1
|
Williams DE, King K, Jackson R, Kuehner F, Arnoldy C, Marroquin JN, Tobey I, Banka A, Ragonese S, Van Doorslaer K. PRMT1 Modulates Alternative Splicing to Enhance HPV18 mRNA Stability and Promote the Establishment of Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.614592. [PMID: 39386465 PMCID: PMC11463397 DOI: 10.1101/2024.09.26.614592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Only persistent HPV infections lead to the development of cancer. Thus, understanding the virus-host interplay that influences the establishment of viral infection has important implications for HPV biology and human cancers. The ability of papillomaviruses to establish in cells requires the strict temporal regulation of viral gene expression in sync with cellular differentiation. This control primarily happens at the level of RNA splicing and polyadenylation. However, the details of how this spatio-temporal regulation is achieved still need to be fully understood. Until recently, it has been challenging to study the early events of the HPV lifecycle following infection. We used a single-cell genomics approach to identify cellular factors involved in viral infection and establishment. We identify protein arginine N-methyltransferase 1 (PRMT1) as an important factor in viral infection of primary human cervical cells. PRMT1 is the main cellular enzyme responsible for asymmetric dimethylation of cellular proteins. PRMT1 is an enzyme responsible for catalyzing the methylation of arginine residues on various proteins, which influences processes such as RNA processing, transcriptional regulation, and signal transduction. In this study, we show that HPV18 infection leads to increased PRMT1 levels across the viral lifecycle. PRMT1 is critical for the establishment of a persistent infection in primary cells. Mechanistically, PRMT1 inhibition leads to a highly dysregulated viral splicing pattern. Specifically, reduced PRMT1 activity leads to intron retention and a change in the E6 and E7 expression ratio. In the absence of PRMT1, viral transcripts are destabilized and subject to degradation via the nonsense-mediated decay (NMD) pathway. These findings highlight PRMT1 as a critical regulator of the HPV18 lifecycle, particularly in RNA processing, and position it as a potential therapeutic target for persistent HPV18 infections.
Collapse
Affiliation(s)
- David E.J. Williams
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Medical Scientist Training M.D.-Ph.D. Program, University of Arizona, Tucson, AZ, USA
| | - Kelly King
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Robert Jackson
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Franziska Kuehner
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Christina Arnoldy
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | | | - Isabelle Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Amy Banka
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
| | - Sofia Ragonese
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Molecular and cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
- The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA
| |
Collapse
|
2
|
Yin Q, Hu Y, Dong Z, Lu J, Wang H. Cellular, Structural Basis, and Recent Progress for Targeting Murine Double Minute X (MDMX) in Tumors. J Med Chem 2024; 67:14723-14741. [PMID: 39185935 DOI: 10.1021/acs.jmedchem.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Murine double minute X (MDMX) is an oncoprotein that mainly has a negative regulatory effect on the tumor suppressor p53 to induce tumorigenesis. As MDMX is highly expressed in various types of tumor cells, targeting and inhibiting MDMX are becoming a promising strategy for treating cancers. However, the high degree of structural homology between MDMX and its homologous protein murine double minute 2 (MDM2) is a great challenge for the development of MDMX-targeted therapies. This review introduces the structure, distribution, and regulation of the MDMX, summarizes the structural features and structure-activity relationships (SARs) of MDMX ligands, and focuses on the differences between MDMX and MDM2 in these aspects. Our purpose of this work is to propose potential strategies to achieve the specific targeting of MDMX.
Collapse
Affiliation(s)
- Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhiwen Dong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
3
|
Li H, Qi X, He L, Yang H, Ju H. PRMT1 promotes radiotherapy resistance in glioma stem cells by inhibiting ferroptosis. Jpn J Radiol 2024:10.1007/s11604-024-01651-y. [PMID: 39254902 DOI: 10.1007/s11604-024-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE The existence of glioma stem cells (GSCs) in cancer is related to glioma radiotherapy resistance. In this research, the effect of protein arginine methyltransferase 1 (PRMT1) on the radiosensitivity of glioma stem cell (GSC)-like cells, as well as its underlying mechanism, was investigated. METHODS GSCs-like cells were analyzed and identified by flow cytometry. The self-renewal capability was evaluated by sphere-forming assay. The PRMT1 expression level in glioblastoma were analyzed using the Gene Expression Profiling Interactive Analysis database. The mRNA and protein were scrutinized by RT-qPCR and western blot, respectively. The radiosensitivity was evaluated by clonogenic survival assay. Ferroptosis was evaluated by detecting the levels of reactive oxygen species, malondialdehyde, Fe2+, glutathione, and 4-hydroxynonenal. RESULTS U87 and SHG44 cells with GSC-like phenotype (GSC-U87 and GSC-SHG44) displayed strong expression of CD133 and nestin versus the glioma cells. GSC-U87 and GSC-SHG44 possess the self-renewal capability. The level of PRMT1 was higher in glioblastoma tumor tissues than in the normal paracancer tissues. Knockdown of PRMT1 enhanced the radiotherapy sensitivity of GSCs-like cells, which was evidenced by reduced survival fraction in GSC-U87 and GSC-SHG44 underwent sh-PRMT1 transfection. But, this effect was attenuated by Fer-1 (a ferroptosis inhibitor) treatment, accompanied by the abatement of ferroptosis. CONCLUSION PRMT1 promoted radiotherapy resistance in GSCs-like cells by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, Inner Mongolia Autonomous Region, China
| | - Xiaoyan Qi
- Department of Medical Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, Inner Mongolia Autonomous Region, China
| | - Lijun He
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Huimin District, Hohhot, 010020, Inner Mongolia, China
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, Inner Mongolia Autonomous Region, China
| | - Haitao Ju
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Huimin District, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
4
|
Jansen J, Bohnsack KE, Böhlken-Fascher S, Bohnsack MT, Dobbelstein M. The ribosomal protein L22 binds the MDM4 pre-mRNA and promotes exon skipping to activate p53 upon nucleolar stress. Cell Rep 2024; 43:114610. [PMID: 39116201 DOI: 10.1016/j.celrep.2024.114610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor suppressor p53 and its antagonists MDM2 and MDM4 integrate stress signaling. For instance, dysbalanced assembly of ribosomes in nucleoli induces p53. Here, we show that the ribosomal protein L22 (RPL22; eL22), under conditions of ribosomal and nucleolar stress, promotes the skipping of MDM4 exon 6. Upon L22 depletion, more full-length MDM4 is maintained, leading to diminished p53 activity and enhanced cellular proliferation. L22 binds to specific RNA elements within intron 6 of MDM4 that correspond to a stem-loop consensus, leading to exon 6 skipping. Targeted deletion of these intronic elements largely abolishes L22-mediated exon skipping and re-enables cell proliferation, despite nucleolar stress. L22 also governs alternative splicing of the L22L1 (RPL22L1) and UBAP2L mRNAs. Thus, L22 serves as a signaling intermediate that integrates different layers of gene expression. Defects in ribosome synthesis lead to specific alternative splicing, ultimately triggering p53-mediated transcription and arresting cell proliferation.
