, an impaired late pre-40S maturation step in the cytoplasm could also be a reason for this disease.
Collapse
Affiliation(s)
- Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah Weigl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Daniela Strauss
- Biochemistry Center BZH, Heidelberg University, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center BZH, Heidelberg University, Heidelberg, Germany
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
24
|
Shen L, Su Z, Yang K, Wu C, Becker T, Bell-Pedersen D, Zhang J, Sachs MS. Structure of the translating Neurospora ribosome arrested by cycloheximide. Proc Natl Acad Sci U S A 2021; 118:e2111862118. [PMID: 34815343 PMCID: PMC8640747 DOI: 10.1073/pnas.2111862118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosomes translate RNA into proteins. The protein synthesis inhibitor cycloheximide (CHX) is widely used to inhibit eukaryotic ribosomes engaged in translation elongation. However, the lack of structural data for actively translating polyribosomes stalled by CHX leaves unanswered the question of which elongation step is inhibited. We elucidated CHX's mechanism of action based on the cryo-electron microscopy structure of actively translating Neurospora crassa ribosomes bound with CHX at 2.7-Å resolution. The ribosome structure from this filamentous fungus contains clearly resolved ribosomal protein eL28, like higher eukaryotes but unlike budding yeast, which lacks eL28. Despite some differences in overall structures, the ribosomes from Neurospora, yeast, and humans all contain a highly conserved CHX binding site. We also sequenced classic Neurospora CHX-resistant alleles. These mutations, including one at a residue not previously observed to affect CHX resistance in eukaryotes, were in the large subunit proteins uL15 and eL42 that are part of the CHX-binding pocket. In addition to A-site transfer RNA (tRNA), P-site tRNA, messenger RNA, and CHX that are associated with the translating N. crassa ribosome, spermidine is present near the CHX binding site close to the E site on the large subunit. The tRNAs in the peptidyl transferase center are in the A/A site and the P/P site. The nascent peptide is attached to the A-site tRNA and not to the P-site tRNA. The structural and functional data obtained show that CHX arrests the ribosome in the classical PRE translocation state and does not interfere with A-site reactivity.
Collapse
Affiliation(s)
- Lunda Shen
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Zhaoming Su
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Kailu Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Ludwig-Maximilians University Munich, 80539 Munich, Germany
| | | | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
25
|
Bulygin KN, Timofeev IO, Malygin AA, Graifer DM, Meschaninova MI, Venyaminova AG, Krumkacheva OA, Fedin MV, Yu Frolova L, Karpova GG, Bagryanskaya EG. Two alternative conformations of mRNA in the human ribosome during elongation and termination of translation as revealed by EPR spectroscopy. Comput Struct Biotechnol J 2021; 19:4702-4710. [PMID: 34504663 PMCID: PMC8390954 DOI: 10.1016/j.csbj.2021.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
DEER reveals the conformational variability of mRNA at the certain translation steps. Elongation and termination complexes exist in 2 conformations in dynamic equilibrium. The conformations of mRNA in 40S channel undergo no major change during termination.
