1
|
Herms A, Colom B, Piedrafita G, Kalogeropoulou A, Banerjee U, King C, Abby E, Murai K, Caseda I, Fernandez-Antoran D, Ong SH, Hall MWJ, Bryant C, Sood RK, Fowler JC, Pol A, Frezza C, Vanhaesebroeck B, Jones PH. Organismal metabolism regulates the expansion of oncogenic PIK3CA mutant clones in normal esophagus. Nat Genet 2024; 56:2144-2157. [PMID: 39169259 PMCID: PMC11525199 DOI: 10.1038/s41588-024-01891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Oncogenic PIK3CA mutations generate large clones in aging human esophagus. Here we investigate the behavior of Pik3ca mutant clones in the normal esophageal epithelium of transgenic mice. Expression of a heterozygous Pik3caH1047R mutation drives clonal expansion by tilting cell fate toward proliferation. CRISPR screening and inhibitor treatment of primary esophageal keratinocytes confirmed the PI3K-mTOR pathway increased mutant cell competitive fitness. The antidiabetic drug metformin reduced mutant cell advantage in vivo and in vitro. Conversely, metabolic conditions such as type 1 diabetes or diet-induced obesity enhanced the competitive fitness of Pik3caH1047R cells. Consistently, we found a higher density of PIK3CA gain-of-function mutations in the esophagus of individuals with high body mass index compared with those with normal weight. We conclude that the metabolic environment selectively influences the evolution of the normal epithelial mutational landscape. Clinically feasible interventions to even out signaling imbalances between wild-type and mutant cells may limit the expansion of oncogenic mutants in normal tissues.
Collapse
Affiliation(s)
- Albert Herms
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Bartomeu Colom
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | - Gabriel Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Spanish National Cancer Research Centre, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | | - Irene Caseda
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - David Fernandez-Antoran
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Albert Pol
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Christian Frezza
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, Cologne, Germany
| | | | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Oncology, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
2
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Ryoo HD. The integrated stress response in metabolic adaptation. J Biol Chem 2024; 300:107151. [PMID: 38462161 PMCID: PMC10998230 DOI: 10.1016/j.jbc.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
4
|
Key J, Gispert S, Kandi AR, Heinz D, Hamann A, Osiewacz HD, Meierhofer D, Auburger G. CLPP-Null Eukaryotes with Excess Heme Biosynthesis Show Reduced L-arginine Levels, Probably via CLPX-Mediated OAT Activation. Biomolecules 2024; 14:241. [PMID: 38397478 PMCID: PMC10886707 DOI: 10.3390/biom14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Daniela Heinz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany;
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| |
Collapse
|
5
|
Gao F, Liang T, Lu YW, Pu L, Fu X, Dong X, Hong T, Zhang F, Liu N, Zhou Y, Wang H, Liang P, Guo Y, Yu H, Zhu W, Hu X, Chen H, Zhou B, Pu WT, Mably JD, Wang J, Wang DZ, Chen J. Reduced Mitochondrial Protein Translation Promotes Cardiomyocyte Proliferation and Heart Regeneration. Circulation 2023; 148:1887-1906. [PMID: 37905452 PMCID: PMC10841688 DOI: 10.1161/circulationaha.122.061192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND The importance of mitochondria in normal heart function are well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. Previous studies demonstrated that knockdown of the mitochondrial ribosomal protein S5 (MRPS5) by small interfering RNA (siRNA) inhibits mitochondrial translation and thereby causes a mitonuclear protein imbalance. Therefore, we decided to examine the effects of MRPS5 loss and the role of these processes on cardiomyocyte proliferation. METHODS We deleted a single allele of MRPS5 in mice and used left anterior descending coronary artery ligation surgery to induce myocardial damage in these animals. We examined cardiomyocyte proliferation and cardiac regeneration both in vivo and in vitro. Doxycycline treatment was used to inhibit protein translation. Heart function in mice was assessed by echocardiography. Quantitative real-time polymerase chain reaction and RNA sequencing were used to assess changes in transcription and chromatin immunoprecipitation (ChIP) and BioChIP were used to assess chromatin effects. Protein levels were assessed by Western blotting and cell proliferation or death by histology and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. Adeno-associated virus