Collapse
Affiliation(s)
- Jennifer Jansen
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Susanne Böhlken-Fascher
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
5
|
Elvira-Blázquez D, Fernández-Justel JM, Arcas A, Statello L, Goñi E, González J, Ricci B, Zaccara S, Raimondi I, Huarte M. YTHDC1 m 6A-dependent and m 6A-independent functions converge to preserve the DNA damage response. EMBO J 2024; 43:3494-3522. [PMID: 38951610 PMCID: PMC11329685 DOI: 10.1038/s44318-024-00153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Cells have evolved a robust and highly regulated DNA damage response to preserve their genomic integrity. Although increasing evidence highlights the relevance of RNA regulation, our understanding of its impact on a fully efficient DNA damage response remains limited. Here, through a targeted CRISPR-knockout screen, we identify RNA-binding proteins and modifiers that participate in the p53 response. Among the top hits, we find the m6A reader YTHDC1 as a master regulator of p53 expression. YTHDC1 binds to the transcription start sites of TP53 and other genes involved in the DNA damage response, promoting their transcriptional elongation. YTHDC1 deficiency also causes the retention of introns and therefore aberrant protein production of key DNA damage factors. While YTHDC1-mediated intron retention requires m6A, TP53 transcriptional pause-release is promoted by YTHDC1 independently of m6A. Depletion of YTHDC1 causes genomic instability and aberrant cancer cell proliferation mediated by genes regulated by YTHDC1. Our results uncover YTHDC1 as an orchestrator of the DNA damage response through distinct mechanisms of co-transcriptional mRNA regulation.
Collapse
Affiliation(s)
- Daniel Elvira-Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - José Miguel Fernández-Justel
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Aida Arcas
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
- Clarivate, Barcelona, Spain
| | - Luisa Statello
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Benedetta Ricci
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sara Zaccara
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ivan Raimondi
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| | - Maite Huarte
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
6
|
Foglio E, D'Avorio E, Nieri R, Russo MA, Limana F. Epicardial EMT and cardiac repair: an update. Stem Cell Res Ther 2024; 15:219. [PMID: 39026298 PMCID: PMC11264588 DOI: 10.1186/s13287-024-03823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Epicardial epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both heart development and injury response and involves dynamic cellular changes that are essential for cardiogenesis and myocardial repair. Specifically, epicardial EMT is a crucial process in which epicardial cells lose polarity, migrate into the myocardium, and differentiate into various cardiac cell types during development and repair. Importantly, following EMT, the epicardium becomes a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis and contribute to cardiac remodeling after injury. As such, EMT seems to represent a fundamental step in cardiac repair. Nevertheless, endogenous EMT alone is insufficient to stimulate adequate repair. Redirecting and amplifying epicardial EMT pathways offers promising avenues for the development of innovative therapeutic strategies and treatment approaches for heart disease. In this review, we present a synthesis of recent literature highlighting the significance of epicardial EMT reactivation in adult heart disease patients.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, Latina, Italy
| | - Erica D'Avorio
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy
| | - Riccardo Nieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Federica Limana
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy.
- Laboratorio di Patologia Cellulare e Molecolare, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
7
|
Peng L, Zhao Y, Tan J, Hou J, Jin X, Liu DX, Huang B, Lu J. PRMT1 promotes Warburg effect by regulating the PKM2/PKM1 ratio in non-small cell lung cancer. Cell Death Dis 2024; 15:504. [PMID: 39009589 PMCID: PMC11251085 DOI: 10.1038/s41419-024-06898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Abnormal epigenetic modifications are involved in the regulation of Warburg effect in tumor cells. Protein arginine methyltransferases (PRMTs) mediate arginine methylation and have critical functions in cellular responses. PRMTs are deregulated in a variety of cancers, but their precise roles in Warburg effect in cancer is largely unknown. Experiments from the current study showed that PRMT1 was highly expressed under conditions of glucose sufficiency. PRMT1 induced an increase in the PKM2/PKM1 ratio through upregulation of PTBP1, in turn, promoting aerobic glycolysis in non-small cell lung cancer (NSCLC). The PRMT1 level in p53-deficient and p53-mutated NSCLC remained relatively unchanged while the expression was reduced in p53 wild-type NSCLC under conditions of glucose insufficiency. Notably, p53 activation under glucose-deficient conditions could suppress USP7 and further accelerate the polyubiquitin-dependent degradation of PRMT1. Melatonin, a hormone that inhibits glucose intake, markedly suppressed cell proliferation of p53 wild-type NSCLC, while a combination of melatonin and the USP7 inhibitor P5091 enhanced the anticancer activity in p53-deficient NSCLC. Our collective findings support a role of PRMT1 in the regulation of Warburg effect in NSCLC. Moreover, combination treatment with melatonin and the USP7 inhibitor showed good efficacy, providing a rationale for the development of PRMT1-based therapy to improve p53-deficient NSCLC outcomes.
Collapse
Affiliation(s)
- Lu Peng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yujiao Zhao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jiang Tan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jingyao Hou
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xin Jin
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Dong-Xu Liu
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
8
|
Lou B, Guo M, Zheng T, Liu J, Wang C, Chen T, Chen F, Fan X, Gao S, Liang X, Qiang H, Li L, Zhou B, Yuan Z, She J. Single-cell RNA sequencing reveals the altered innate immunity in immune checkpoint inhibitor-related myocarditis. Immunology 2024; 172:235-251. [PMID: 38425094 DOI: 10.1111/imm.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
Myocarditis has emerged as a rare but lethal immune checkpoint inhibitor (ICI)-associated toxicity. However, the exact mechanism and the specific therapeutic targets remain underexplored. In this study, we aim to characterise the transcriptomic profiles based on single-cell RNA sequencing from ICI-related myocarditis. Peripheral blood mononuclear cell (PBMC) samples were collected from four groups for single-cell RNA sequencing: (1) patients with newly diagnosed lung squamous cell carcinoma before treatment (Control Group); (2) patients with lung squamous cell carcinoma with PD-1 inhibitor therapy who did not develop myocarditis (PD-1 Group); (3) patients during fulminant ICI-related myocarditis onset (Myocarditis Group); and (4) Patients with fulminant ICI-related myocarditis during disease remission (Recovery Group). Subcluster determination, functional analysis, single-cell trajectory and cell-cell interaction analysis were performed after scRNA-seq. Bulk-RNA sequencing was performed for further validation. Our results revealed the diversity of cellular populations in ICI-related myocarditis, marked by their distinct transcriptional profiles and biological functions. Monocytes, NKs as well as B cells contribute to the regulation of innate immunity and inflammation in ICI-related myocarditis. With integrated analysis of scRNA-seq and bulk sequencing, we identified S100A protein family as a potential serum marker for ICI-related myocarditis. Our study has created a cell atlas of PBMC during ICI-related myocarditis, which would shed light on the pathophysiological mechanism and potential therapeutic targets of ICI-related myocarditis in continuous exploration.