The conformation of mRNA in the region of the human 80S ribosome decoding site was monitored using 11-mer mRNA analogues that bore nitroxide spin labels attached to the terminal nucleotide bases. Intramolecular spin–spin distances were measured by DEER/PELDOR spectroscopy in model complexes mimicking different states of the 80S ribosome during elongation and termination of translation. The measurements revealed that in all studied complexes, mRNA exists in two alternative conformations, whose ratios are different in post-translocation, pre-translocation and termination complexes. We found that the presence of a tRNA molecule at the ribosomal A site decreases the relative share of the more extended mRNA conformation, whereas the binding of eRF1 (alone or in a complex with eRF3) results in the opposite effect. In the termination complexes, the ratios of mRNA conformations are practically the same, indicating that a part of mRNA bound in the ribosome channel does not undergo significant structural alterations in the course of completion of the translation. Our results contribute to the understanding of mRNA molecular dynamics in the mammalian ribosome channel during translation.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Ivan O Timofeev
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Ludmila Yu Frolova
- Engelhardt Institute of Molecular Biology RAS, Vavilova Str. 32, Moscow 119991, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, pr. Lavrentjeva 8, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| |
Collapse
|
26
|
Bhaskar V, Desogus J, Graff-Meyer A, Schenk AD, Cavadini S, Chao JA. Dynamic association of human Ebp1 with the ribosome. RNA (NEW YORK, N.Y.) 2021; 27:411-419. [PMID: 33479117 PMCID: PMC7962488 DOI: 10.1261/rna.077602.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/02/2021] [Indexed: 05/09/2023]
Abstract
Ribosomes are the macromolecular machines at the heart of protein synthesis; however, their function can be modulated by a variety of additional protein factors that directly interact with them. Here, we report the cryo-EM structure of human Ebp1 (p48 isoform) bound to the human 80S ribosome at 3.3 Å resolution. Ebp1 binds in the vicinity of the peptide exit tunnel on the 80S ribosome, and this binding is enhanced upon puromycin-mediated translational inhibition. The association of Ebp1 with the 80S ribosome centers around its interaction with ribosomal proteins eL19 and uL23 and the 28S rRNA. Further analysis of the Ebp1-ribosome complex suggests that Ebp1 can rotate around its insert domain, which may enable it to assume a wide range of conformations while maintaining its interaction with the ribosome. Structurally, Ebp1 shares homology with the methionine aminopeptidase 2 family of enzymes; therefore, this inherent flexibility may also be conserved.
Collapse
Affiliation(s)
- Varun Bhaskar
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Jessica Desogus
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | | | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| |
Collapse
|
27
|
Eukaryotic protein uS19: a component of the decoding site of ribosomes and a player in human diseases. Biochem J 2021; 478:997-1008. [PMID: 33661277 DOI: 10.1042/bcj20200950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
Proteins belonging to the universal ribosomal protein (rp) uS19 family are constituents of small ribosomal subunits, and their conserved globular parts are involved in the formation of the head of these subunits. The eukaryotic rp uS19 (previously known as S15) comprises a C-terminal extension that has no homology in the bacterial counterparts. This extension is directly implicated in the formation of the ribosomal decoding site and thereby affects translational fidelity in a manner that has no analogy in bacterial ribosomes. Another eukaryote-specific feature of rp uS19 is its essential participance in the 40S subunit maturation due to the interactions with the subunit assembly factors required for the nuclear exit of pre-40S particles. Beyond properties related to the translation machinery, eukaryotic rp uS19 has an extra-ribosomal function concerned with its direct involvement in the regulation of the activity of an important tumor suppressor p53 in the Mdm2/Mdmx-p53 pathway. Mutations in the RPS15 gene encoding rp uS19 are linked to diseases (Diamond Blackfan anemia, chronic lymphocytic leukemia and Parkinson's disease) caused either by defects in the ribosome biogenesis or disturbances in the functioning of ribosomes containing mutant rp uS19, likely due to the changed translational fidelity. Here, we review currently available data on the involvement of rp uS19 in the operation of the translational machinery and in the maturation of 40S subunits, on its extra-ribosomal function, and on relationships between mutations in the RPS15 gene and certain human diseases.
Collapse
|
28
|
Kim JW, Yin X, Jhaldiyal A, Khan MR, Martin I, Xie Z, Perez-Rosello T, Kumar M, Abalde-Atristain L, Xu J, Chen L, Eacker SM, Surmeier DJ, Ingolia NT, Dawson TM, Dawson VL. Defects in mRNA Translation in LRRK2-Mutant hiPSC-Derived Dopaminergic Neurons Lead to Dysregulated Calcium Homeostasis. Cell Stem Cell 2020; 27:633-645.e7. [PMID: 32846140 PMCID: PMC7542555 DOI: 10.1016/j.stem.2020.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/05/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022]
Abstract
The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is a common cause of familial Parkinson's disease (PD). This mutation results in dopaminergic neurodegeneration via dysregulated protein translation, although how alterations in protein synthesis contribute to neurodegeneration in human neurons is not known. Here we define the translational landscape in LRRK2-mutant dopaminergic neurons derived from human induced pluripotent stem cells (hiPSCs) via ribosome profiling. We found that mRNAs that have complex secondary structure in the 5' untranslated region (UTR) are translated more efficiently in G2019S LRRK2 neurons. This leads to the enhanced translation of multiple genes involved in Ca2+ regulation and to increased Ca2+ influx and elevated intracellular Ca2+ levels, a major contributor to PD pathogenesis. This study reveals a link between dysregulated translation control and Ca2+ homeostasis in G2019S LRRK2 human dopamine neurons, which potentially contributes to the progressive and selective dopaminergic neurotoxicity in PD.