was used to overexpress genes. The luciferase reporter assay was used to assess promoter activity. Mitochondrial oxygen consumption rate, ATP levels, and reactive oxygen species were also analyzed. RESULTS We determined that deletion of a single allele of MRPS5 in mice results in elevated cardiomyocyte proliferation and cardiac regeneration; this observation correlates with improved cardiac function after induction of myocardial infarction. We identified ATF4 (activating transcription factor 4) as a key regulator of the mitochondrial stress response in cardiomyocytes from Mrps5+/- mice; furthermore, ATF4 regulates Knl1 (kinetochore scaffold 1) leading to an increase in cytokinesis during cardiomyocyte proliferation. The increased cardiomyocyte proliferation observed in Mrps5+/- mice was attenuated when one allele of Atf4 was deleted genetically (Mrps5+/-/Atf4+/-), resulting in the loss in the capacity for cardiac regeneration. Either MRPS5 inhibition (or as we also demonstrate, doxycycline treatment) activate a conserved regulatory mechanism that increases the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS These data highlight a critical role for MRPS5/ATF4 in cardiomyocytes and an exciting new avenue of study for therapies to treat myocardial injury.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Tian Liang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Linbin Pu
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Xuyang Fu
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Tingting Hong
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng Zhang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Ning Liu
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yuxia Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Hongkun Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Key Laboratory of combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Ping Liang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Key Laboratory of combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yuxuan Guo
- Institute of Cardiovascular Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100092 China
| | - Hong Yu
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Zhu
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xinyang Hu
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - William T Pu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - John D. Mably
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Departments of Internal Medicine and Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Jian’an Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Departments of Internal Medicine and Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Jinghai Chen
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| |
Collapse
|
6
|
Lan Z, Zhao L, Peng L, Wan L, Liu D, Tang C, Chen G, Liu Y, Liu H. EIF2α/ATF4 pathway enhances proliferation of mesangial cell via cyclin D1 during endoplasmic reticulum stress in IgA nephropathy. Clin Immunol 2023; 257:109840. [PMID: 37939913 DOI: 10.1016/j.clim.2023.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
IgA nephropathy (IgAN) is an essential cause of kidney failure and end-stage kidney disease worldwide. Mesangial hypercellularity is an important characteristic of IgAN, but the underlying mechanism remains unclear. Endoplasmic reticulum (ER) stress is a series of stress responses to restore the function of endoplasmic reticulum. We aimed to explore how ER stress functioned in kidneys of IgAN. We first examined ER stress in IgAN kidneys in vivo and in vitro, by testing the levels of ER stress associated proteins (BIP, p-eIF2α and ATF4). Our results showed that ER stress was activated in IgAN patients, mice and cell model. ER stress activation was related to the distribution of IgA deposition and the degree of mesangial proliferation. To determine the role of ER stress in mesangial cell (MC) proliferation of IgAN, we then tested the levels of ER stress and MC proliferation (cyclin D1, cell viability and cell cycle) through inhibiting ER stress associated proteins. After inhibiting ER stress associated proteins, ER stress was inactivated and cell proliferation was inhibited in MCs. We also explored the correlation between ER stress in the glomerulus and the clinical outcomes of IgAN patients in a prospective study. Patients with lower expression of p-eIF2α or ATF4 had higher rates of hematuria remission, proteinuria remission and clinical remission. In summary, our work outlines that in IgAN, ER stress mediated by eIF2α/ATF4 pathway promotes MC proliferation via up-regulating the expression of cyclin D1. Furthermore, p-eIF2α and ATF4 in the glomerulus negatively correlate with the clinical remission of IgAN patients.