Collapse
Affiliation(s)
- Bowen Lou
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Manyun Guo
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Tao Zheng
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Junhui Liu
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Chen Wang
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Tao Chen
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Fangyuan Chen
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Xiaojuan Fan
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Shanshan Gao
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Xiao Liang
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Hua Qiang
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Lijuan Li
- Department of Cardiovascular, Wuzhong People's Hospital, Ningxia, China
| | - Bo Zhou
- Department of Respiratory, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zuyi Yuan
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Jianqing She
- Department of Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Li X, Zhao X, Yin R, Yuan M, Zhang Y, Li X. TGF-β2-induced alterations of m6A methylation in hTERT RPE-1 cells. Exp Eye Res 2024; 241:109839. [PMID: 38395214 DOI: 10.1016/j.exer.2024.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
N6-methyladenosine (m6A) is a major type of RNA modification implicated in various pathophysiological processes. Transforming growth factor β2 (TGF-β2) induces epithelial-mesenchymal transition (EMT) in retinal pigmental epithelial (RPE) cells and promotes the progression of proliferative vitreoretinopathy (PVR). However, the role of m6A methylation in the EMT of human telomerase reverse transcriptase (hTERT) retinal pigmental epithelium (RPE)-1 cells has not been clarified. Here, we extracted RNA from RPE cells subjected to 0 or 20 ng/mL TGF-β2 for 72 h and identified differentially methylated genes (DMGs) by m6A-Seq and differentially expressed genes (DEGs) by RNA-Seq. We selected the genes related to EMT by conjoint m6A-Seq/RNA-Seq analysis and verified them by qRT-PCR. We then confirmed the function of m6A methylation in the EMT of RPE cells by knocking down the methyltransferase METTL3 and the m6A reading protein YTHDF1. Sequencing yielded 5814 DMGs and 1607 DEGs. Conjoint analysis selected 467 genes altered at the m6A and RNA levels that are closely associated with the EMT-related TGF-β, AGE-RAGE, PI3K-Akt, P53, and Wnt signaling pathways. We also identified ten core EMT genes ACTG2, BMP6, CDH2, LOXL2, SNAIL1, SPARC, BMP4, EMP3, FOXM1, and MYC. Their RNA levels were evaluated by qRT-PCR and were consistent with the sequencing results. We observed that METTL3 knockdown enhanced RPE cell migration and significantly upregulated the EMT markers N-cadherin (encoded by CDH2), fibronectin (FN), Snail family transcription repressor (SLUG), and vimentin. However, YTHDF1 knockdown had the opposite effects and decreased both cell migration and the N-cadherin, FN, and SLUG expression levels. The present study clarified TGF-β2-induced m6A- and RNA-level differences in RPE cells, indicated that m6A methylation might regulate EMT marker expression, and showed that m6A could regulate TGF-β2-induced EMT.
Collapse
Affiliation(s)
- Xue Li
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Xueru Zhao
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Ruijie Yin
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Min Yuan
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Yongya Zhang
- Henan Provincial People's Hospital, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China.
| |
Collapse
|
10
|
Miller LR, Bickel MA, Tarantini S, Runion ME, Matacchiera Z, Vance ML, Hibbs C, Vaden H, Nagykaldi D, Martin T, Bullen EC, Pinckard J, Kiss T, Howard EW, Yabluchanskiy A, Conley SM. IGF1R deficiency in vascular smooth muscle cells impairs myogenic autoregulation and cognition in mice. Front Aging Neurosci 2024; 16:1320808. [PMID: 38425784 PMCID: PMC10902040 DOI: 10.3389/fnagi.2024.1320808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Cerebrovascular pathologies contribute to cognitive decline during aging, leading to vascular cognitive impairment and dementia (VCID). Levels of circulating insulin-like growth factor 1 (IGF-1), a vasoprotective hormone, decrease during aging. Decreased circulating IGF-1 in animal models leads to the development of VCID-like symptoms, but the cellular mechanisms underlying IGF-1-deficiency associated pathologies in the aged cerebrovasculature remain poorly understood. Here, we test the hypothesis that vascular smooth muscle cells (VSMCs) play an integral part in mediating the vasoprotective effects of IGF-1. Methods We used a hypertension-based model of cerebrovascular dysfunction in mice with VSMC-specific IGF-1 receptor (Igf1r) deficiency and evaluated the development of cerebrovascular pathologies and cognitive dysfunction. Results VSMC-specific Igf1r deficiency led to impaired cerebral myogenic autoregulation, independent of blood pressure changes, which was also associated with impaired spatial learning and memory function as measured by radial arm water maze and impaired motor learning measured by rotarod. In contrast, VSMC-specific IGF-1 receptor knockdown did not lead to cerebral microvascular rarefaction. Discussion These studies suggest that VSMCs are key targets for IGF-1 in the context of cerebrovascular health, playing a role in vessel stability alongside other cells in the neurovascular unit, and that VSMC dysfunction in aging likely contributes to VCID.
Collapse
Affiliation(s)
- Lauren R. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Megan E. Runion
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Zoe Matacchiera
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michaela L. Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Clara Hibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hannah Vaden
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Domonkos Nagykaldi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Teryn Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth C. Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jessica Pinckard
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tamas Kiss
- Pediatric Center, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Eric W. Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
11
|
Shen S, Zhou H, Xiao Z, Zhan S, Tuo Y, Chen D, Pang X, Wang Y, Wang J. PRMT1 in human neoplasm: cancer biology and potential therapeutic target. Cell Commun Signal 2024; 22:102. [PMID: 38326807 PMCID: PMC10851560 DOI: 10.1186/s12964-024-01506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), the predominant type I protein arginine methyltransferase, plays a crucial role in normal biological functions by catalyzing the methylation of arginine side chains, specifically monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), within proteins. Recent investigations have unveiled an association between dysregulated PRMT1 expression and the initiation and progression of tumors, significantly impacting patient prognosis, attributed to PRMT1's involvement in regulating various facets of tumor cell biology, including DNA damage repair, transcriptional and translational regulation, as well as signal transduction. In this review, we present an overview of recent advancements in PRMT1 research across different tumor types, with a specific focus on its contributions to tumor cell proliferation, metastasis, invasion, and drug resistance. Additionally, we expound on the dynamic functions of PRMT1 during distinct stages of cancer progression, elucidating its unique regulatory mechanisms within the same signaling pathway and distinguishing between its promotive and inhibitory effects. Importantly, we sought to provide a comprehensive summary and analysis of recent research progress on PRMT1 in tumors, contributing to a deeper understanding of its role in tumorigenesis, development, and potential treatment strategies.
Collapse
Affiliation(s)
- Shiquan Shen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Honglong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zongyu Xiao
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215124, China
| | - Shaofen Zhan
- Department of Neurology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, 510317, China
| | - Yonghua Tuo
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Danmin Chen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao Pang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
12
|
Ruiz-Villalba A, Guadix JA, Pérez-Pomares JM. Epicardium and Coronary Vessels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:155-166. [PMID: 38884710 DOI: 10.1007/978-3-031-44087-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital anomalies and acquired diseases of the coronary blood vessels are of great clinical relevance. The early diagnosis of these conditions remains, however, challenging. In order to improve our knowledge of these ailments, progress has to be achieved in the research of the molecular and cellular mechanisms that control development of the coronary vascular bed. The aim of this chapter is to provide a succint account of the key elements of coronary blood vessel development, especially in the context of the role played by the epicardium and epicardial cellular derivatives. We will discuss the importance of the epicardium in coronary blood vessel morphogenesis, from the contribution of the epicardially derived mesenchyme to these blood vessels to its role as an instructive signaling center, attempting to relate these concepts to the origin of coronary disease.