Collapse
Affiliation(s)
- Jungwoo Wren Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aanishaa Jhaldiyal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohammed Repon Khan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ian Martin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tamara Perez-Rosello
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leire Abalde-Atristain
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jinchong Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Li Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen M Eacker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA.
| |
Collapse
|
29
|
Schmitt E, Coureux PD, Kazan R, Bourgeois G, Lazennec-Schurdevin C, Mechulam Y. Recent Advances in Archaeal Translation Initiation. Front Microbiol 2020; 11:584152. [PMID: 33072057 PMCID: PMC7531240 DOI: 10.3389/fmicb.2020.584152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Translation initiation (TI) allows accurate selection of the initiation codon on a messenger RNA (mRNA) and defines the reading frame. In all domains of life, translation initiation generally occurs within a macromolecular complex made up of the small ribosomal subunit, the mRNA, a specialized methionylated initiator tRNA, and translation initiation factors (IFs). Once the start codon is selected at the P site of the ribosome and the large subunit is associated, the IFs are released and a ribosome competent for elongation is formed. However, even if the general principles are the same in the three domains of life, the molecular mechanisms are different in bacteria, eukaryotes, and archaea and may also vary depending on the mRNA. Because TI mechanisms have evolved lately, their studies bring important information about the evolutionary relationships between extant organisms. In this context, recent structural data on ribosomal complexes and genome-wide studies are particularly valuable. This review focuses on archaeal translation initiation highlighting its relationships with either the eukaryotic or the bacterial world. Eukaryotic features of the archaeal small ribosomal subunit are presented. Ribosome evolution and TI mechanisms diversity in archaeal branches are discussed. Next, the use of leaderless mRNAs and that of leadered mRNAs having Shine-Dalgarno sequences is analyzed. Finally, the current knowledge on TI mechanisms of SD-leadered and leaderless mRNAs is detailed.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
30
|
Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, Straub JH, Stürzel CM, Fröhlich T, Berninghausen O, Becker T, Kirchhoff F, Sparrer KMJ, Beckmann R. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 2020; 369:1249-1255. [PMID: 32680882 PMCID: PMC7402621 DOI: 10.1126/science.abc8665] [Citation(s) in RCA: 567] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.
Collapse
MESH Headings
- Betacoronavirus/chemistry
- Betacoronavirus/immunology
- Betacoronavirus/metabolism
- Betacoronavirus/physiology
- Binding Sites
- COVID-19
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Cryoelectron Microscopy
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- Humans
- Immune Evasion
- Immunity, Innate
- Interferon-beta/genetics
- Interferon-beta/metabolism
- Models, Molecular
- Pandemics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Biosynthesis
- Protein Domains
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- RNA, Messenger/metabolism
- Receptors, Immunologic
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- SARS-CoV-2
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Matthias Thoms
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Michael Ameismeier
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Timo Denk
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | | | - Hanna Kratzat
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Timur Mackens-Kiani
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Jingdong Cheng
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Jan H Straub
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis, University of Munich, Munich, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany.
| |
Collapse
|
31
|
Correddu D, Sharma N, Kaur S, Varnava KG, Mbenza NM, Sarojini V, Leung IKH. An investigation into the effect of ribosomal protein S15 phosphorylation on its intermolecular interactions by using phosphomimetic mutant. Chem Commun (Camb) 2020; 56:7857-7860. [DOI: 10.1039/d0cc01618g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An investigation using recombinant ribosomal proteins and synthetic peptide models was conducted to uncover the effect of the introduction of a negative charge at the C-terminal tail of ribosomal protein S15.
Collapse
Affiliation(s)
- Danilo Correddu
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Nabangshu Sharma
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Simranjeet Kaur
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Kyriakos G. Varnava
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Naasson M. Mbenza
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|