Collapse
Affiliation(s)
- Zhixin Lan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lu Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Liang Peng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lili Wan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
7
|
Xue M, Cong F, Zheng W, Xu R, Liu X, Bao H, Sung YY, Xi Y, He F, Ma J, Yang X, Ge W. Loss of Paip1 causes translation reduction and induces apoptotic cell death through ISR activation and Xrp1. Cell Death Discov 2023; 9:288. [PMID: 37543696 PMCID: PMC10404277 DOI: 10.1038/s41420-023-01587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Regulation of protein translation initiation is tightly associated with cell growth and survival. Here, we identify Paip1, the Drosophila homolog of the translation initiation factor PAIP1, and analyze its role during development. Through genetic analysis, we find that loss of Paip1 causes reduced protein translation and pupal lethality. Furthermore, tissue specific knockdown of Paip1 results in apoptotic cell death in the wing imaginal disc. Paip1 depletion leads to increased proteotoxic stress and activation of the integrated stress response (ISR) pathway. Mechanistically, we show that loss of Paip1 promotes phosphorylation of eIF2α via the kinase PERK, leading to apoptotic cell death. Moreover, Paip1 depletion upregulates the transcription factor gene Xrp1, which contributes to apoptotic cell death and eIF2α phosphorylation. We further show that loss of Paip1 leads to an increase in Xrp1 translation mediated by its 5'UTR. These findings uncover a novel mechanism that links translation impairment to tissue homeostasis and establish a role of ISR activation and Xrp1 in promoting cell death.
Collapse
Affiliation(s)
- Maoguang Xue
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Fei Cong
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wanling Zheng
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ruoqing Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyu Liu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Hongcun Bao
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ying Ying Sung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Feng He
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Ma
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
8
|
Ye MP, Lu WL, Rao QF, Li MJ, Hong HQ, Yang XY, Liu H, Kong JL, Guan RX, Huang Y, Hu QH, Wu FR. Mitochondrial stress induces hepatic stellate cell activation in response to the ATF4/TRIB3 pathway stimulation. J Gastroenterol 2023; 58:668-681. [PMID: 37150773 DOI: 10.1007/s00535-023-01996-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/19/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The activation of hepatic stellate cells (HSCs) is the key step in the pathogenesis of liver fibrosis, which directly leads to fibrotic pathological changes in the hepatic tissue. Mitochondrial stress exacerbates inflammatory diseases by inducing pathogenic shifts in normal cells. However, the role of mitochondrial stress in HSC activation remains to be elucidated. METHODS: We analyzed the effect of mitochondrial stress on HSC activation. An in vivo hepatic fibrosis model was established by intraperitoneal injection of 40% carbon tetrachloride (CCl4) for 12 weeks. Additionally, using in vitro approach, HSC-T6 cells were treated with 10 ng/mL platelet-derived growth factor-BB (PDGF-BB) for 24 h. RESULTS Transcriptional activator 4 (ATF4) is highly expressed in fibrotic liver tissue samples and activated HSCs. We found that AAV8-shRNA-Atf4 alleviated liver fibrosis in rats. ATF4 promoted the activation of HSCs, which was induced by mitochondrial stress. The mechanisms involved ATF4 binding to a specific region of the tribble homologue 3 (TRIB3) promoter. Further, TRIB3 promoted HSCs activation mediated by mitochondrial stress. CONCLUSIONS ATF4 induces mitochondrial stress by upregulating TRIB3, leading to the activation of HSCs. Therefore, the inhibition of ATF4 during mitochondrial stress may be a promising therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Man-Ping Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wei-Li Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Qiu-Fan Rao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Meng-Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Hai-Qin Hong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xue-Ying Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Hui Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jin-Ling Kong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ru-Xue Guan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Qing-Hua Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Fan-Rong Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, People's Republic of China.