Collapse
Affiliation(s)
- Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Campanillas (Málaga), Spain
| | - Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Campanillas (Málaga), Spain
| | - José M Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Campanillas (Málaga), Spain.
| |
Collapse
|
13
|
Li WJ, Huang Y, Lin YA, Zhang BD, Li MY, Zou YQ, Hu GS, He YH, Yang JJ, Xie BL, Huang HH, Deng X, Liu W. Targeting PRMT1-mediated SRSF1 methylation to suppress oncogenic exon inclusion events and breast tumorigenesis. Cell Rep 2023; 42:113385. [PMID: 37938975 DOI: 10.1016/j.celrep.2023.113385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
PRMT1 plays a vital role in breast tumorigenesis; however, the underlying molecular mechanisms remain incompletely understood. Herein, we show that PRMT1 plays a critical role in RNA alternative splicing, with a preference for exon inclusion. PRMT1 methylome profiling identifies that PRMT1 methylates the splicing factor SRSF1, which is critical for SRSF1 phosphorylation, SRSF1 binding with RNA, and exon inclusion. In breast tumors, PRMT1 overexpression is associated with increased SRSF1 arginine methylation and aberrant exon inclusion, which are critical for breast cancer cell growth. In addition, we identify a selective PRMT1 inhibitor, iPRMT1, which potently inhibits PRMT1-mediated SRSF1 methylation, exon inclusion, and breast cancer cell growth. Combination treatment with iPRMT1 and inhibitors targeting SRSF1 phosphorylation exhibits an additive effect of suppressing breast cancer cell growth. In conclusion, our study dissects a mechanism underlying PRMT1-mediated RNA alternative splicing. Thus, PRMT1 has great potential as a therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ying Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-An Lin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bao-Ding Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China
| | - Mei-Yan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-Qin Zou
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yao-Hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jing-Jing Yang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bing-Lan Xie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China
| | - Hai-Hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
14
|
Wang F, Chen S, Peng S, Zhou X, Tang H, Liang H, Zhong X, Yang H, Ke X, Lü M, Cui H. PRMT1 promotes the proliferation and metastasis of gastric cancer cells by recruiting MLXIP for the transcriptional activation of the β-catenin pathway. Genes Dis 2023; 10:2622-2638. [PMID: 37554218 PMCID: PMC10404965 DOI: 10.1016/j.gendis.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/03/2023] [Indexed: 03/30/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), a type I PRMT, is overexpressed in gastric cancer (GC) cells. To elucidate the function of PRMT1 in GC, PRMT1 expression in HGC-27 and MKN-45 cells was knocked down by short hairpin RNA (shRNA) or inhibited by PRMT1 inhibitors (AMI-1 or DCLX069), which resulted in inhibition of GC cell proliferation, migration, invasion, and tumorigenesis in vitro and in vivo. MLX-interacting protein (MLXIP) and Kinectin 1 (KTN1) were identified as PRMT1-binding proteins. PRMT1 recruited MLXIP to the promoter of β-catenin, which induced β-catenin transcription and activated the β-catenin signaling pathway, promoting GC cell migration and metastasis. Furthermore, KTN1 inhibited the K48-linked ubiquitination of PRMT1 by decreasing the interaction between TRIM48 and PRMT1. Collectively, our findings reveal a mechanism by which PRMT1 promotes cell proliferation and metastasis mediated by the β-catenin signaling pathway.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Shitong Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Shihan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xujun Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Houyi Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xi Zhong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - He Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - MuHan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
15
|
Ye H, Cao L, Jackson-Weaver O, Zheng L, Gou Y. PRMT1-mediated arginine methylation promotes postnatal calvaria bone formation through BMP-Smad signaling. Bone 2023; 176:116887. [PMID: 37634683 DOI: 10.1016/j.bone.2023.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
PRMT1 deficiency leads to severely compromised craniofacial development in neural crest cells and profound abnormalities of the craniofacial tissues. Here, we show PRMT1 controls several key processes in calvarial development, including frontal and parietal bone growth rate and the boundary between sutural and osteogenic cells. Pharmacologic PRMT1 inhibition suppresses MC3T3-E1 cell viability and proliferation and impairs osteogenic differentiation. In this text, we investigate the cellular events behind the morphological changes and uncover an essential role of PRMT1 in simulating postnatal bone formation. Inhibition of PRMT1 alleviated BMP signaling through Smads phosphorylation and reduced the deposition of the H4R3me2a mark. Our study demonstrates a regulatory mechanism whereby PRMT1 regulates BMP signaling and the overall properties of the calvaria bone through Smads methylation, which may facilitate the development of an effective therapeutic strategy for craniosynostosis.
Collapse
Affiliation(s)
- Huayu Ye
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China.
| | - Li Cao
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China.
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA; Trauma & Critical Care Education Division, Tulane School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Leilei Zheng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China.
| | - Yongchao Gou
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#, Songshi North Road, Yubei District, Chongqing 401147, PR China.
| |
Collapse
|
16
|
Liu C, Yang F, Su X, Zhang Z, Xing Y. ScRNA-seq and spatial transcriptomics: exploring the occurrence and treatment of coronary-related diseases starting from development. Front Cardiovasc Med 2023; 10:1064949. [PMID: 37416923 PMCID: PMC10319627 DOI: 10.3389/fcvm.2023.1064949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/22/2023] [Indexed: 07/08/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a new technology that can be used to explore molecular changes in complex cell clusters at the single-cell level. Single-cell spatial transcriptomic technology complements the cell-space location information lost during single-cell sequencing. Coronary artery disease is an important cardiovascular disease with high mortality rates. Many studies have explored the physiological development and pathological changes in coronary arteries from the perspective of single cells using single-cell spatial transcriptomic technology. This article reviews the molecular mechanisms underlying coronary artery development and diseases as revealed by scRNA-seq combined with spatial transcriptomic technology. Based on these mechanisms, we discuss the possible new treatments for coronary diseases.
Collapse
|
17
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
18
|
Anerillas C, Altés G, Gorospe M. MAPKs in the early steps of senescence implemEMTation. Front Cell Dev Biol 2023; 11:1083401. [PMID: 37009481 PMCID: PMC10060890 DOI: 10.3389/fcell.2023.1083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Evidence is accumulating that the earliest stages of the DNA damage response can direct cells toward senescence instead of other cell fates. In particular, tightly regulated signaling through Mitogen-Activated Protein Kinases (MAPKs) in early senescence can lead to a sustained pro-survival program and suppress a pro-apoptotic program. Importantly, an epithelial-to-mesenchymal Transition (EMT)-like program appears essential for preventing apoptosis and favoring senescence following DNA damage. In this review, we discuss how MAPKs might influence EMT features to promote a senescent phenotype that increases cell survival at the detriment of tissue function.