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
9
|
Shuvalov O, Kirdeeva Y, Fefilova E, Netsvetay S, Zorin M, Vlasova Y, Fedorova O, Daks A, Parfenyev S, Barlev N. 20-Hydroxyecdysone Confers Antioxidant and Antineoplastic Properties in Human Non-Small Cell Lung Cancer Cells. Metabolites 2023; 13:metabo13050656. [PMID: 37233697 DOI: 10.3390/metabo13050656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
20-Hydroxyecdysone (20E) is an arthropod hormone which is synthesized by some plants as part of their defense mechanism. In humans, 20E has no hormonal activity but possesses a number of beneficial pharmacological properties including anabolic, adaptogenic, hypoglycemic, and antioxidant properties, as well as cardio-, hepato-, and neuroprotective features. Recent studies have shown that 20E may also possess antineoplastic activity. In the present study, we reveal the anticancer properties of 20E in Non-Small Cell Lung Cancer (NSCLC) cell lines. 20E displayed significant antioxidant capacities and induced the expression of antioxidative stress response genes. The RNA-seq analysis of 20E-treated lung cancer cells revealed the attenuation of genes involved in different metabolic processes. Indeed, 20E suppressed several enzymes of glycolysis and one-carbon metabolism, as well as their key transcriptional regulators-c-Myc and ATF4, respectively. Accordingly, using the SeaHorse energy profiling approach, we observed the inhibition of glycolysis and respiration mediated by 20E treatment. Furthermore, 20E sensibilized lung cancer cells to metabolic inhibitors and markedly suppressed the expression of Cancer Stem Cells (CSCs) markers. Thus, in addition to the known beneficial pharmacological activities of 20E, our data uncovered novel antineoplastic properties of 20E in NSCLC cells.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Elizaveta Fefilova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Sofia Netsvetay
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Mark Zorin
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Yulia Vlasova
- Almazov National Medical Research Center Russia, 197341 St. Petersburg, Russia
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- School of Medicine, Nazarbayev University, 001000 Astana, Kazakhstan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
10
|
Purhonen J, Banerjee R, Wanne V, Sipari N, Mörgelin M, Fellman V, Kallijärvi J. Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria. Nat Commun 2023; 14:2356. [PMID: 37095097 PMCID: PMC10126100 DOI: 10.1038/s41467-023-38027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Accumulating evidence suggests mitochondria as key modulators of normal and premature aging, yet whether primary oxidative phosphorylation (OXPHOS) deficiency can cause progeroid disease remains unclear. Here, we show that mice with severe isolated respiratory complex III (CIII) deficiency display nuclear DNA damage, cell cycle arrest, aberrant mitoses, and cellular senescence in the affected organs such as liver and kidney, and a systemic phenotype resembling juvenile-onset progeroid syndromes. Mechanistically, CIII deficiency triggers presymptomatic cancer-like c-MYC upregulation followed by excessive anabolic metabolism and illicit cell proliferation against lack of energy and biosynthetic precursors. Transgenic alternative oxidase dampens mitochondrial integrated stress response and the c-MYC induction, suppresses the illicit proliferation, and prevents juvenile lethality despite that canonical OXPHOS-linked functions remain uncorrected. Inhibition of c-MYC with the dominant-negative Omomyc protein relieves the DNA damage in CIII-deficient hepatocytes in vivo. Our results connect primary OXPHOS deficiency to genomic instability and progeroid pathogenesis and suggest that targeting c-MYC and aberrant cell proliferation may be therapeutic in mitochondrial diseases.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Rishi Banerjee
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Vilma Wanne
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Nina Sipari
- Viikki Metabolomics Unit, University of Helsinki, P.O.Box 65, Helsinki, Finland
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, P.O.Box 117, 221 00, Lund, Sweden
- Colzyx AB, Scheelevägen 2, 22381, Lund, Sweden
| | - Vineta Fellman
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, P.O.Box 117, 221 00, Lund, Sweden
- Children's Hospital, Clinicum, University of Helsinki, P.O. Box 22, 00014, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland.
| |
Collapse
|
11
|
Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang L, Zhou Y, Williams DL, Li C, Martinez L, Vazquez-Padron RI, Zhao H, Jiang X, Wang H, Yang X. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight 2023; 8:e158183. [PMID: 36394956 PMCID: PMC9870092 DOI: 10.1172/jci.insight.158183] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. β-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.
Collapse
Affiliation(s)
| | - Lu Liu
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Keman Xu
- Centers for Cardiovascular Research and
| | - Ramon Cueto
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Centers for Cardiovascular Research and
| | - Yifan Lu
- Centers for Cardiovascular Research and
| | - Yu Sun
- Centers for Cardiovascular Research and
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania, USA
| | - David L. Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Chuanfu Li
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Luo S, Zhang C, Gao Z, Jiang L, Li Q, Shi X, Kong Y, Cao J. ER stress-enhanced HMGA2 plays an important role in Cr (VI)-induced glycolysis and inhibited oxidative phosphorylation by targeting the transcription of ATF4. Chem Biol Interact 2023; 369:110293. [PMID: 36473502 DOI: 10.1016/j.cbi.2022.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022]
Abstract
Hexavalent chromium [Cr (VI)] is a proven human carcinogen which is widely used in steel manufacturing and painting. Here, the involvement of high mobility group A2 (HMGA2) in Cr (VI)-mediated glycolysis and oxidative phosphorylation (OXPHOS) was investigated. First, Cr (VI) treatment induced aerobic glycolysis by increasing the expression of GLUT1, HK II, PKM2 and LDHA enzymes, and reduced OXPHOS by decreasing mitochondrial mass, the expression of COX IV and ND1, and increasing Ca2+ content in mitochondria in A549 and HELF cells. And overexpression of HMGA2 induced aerobic glycolysis and decreased OXPHOS. Secondly, using endoplasmic reticulum (ER) stress inhibitor, 4-phenylbutyric acid (4-PBA) and knockdown of activating transcription factor 4 (ATF4) gene by siRNA, we demonstrated that ER stress and ATF4 elevation mediated Cr (VI)-induced glycolysis and inhibited OXPHOS. Furthermore, using tunicamycin (Tm), siHMGA2, transfection of HMGA2 and siATF4, we demonstrated that ER stress-enhanced interaction of HMGA2 and ATF4 resulted in Cr (VI)-induced glycolysis and inhibited OXPHOS. Additionally, ChIP assay revealed that HMGA2 protein could directly bind to the promoter sequence of ATF4 gene, which modulated Cr (VI)-induced ATF4 elevation. Finally, in lung tissues of BALB/c mice injected with HMGA2 plasmids, it is verified that HMGA2 involved in regulation of ATF4, glycolysis and OXPHOS in vivo. Combining, our data discovered that ER stress-enhanced the interaction of HMGA2 and ATF4 played an important role in Cr (VI)-mediated glycolysis and OXPHOS. These results imply a root cause for the carcinogenicity of Cr (VI), and could guide development of novel therapeutics for cancers.
Collapse
Affiliation(s)
- Shengxiang Luo
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
13
|
Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab 2022; 34:1792-1808.e6. [PMID: 36198313 DOI: 10.1016/j.cmet.2022.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/21/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
The structural and functional organization of the mitochondrial respiratory chain (MRC) remains intensely debated. Here, we show the co-existence of two separate MRC organizations in human cells and postmitotic tissues, C-MRC and S-MRC, defined by the preferential expression of three COX7A subunit isoforms, COX7A1/2 and SCAFI (COX7A2L). COX7A isoforms promote the functional reorganization of distinct co-existing MRC structures to prevent metabolic exhaustion and MRC deficiency. Notably, prevalence of each MRC organization is reversibly regulated by the activation state of the pyruvate dehydrogenase complex (PDC). Under oxidative conditions, the C-MRC is bioenergetically more efficient, whereas the S-MRC preferentially maintains oxidative phosphorylation (OXPHOS) upon metabolic rewiring toward glycolysis. We show a link between the metabolic signatures converging at the PDC and the structural and functional organization of the MRC, challenging the widespread notion of the MRC as a single functional unit and concluding that its structural heterogeneity warrants optimal adaptation to metabolic function.