Collapse
|
19
|
Taliani V, Buonaiuto G, Desideri F, Setti A, Santini T, Galfrè S, Schirone L, Mariani D, Frati G, Valenti V, Sciarretta S, Perlas E, Nicoletti C, Musarò A, Ballarino M. The long noncoding RNA Charme supervises cardiomyocyte maturation by controlling cell differentiation programs in the developing heart. eLife 2023; 12:81360. [PMID: 36877136 PMCID: PMC10023161 DOI: 10.7554/elife.81360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of heart physiology and disease, although the studies unveiling their modes of action are still limited to few examples. We recently identified pCharme, a chromatin-associated lncRNA whose functional knockout in mice results in defective myogenesis and morphological remodeling of the cardiac muscle. Here, we combined Cap-Analysis of Gene Expression (CAGE), single-cell (sc)RNA sequencing, and whole-mount in situ hybridization analyses to study pCharme cardiac expression. Since the early steps of cardiomyogenesis, we found the lncRNA being specifically restricted to cardiomyocytes, where it assists the formation of specific nuclear condensates containing MATR3, as well as important RNAs for cardiac development. In line with the functional significance of these activities, pCharme ablation in mice results in a delayed maturation of cardiomyocytes, which ultimately leads to morphological alterations of the ventricular myocardium. Since congenital anomalies in myocardium are clinically relevant in humans and predispose patients to major complications, the identification of novel genes controlling cardiac morphology becomes crucial. Our study offers unique insights into a novel lncRNA-mediated regulatory mechanism promoting cardiomyocyte maturation and bears relevance to Charme locus for future theranostic applications.
Collapse
Affiliation(s)
- Valeria Taliani
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Fabio Desideri
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia (IIT)RomeItaly
| | - Adriano Setti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Tiziana Santini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Silvia Galfrè
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia (IIT)RomeItaly
| | - Leonardo Schirone
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Davide Mariani
- Center for Human Technologies, Istituto Italiano di TecnologiaGenovaItaly
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Valentina Valenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Emerald Perlas
- Epigenetics and Neurobiology Unit, EMBL-RomeMonterotondoItaly
| | - Carmine Nicoletti
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of RomeRomeItaly
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of RomeRomeItaly
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| |
Collapse
|
20
|
Fan R, Yan X, Zhang W. Relationship between asporin and extracellular matrix behavior: A literature review. Medicine (Baltimore) 2022; 101:e32490. [PMID: 36595867 PMCID: PMC9794316 DOI: 10.1097/md.0000000000032490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asporin (ASPN), as a member of the small leucine-rich repeat proteoglycan family, is a type of protein that is found in the extracellular matrix. Collagen deposition or transformation is involved in a variety of pathological processes. ASPN is identified in cancerous tissue, pathological cardiac tissue, articular cartilage, keloid, and fibrotic lung tissue, and it has a role in the development of cancer, cardiovascular, bone and joint, keloid, and pulmonary fibrosis by interfering with collagen metabolism. This review article summarizes the data on ASPN expressions in mouse and human and highlights that overexpress of ASPN might play a role in a variety of diseases. Although our knowledge of ASPN is currently limited, these instances may help us better understand how it interacts with diseases.
Collapse
Affiliation(s)
- Rui Fan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Xiaoyan Yan
- Department of Geriatrics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
- * Correspondence: Wei Zhang, Department of Respiratory and Critical Care Medicine, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong 250014, China (e-mail: )
| |
Collapse
|
21
|
Xia Y, Duca S, Perder B, Dündar F, Zumbo P, Qiu M, Yao J, Cao Y, Harrison MRM, Zangi L, Betel D, Cao J. Activation of a transient progenitor state in the epicardium is required for zebrafish heart regeneration. Nat Commun 2022; 13:7704. [PMID: 36513650 PMCID: PMC9747719 DOI: 10.1038/s41467-022-35433-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The epicardium, a mesothelial cell tissue that encompasses vertebrate hearts, supports heart regeneration after injury through paracrine effects and as a source of multipotent progenitors. However, the progenitor state in the adult epicardium has yet to be defined. Through single-cell RNA-sequencing of isolated epicardial cells from uninjured and regenerating adult zebrafish hearts, we define the epithelial and mesenchymal subsets of the epicardium. We further identify a transiently activated epicardial progenitor cell (aEPC) subpopulation marked by ptx3a and col12a1b expression. Upon cardiac injury, aEPCs emerge from the epithelial epicardium, migrate to enclose the wound, undergo epithelial-mesenchymal transition (EMT), and differentiate into mural cells and pdgfra+hapln1a+ mesenchymal epicardial cells. These EMT and differentiation processes are regulated by the Tgfβ pathway. Conditional ablation of aEPCs blocks heart regeneration through reduced nrg1 expression and mesenchymal cell number. Our findings identify a transient progenitor population of the adult epicardium that is indispensable for heart regeneration and highlight it as a potential target for enhancing cardiac repair.
Collapse
Affiliation(s)
- Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Sierra Duca
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Michael R M Harrison
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Qin J, Xu J. Arginine methylation in the epithelial-to-mesenchymal transition. FEBS J 2022; 289:7292-7303. [PMID: 34358413 PMCID: PMC10181118 DOI: 10.1111/febs.16152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
Epithelial cells acquire mesenchymal characteristics during embryonic development, wound healing, fibrosis, and in cancer in a processed termed epithelial-to-mesenchymal transition (EMT). Regulatory networks of EMT are controlled by post-transcriptional, translational, and post-translational mechanisms, in which arginine methylation is critically involved. Here, we review arginine methylation-dependent mechanisms that regulate EMT in the aspects of signaling, transcriptional, and splicing regulation.
Collapse
Affiliation(s)
- Jian Qin
- Central laboratory, Renmin Hospital of Wuhan University, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Hashimoto M, Takeichi K, Murata K, Kozakai A, Yagi A, Ishikawa K, Suzuki-Nakagawa C, Kasuya Y, Fukamizu A, Nakagawa T. Regulation of neural stem cell proliferation and survival by protein arginine methyltransferase 1. Front Neurosci 2022; 16:948517. [DOI: 10.3389/fnins.2022.948517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions, such as transcription, DNA damage response, and signal transduction. PRMT1 is highly expressed in neural stem cells (NSCs) and embryonic brains, suggesting that PRMT1 is essential for early brain development. Although our previous reports have shown that PRMT1 positively regulates oligodendrocyte development, it has not been studied whether PRMT1 regulates NSC proliferation and its survival during development. To examine the role of PRMT1 in NSC activity, we cultured NSCs prepared from embryonic mouse forebrains deficient in PRMT1 specific for NSCs and performed neurosphere assays. We found that the primary neurospheres of PRMT1-deficient NSCs were small and the number of spheres was decreased, compared to those of control NSCs. Primary neurospheres deficient in PRMT1 expressed an increased level of cleaved caspase-3, suggesting that PRMT1 deficiency-induced apoptosis. Furthermore, p53 protein was significantly accumulated in PRMT1-deficient NSCs. In parallel, p53-responsive pro-apoptotic genes including Pmaip1 and Perp were upregulated in PRMT1-deficient NSCs. p53-target p21 mRNA and its protein levels were shown to be upregulated in PRMT1-deficient NSCs. Moreover, the 5-bromo-2′-deoxyuridine (BrdU) incorporation assay showed that the loss of PRMT1 led to cell cycle defects in the embryonic NSCs. In contrast to the above in vitro observations, NSCs normally proliferated and survived in the fetal brains of NSC-specific PRMT1-deficient mice. We also found that Lama1, which encodes the laminin subunit α1, was significantly upregulated in the embryonic brains of PRMT1-deficient mice. These data implicate that extracellular factors provided by neighboring cells in the microenvironment gave a trophic support to NSCs in the PRMT1-deficient brain and recovered NSC activity to maintain brain homeostasis. Our study implies that PRMT1 plays a cell-autonomous role in the survival and proliferation of embryonic NSCs.