Collapse
Affiliation(s)
- Erika Fernández-Vizarra
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | | | - Ana Sierra-Magro
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain
| | | | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3052 Melbourne, Australia
| | - María Illescas
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain
| | - Ana Peñas
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain
| | | | - Shujing Ding
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ian M Fearnley
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital and Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Joaquín Arenas
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723 Madrid, Spain
| | - Miguel A Martín
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723 Madrid, Spain
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3052 Melbourne, Australia
| | - Massimo Zeviani
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Neurosciences, University of Padova, 35128 Padova, Italy
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, Australia
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723 Madrid, Spain.
| |
Collapse
|
14
|
Jiang H, Kimura T, Hai H, Yamamura R, Sonoshita M. Drosophila as a toolkit to tackle cancer and its metabolism. Front Oncol 2022; 12:982751. [PMID: 36091180 PMCID: PMC9458318 DOI: 10.3389/fonc.2022.982751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most severe health problems worldwide accounting for the second leading cause of death. Studies have indicated that cancers utilize different metabolic systems as compared with normal cells to produce extra energy and substances required for their survival, which contributes to tumor formation and progression. Recently, the fruit fly Drosophila has been attracting significant attention as a whole-body model for elucidating the cancer mechanisms including metabolism. This tiny organism offers a valuable toolkit with various advantages such as high genetic conservation and similar drug response to mammals. In this review, we introduce flies modeling for cancer patient genotypes which have pinpointed novel therapeutic targets and drug candidates in the salivary gland, thyroid, colon, lung, and brain. Furthermore, we introduce fly models for metabolic diseases such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity are widely acknowledged risk factors for cancer, while cachexia is a cancer-related metabolic condition. In addition, we specifically focus on two cancer metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies proved useful to reveal the relationship between these metabolic changes and cancer. Such accumulating achievements indicate that Drosophila offers an efficient platform to clarify the mechanisms of cancer as a systemic disease.
Collapse
Affiliation(s)
- Hui Jiang
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kimura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Graduate school of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Han Hai
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| |
Collapse
|
15
|
Kosakamoto H, Okamoto N, Aikawa H, Sugiura Y, Suematsu M, Niwa R, Miura M, Obata F. Sensing of the non-essential amino acid tyrosine governs the response to protein restriction in Drosophila. Nat Metab 2022; 4:944-959. [PMID: 35879463 DOI: 10.1038/s42255-022-00608-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
The intake of dietary protein regulates growth, metabolism, fecundity and lifespan across various species, which makes amino acid (AA)-sensing vital for adaptation to the nutritional environment. The general control nonderepressible 2 (GCN2)-activating transcription factor 4 (ATF4) pathway and the mechanistic target of rapamycin complex 1 (mTORC1) pathway are involved in AA-sensing. However, it is not fully understood which AAs regulate these two pathways in living animals and how they coordinate responses to protein restriction. Here we show in Drosophila that the non-essential AA tyrosine (Tyr) is a nutritional cue in the fat body necessary and sufficient for promoting adaptive responses to a low-protein diet, which entails reduction of protein synthesis and mTORC1 activity and increased food intake. This adaptation is regulated by dietary Tyr through GCN2-independent induction of ATF4 target genes in the fat body. This study identifies the Tyr-ATF4 axis as a regulator of the physiological response to a low-protein diet and sheds light on the essential function of a non-essential nutrient.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- RIKEN Center for Biosystems and Dynamics Research, Kobe, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Hide Aikawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- RIKEN Center for Biosystems and Dynamics Research, Kobe, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
16
|
THE INTEGRATED STRESS RESPONSE AS A KEY PATHWAY DOWNSTREAM OF MITOCHONDRIAL DYSFUNCTION. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Flores ME, McNamara-Bordewick NK, Lovinger NL, Snow JW. Halofuginone triggers a transcriptional program centered on ribosome biogenesis and function in honey bees. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103667. [PMID: 34626768 DOI: 10.1016/j.ibmb.2021.103667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/19/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
We previously found that pharmacological inhibition of prolyl-tRNA synthetase by halofuginone has potent activity against Nosema ceranae, an important pathogen of honey bees. However, we also observed that prolyl-tRNA synthetase inhibition is toxic to bees, suggesting further work is necessary to make this a feasible therapeutic strategy. As expected, we found that pharmacological inhibition of prolyl-tRNA synthetase activity resulted in robust induction of select canonical ATF4 target genes in honey bees. However, our understanding of this and other cellular stress responses in general in honey bees is incomplete. Thus, we used RNAseq to identify novel changes in gene expression after halofuginone treatment and observed induction of genes involved in ribosome biogenesis, translation, tRNA synthesis, and ribosome-associated quality control (RQC). These results suggest that halofuginone, potentially acting through the Integrated Stress Response (ISR), promotes a transcriptional response to ribosome functional impairment in honey bees rather than the response designed to oppose amino acid limitation, which has been observed in other organisms after ISR induction. In support of this idea, we found that cycloheximide (CHX) administration also induced all tested target genes, indicating that this gene expression program could be induced by ribosome stalling in addition to tRNA synthetase inhibition. Only a subset of halofuginone-induced genes was upregulated by Unfolded Protein Response (UPR) induction, suggesting that mode of activation and cross-talk with other cellular signaling pathways significantly influence ISR function and cellular response to its activation. Future work will focus on understanding how the apparently divergent transcriptional output of the ISR in honey bees impacts the health and disease of this important pollinator species.