Collapse
|
24
|
Xie Q, Zhang D, Ye H, Wu Z, Sun Y, Shen H. Identification of key snoRNAs serves as biomarkers for hepatocellular carcinoma by bioinformatics methods. Medicine (Baltimore) 2022; 101:e30813. [PMID: 36181013 PMCID: PMC9524901 DOI: 10.1097/md.0000000000030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignancy with high mortality and poor prognosis due to a lack of predictive markers. However, research on small nuclear RNAs (snoRNAs) in HCC were very little. This study aimed to identify a potential diagnostic and prognostic snoRNA signature for HCC. METHODS HCC datasets from the cancer genome atlas (TCGA) and international cancer genome consortium (ICGC) cohorts were used. Differentially expressed snoRNA (DEs) were identified using the limma package. Based on the DEs, diagnostic and prognostic models were established by the least absolute shrinkage and selection operator (LASSO) regression and COX analysis, and Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curve analysis were conducted to evaluate the efficiency of signatures. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to analyze the risk score and further explore the potential correlation between the risk groups and tumor immune status in TCGA. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the functions of key snoRNAs. RESULTS We constructed a 6-snoRNAs signature which could classify patients into high- or low-risk groups and found that patients in the high-risk group had a worse prognosis than those in the low-risk group and were significantly involved in p53 processes. Tumor immune status analysis revealed that CTLA4 and PDCD1 (PD1) were highly expressed in the high-risk group, which responded to PD1 inhibitor therapy. Additionally, a 25-snoRNAs diagnostic signature was constructed with an area under the curve (AUC) of 0.933 for distinguishing HCCs from normal controls. Finally, 3 key snoRNAs (SNORA11, SNORD124, and SNORD46) were identified with both diagnostic and prognostic efficacy, some of which were closely related to the spliceosome and Notch signaling pathways. CONCLUSIONS Our study identified 6 snoRNAs that may serve as novel prognostic models and 3 key snoRNAs with both diagnostic and prognostic efficacy for HCC.
Collapse
Affiliation(s)
- Qingqing Xie
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| | - Di Zhang
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Hunan, China
| | - Huifeng Ye
- Department of Clinical Laboratory, Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People’s Hospital, Guigang, Guangxi, China
| | - Zhitong Wu
- Department of Clinical Laboratory, Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People’s Hospital, Guigang, Guangxi, China
| | - Yifan Sun
- Department of Clinical Laboratory, Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People’s Hospital, Guigang, Guangxi, China
| | - Haoming Shen
- Department of Clinical Laboratory, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
- *Correspondence: Haoming Shen, Department of Clinical Laboratory, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Xianjia Lake Street 410031, Changsha, Hunan, China (e-mail: )
| |
Collapse
|
25
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
26
|
Lv L, Wang X, Shen J, Cao Y, Zhang Q. MiR-574-3p inhibits glucose toxicity-induced pancreatic β-cell dysfunction by suppressing PRMT1. Diabetol Metab Syndr 2022; 14:99. [PMID: 35841066 PMCID: PMC9284709 DOI: 10.1186/s13098-022-00869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic β-cell dysfunction is commonly observed in patients with type 2 diabetes mellitus. Protein arginine methyltransferase 1 (PRMT1) plays an important role in pancreatic β-cell dysfunction. However, the detailed mechanisms remain largely unknown. METHODS RT-qPCR, western blotting, and immunofluorescence assays were used to evaluate PRMT1 and miR-574-3p levels. Cell Counting Kit-8, Advanced Dlycation End products (AGEs), Reactive Oxygen Species (ROS), and glucose-stimulated insulin secretion were assayed, and flow cytometry and RT-qPCR were performed to detect the role of PRMT1 and miR-574-3p in MIN6 cells. Luciferase reporter assays were performed to determine the interactions between PRMT1 and miR-574-3p. RESULTS High-glucose treatment resulted in the high expression of PRMT1. PRMT1 silencing could alleviate the reduced proliferation, insulin secretion, and GLUT1 level, in addition to suppressing the induced apoptosis, and AGEs and ROS levels, under high glucose conditions. MiR-574-3p was established as an upstream regulator of PRMT1 using luciferase reporter assays. More importantly, miR-574-3p reversed the effect of PRMT1 silencing in MIN6 cells. CONCLUSIONS miR-574-3p suppresses glucose toxicity-induced pancreatic β-cell dysfunction by targeting PRMT1.
Collapse
Affiliation(s)
- Lixia Lv
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, HI-TECH Zone, 18 Wanxiang North Road, Chengdu, 610041, Sichuan, China.
| | - Xiumin Wang
- Department of Proctology, Chengdu First People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jinhua Shen
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, HI-TECH Zone, 18 Wanxiang North Road, Chengdu, 610041, Sichuan, China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, HI-TECH Zone, 18 Wanxiang North Road, Chengdu, 610041, Sichuan, China
| | - Qin Zhang
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, HI-TECH Zone, 18 Wanxiang North Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
27
|
Zhu Q, Wang D, Liang F, Tong X, Liang Z, Wang X, Chen Y, Mo D. Protein arginine methyltransferase PRMT1 promotes adipogenesis by modulating transcription factors C/EBPβ and PPARγ. J Biol Chem 2022; 298:102309. [PMID: 35921899 PMCID: PMC9425039 DOI: 10.1016/j.jbc.2022.102309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) methylates a variety of histone and nonhistone protein substrates to regulate multiple cellular functions such as transcription, DNA damage response, and signal transduction. It has been reported as an emerging regulator of various metabolic pathways including glucose metabolism in the liver, atrophy in the skeletal muscle, and lipid catabolism in the adipose tissue. However, the underlying mechanisms governing how PRMT1 regulates adipogenesis remain elusive. Here, we delineate the roles of PRMT1 in mitotic clonal expansion and adipocyte differentiation. Gain and loss of functions demonstrate that PRMT1 is essential for adipogenesis of 3T3-L1 and C3H10T1/2 cells. Mechanistically, we show PRMT1 promotes the expression of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) by catalyzing histone modification H4R3me2a and impedes the activation of Wnt/β-catenin signaling by increasing the level of Axin to accelerate adipogenic differentiation. In addition, we demonstrate mitotic clonal expansion is suppressed by PRMT1 deficiency. PRMT1 interacts with transcription factor CCATT enhancer-binding protein β (C/EBPβ), and the absence of PRMT1 leads to the depressed phosphorylation of C/EBPβ. Interestingly, we discover PRMT1 acts as a positive regulator of C/EBPβ protein stability through decreasing the level of E3 ubiquitin ligase Smurf2, which promotes the ubiquitination and degradation of C/EBPβ, thus facilitating adipogenesis. Collectively, these discoveries highlight a critical role of PRMT1 in adipogenesis and provide potential therapeutic targets for the treatment of obesity.
Collapse
|
28
|
Semenov O, Daks A, Fedorova O, Shuvalov O, Barlev NA. Opposing Roles of Wild-type and Mutant p53 in the Process of Epithelial to Mesenchymal Transition. Front Mol Biosci 2022; 9:928399. [PMID: 35813818 PMCID: PMC9261265 DOI: 10.3389/fmolb.2022.928399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
The central role of an aberrantly activated EMT program in defining the critical features of aggressive carcinomas is well documented and includes cell plasticity, metastatic dissemination, drug resistance, and cancer stem cell-like phenotypes. The p53 tumor suppressor is critical for leashing off all the features mentioned above. On the molecular level, the suppression of these effects is exerted by p53 via regulation of its target genes, whose products are involved in cell cycle, apoptosis, autophagy, DNA repair, and interactions with immune cells. Importantly, a set of specific mutations in the TP53 gene (named Gain-of-Function mutations) converts this tumor suppressor into an oncogene. In this review, we attempted to contrast different regulatory roles of wild-type and mutant p53 in the multi-faceted process of EMT.
Collapse
Affiliation(s)
- Oleg Semenov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Alexandra Daks
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Olga Fedorova
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Oleg Shuvalov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Nickolai A. Barlev
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
- Laboratory of Intracellular Signalling, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- The Group of Targeted Delivery Mechanisms of Nanosystems, Institute of Biomedical Chemistry, Moscow, Russia
- *Correspondence: Nickolai A. Barlev,
| |
Collapse
|
29
|
Xu X, Zou R, Liu X, Liu J, Su Q. Epithelial-mesenchymal transition-related genes in coronary artery disease. Open Med (Wars) 2022; 17:781-800. [PMID: 35529472 PMCID: PMC9034345 DOI: 10.1515/med-2022-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/26/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Epithelial-mesenchymal transition (EMT) is critical in the development of coronary artery disease (CAD). However, landscapes of EMT-related genes have not been fully established in CAD. We identified the differentially expressed mRNAs and lncRNAs (DElncRNAs) from the Gene Expression Omnibus database. Pearson’s correlation analysis, the least absolute shrinkage and selection operator regression, and support vector machine reverse feature elimination algorithms were used to screen EMT-related lncRNAs. The cis–trans regulatory networks were constructed based on EMT-related lncRNAs. Quantitative real-time polymerase chain reaction was performed to validate the expression of EMT-related genes in a cohort of six patients with CAD and six healthy controls. We further estimated the infiltration of the immune cells in CAD patients with five algorithms, and the correlation between EMT-related genes and infiltrating immune cells was analyzed. We identified eight EMT-related lncRNAs in CAD. The area under curve value was greater than 0.95. The immune analysis revealed significant CD8 T cells, monocytes, and NK cells in CAD and found that EMT-related lncRNAs were correlated with these immune cell subsets. Moreover, SNAI2, an EMT-TF gene, was found in the trans-regulatory network of EMT-related lncRNAs. Further, we found SNAI2 as a biomarker for the diagnosis of CAD but it also had a close correlation with immune cell subsets in CAD. Eight EMT-related lncRNAs and SNAI2 have important significance in the diagnosis of CAD patients.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China
| | - Renchao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China
| | - Xiaoyong Liu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China
| | - Jia Liu
- Department of Laboratory Animal Science, Kunming Medical University, Kunming City, Yunnan Province, 650500, China
| | - Qianqian Su
- Department of Laboratory Animal Science, Kunming Medical University, Kunming City, Yunnan Province, 650500, China
| |
Collapse
|
30
|
Miller LR, Tarantini S, Nyúl-Tóth Á, Johnston MP, Martin T, Bullen EC, Bickel MA, Sonntag WE, Yabluchanskiy A, Csiszar A, Ungvari ZI, Elliott MH, Conley SM. Increased Susceptibility to Cerebral Microhemorrhages Is Associated With Imaging Signs of Microvascular Degeneration in the Retina in an Insulin-Like Growth Factor 1 Deficient Mouse Model of Accelerated Aging. Front Aging Neurosci 2022; 14:788296. [PMID: 35356301 PMCID: PMC8959924 DOI: 10.3389/fnagi.2022.788296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/31/2022] [Indexed: 01/21/2023] Open
Abstract
Age-related cerebrovascular defects contribute to vascular cognitive impairment and dementia (VCID) as well as other forms of dementia. There has been great interest in developing biomarkers and other tools for studying cerebrovascular disease using more easily accessible tissues outside the brain such as the retina. Decreased circulating insulin-like growth factor 1 (IGF-1) levels in aging are thought to contribute to the development of cerebrovascular impairment, a hypothesis that has been supported by the use of IGF-1 deficient animal models. Here we evaluate vascular and other retinal phenotypes in animals with circulating IGF-1 deficiency and ask whether the retina mimics common age-related vascular changes in the brain such as the development of microhemorrhages. Using a hypertension-induced model, we confirm that IGF-1 deficient mice exhibited worsened microhemorrhages than controls. The retinas of IGF-1 deficient animals do not exhibit microhemorrhages but do exhibit signs of vascular damage and retinal stress such as patterns of vascular constriction and Müller cell activation. These signs of retinal stress are not accompanied by retinal degeneration or impaired neuronal function. These data suggest that the role of IGF-1 in the retina is complex, and while IGF-1 deficiency leads to vascular defects in both the brain and the retina, not all brain pathologies are evident in the retina.
Collapse
Affiliation(s)
- Lauren R. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Morgan P. Johnston
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Teryn Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth C. Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - William E. Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan I. Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
31
|
A novel inhibitor of N 6-methyladenosine demethylase FTO induces mRNA methylation and shows anti-cancer activities. Acta Pharm Sin B 2022; 12:853-866. [PMID: 35256950 PMCID: PMC8897214 DOI: 10.1016/j.apsb.2021.08.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022] Open
Abstract
N6-methyladenosine (m6A) modification is critical for mRNA splicing, nuclear export, stability and translation. Fat mass and obesity-associated protein (FTO), the first identified m6A demethylase, is critical for cancer progression. Herein, we developed small-molecule inhibitors of FTO by virtual screening, structural optimization, and bioassay. As a result, two FTO inhibitors namely 18077 and 18097 were identified, which can selectively inhibit demethylase activity of FTO. Specifically, 18097 bound to the active site of FTO and then inhibited cell cycle process and migration of cancer cells. In addition, 18097 reprogrammed the epi-transcriptome of breast cancer cells, particularly for genes related to P53 pathway. 18097 increased the abundance of m6A modification of suppressor of cytokine signaling 1 (SOCS1) mRNA, which recruited IGF2BP1 to increase mRNA stability of SOCS1 and subsequently activated the P53 signaling pathway. Further, 18097 suppressed cellular lipogenesis via downregulation of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and C/EBPβ. Animal studies confirmed that 18097 can significantly suppress in vivo growth and lung colonization of breast cancer cells. Collectively, we identified that FTO can work as a potential drug target and the small-molecule inhibitor 18097 can serve as a potential agent against breast cancer.