Collapse
Affiliation(s)
| | | | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
18
|
Lam Wong KK, Verheyen EM. Metabolic reprogramming in cancer: mechanistic insights from Drosophila. Dis Model Mech 2021; 14:1-17. [PMID: 34240146 PMCID: PMC8277969 DOI: 10.1242/dmm.048934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer. Summary: Recent research in fruit flies has demonstrated that tumors rewire their metabolism by using diverse strategies that involve feedback regulation, nutrient sensing, intercellular or even inter-organ interactions, yielding new molecules as potential cancer markers or drug targets.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
19
|
Abstract
Mitochondria are organelles central to myriad cellular processes. To maintain mitochondrial health, various processes co-operate at both the molecular and organelle level. At the molecular level, mitochondria can sense imbalances in their homeostasis and adapt to these by signaling to the nucleus. This mito-nuclear communication leads to the expression of nuclear stress response genes. Upon external stimuli, mitochondria can also alter their morphology accordingly, by inducing fission or fusion. In an extreme situation, mitochondria are degraded by mitophagy. Adequate function and regulation of these mitochondrial quality control pathways are crucial for cellular homeostasis. As we discuss, alterations in these processes have been linked to several pathologies including neurodegenerative diseases and cancer.
Collapse
|
20
|
Sassano ML, Derua R, Waelkens E, Agostinis P, van Vliet AR. Interactome Analysis of the ER Stress Sensor Perk Uncovers Key Components of ER-Mitochondria Contact Sites and Ca 2+ Signalling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211052392. [PMID: 37366380 PMCID: PMC10243573 DOI: 10.1177/25152564211052392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/28/2023]
Abstract
We recently reported that the ER stress kinase PERK regulates ER-mitochondria appositions and ER- plasma membrane (ER-PM) contact sites, independent of its canonical role in the unfolded protein response. PERK regulation of ER-PM contacts was revealed by a proximity biotinylation (BioID) approach and involved a dynamic PERK-Filamin A interaction supporting the formation of ER-PM contacts by actin-cytoskeleton remodeling in response to depletion of ER-Ca2+ stores. In this report, we further interrogated the PERK BioID interactome by validating through co-IP experiments the interaction between PERK and two proteins involved in Ca2+ handling and ER-mitochondria contact sites. These included the vesicle associated membrane (VAMP)-associated proteins (VAPA/B) and the main ER Ca2+ pump sarcoplasmic/endoplasmic reticulum Ca ATPase 2 (SERCA2). These data identify new putative PERK interacting proteins with a crucial role in membrane contact sites and Ca2+ signaling further supporting the uncanonical role of PERK in Ca2+ signaling through membrane contact sites (MCSs).
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Group,
Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology Research,
Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation
and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- SyBioMa, KU Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation
and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- SyBioMa, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group,
Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology Research,
Leuven, Belgium
| | - Alexander R van Vliet
- Cell Death Research and Therapy Group,
Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|