Collapse
|
32
|
Dronkers E, van Herwaarden T, van Brakel TJ, Sanchez-Duffhues G, Goumans MJ, Smits AM. Activin A and ALK4 Identified as Novel Regulators of Epithelial to Mesenchymal Transition (EMT) in Human Epicardial Cells. Front Cell Dev Biol 2021; 9:765007. [PMID: 34977017 PMCID: PMC8716764 DOI: 10.3389/fcell.2021.765007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The epicardium, the mesothelial layer covering the heart, is a crucial cell source for cardiac development and repair. It provides cells and biochemical signals to the heart to facilitate vascularization and myocardial growth. An essential element of epicardial behavior is epicardial epithelial to mesenchymal transition (epiMT), which is the initial step for epicardial cells to become motile and invade the myocardium. To identify targets to optimize epicardium-driven repair of the heart, it is vital to understand which pathways are involved in the regulation of epiMT. Therefore, we established a cell culture model for human primary adult and fetal epiMT, which allows for parallel testing of inhibitors and stimulants of specific pathways. Using this approach, we reveal Activin A and ALK4 signaling as novel regulators of epiMT, independent of the commonly accepted EMT inducer TGFβ. Importantly, Activin A was able to induce epicardial invasion in cultured embryonic mouse hearts. Our results identify Activin A/ALK4 signaling as a modulator of epicardial plasticity which may be exploitable in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Esther Dronkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Tessa van Herwaarden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas J van Brakel
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Anke M Smits,
| |
Collapse
|
33
|
Wu J, Lu G, Wang X. MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Am J Cancer Res 2021; 11:5864-5880. [PMID: 35018230 PMCID: PMC8727814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023] Open
Abstract
The oncogenic MDM4, initially named MDMX, has been identified as a p53-interacting protein and a key upstream negative regulator of the tumor suppressor p53. Accumulating evidence indicates that MDM4 plays critical roles in the initiation and progression of multiple human cancers. MDM4 is frequently amplified and upregulated in human cancers, contributing to overgrowth and apoptosis inhibition by blocking the expression of downstream target genes of p53 pathway. Disruptors for MDM4-p53 interaction have been shown to restore the anti-tumor activity of p53 in cancer cells. MDM4 possesses multiple splicing isoforms whose expressions are driven by the presence of oncogenes in cancer cells. Some of the MDM4 splicing isoforms lack p53 binding domain and may exhibit p53-independent oncogenic functions. These features render MDM4 to be an attractive therapeutic target for cancer therapy. In the present review, we primarily focus on the detailed molecular structure of MDM4 splicing isoforms, candidate regulators for initiating MDM4 splicing, deregulation of MDM4 isoforms in cancer and potential therapy strategies by targeting splicing isoforms of MDM4.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Guanting Lu
- Department of Pathology, Key Laboratory of Tumor Molecular Research, People’s Hospital of Deyang City173 Tai Shan North Road, Deyang 618000, Sichuan, P. R. China
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| |
Collapse
|
34
|
Xu J, Richard S. Cellular pathways influenced by protein arginine methylation: Implications for cancer. Mol Cell 2021; 81:4357-4368. [PMID: 34619091 PMCID: PMC8571027 DOI: 10.1016/j.molcel.2021.09.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.
Collapse
Affiliation(s)
- Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, and Departments of Medicine, Human Genetics, and Biochemistry, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
35
|
Streef TJ, Smits AM. Epicardial Contribution to the Developing and Injured Heart: Exploring the Cellular Composition of the Epicardium. Front Cardiovasc Med 2021; 8:750243. [PMID: 34631842 PMCID: PMC8494983 DOI: 10.3389/fcvm.2021.750243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The epicardium is an essential cell population during cardiac development. It contributes different cell types to the developing heart through epithelial-to-mesenchymal transition (EMT) and it secretes paracrine factors that support cardiac tissue formation. In the adult heart the epicardium is a quiescent layer of cells which can be reactivated upon ischemic injury, initiating an embryonic-like response in the epicardium that contributes to post-injury repair processes. Therefore, the epicardial layer is considered an interesting target population to stimulate endogenous repair mechanisms. To date it is still not clear whether there are distinct cell populations in the epicardium that contribute to specific lineages or aid in cardiac repair, or that the epicardium functions as a whole. To address this putative heterogeneity, novel techniques such as single cell RNA sequencing (scRNA seq) are being applied. In this review, we summarize the role of the epicardium during development and after injury and provide an overview of the most recent insights into the cellular composition and diversity of the epicardium.
Collapse
Affiliation(s)
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
36
|
Gan D, Chen Y, Wu Z, Luo L, Yirga SK, Zhang N, Ye F, Chen H, Hu J, Chen Y. Doxorubicin/Nucleophosmin Binding Protein-Conjugated Nanoparticle Enhances Anti-leukemia Activity in Acute Lymphoblastic Leukemia Cells in vitro and in vivo. Front Pharmacol 2021; 12:607755. [PMID: 34122059 PMCID: PMC8193937 DOI: 10.3389/fphar.2021.607755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive malignancy. Adults with ALL have more than 50% relapse rates. We have previously validated that overexpression of nucleophosmin (NPM) is involved in the multidrug resistance (MDR) development during ALL; and a synthetically engineered recombinant NPM binding protein (NPMBP) has been developed in our group; NPMBP and doxorubicin (DOX) can be conjugated in a nanoparticle-based drug delivery system named DOX-PMs-NPMBP to counteract MDR during ALL. Here, we evaluated the antileukemia potential of DOX-PMs-NPMBP in resistant ALL cells. This study demonstrates that DOX-PMs-NPMBP significantly enhances chemosensitivity to DOX in ALL cells. Despite at variable concentrations, both resistant and primary ALL cells from relapsed patients were sensitive to DOX-PMs-NPMBP. In detail, the half maximal inhibitory concentration (IC50) values of DOX-PMs-NPMBP were between 1.6- and 7.0-fold lower than those of DOX in cell lines and primary ALL cells, respectively; and apoptotic cells ratio was over 2-fold higher in DOX-PMs-NPMBP than DOX. Mechanistically, p53-driven apoptosis induction and cell cycle arrest played essential role in DOX-PMs-NPMBP-induced anti-leukemia effects. Moreover, DOX-PMs-NPMBP significantly inhibited tumor growth and prolonged mouse survival of ALL xenograft models; and no systemic toxicity occurrence was observed after treatment during follow-up. In conclusion, these data indicate that DOX-PMs-NPMBP may significantly exert growth inhibition and apoptosis induction, and markedly improve DOX antileukemia activity in resistant ALL cells. This novel drug delivery system may be valuable to develop as a new therapeutic strategy against multidrug resistant ALL.
Collapse
Affiliation(s)
- Donghui Gan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuwen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhengjun Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liping Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shimuye Kalayu Yirga
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Na Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fu Ye
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
37
|
Role of the Epicardium in the Development of the Atrioventricular Valves and Its Relevance to the Pathogenesis of Myxomatous Valve Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8050054. [PMID: 34066253 PMCID: PMC8152025 DOI: 10.3390/jcdd8050054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
This paper is dedicated to the memory of Dr. Adriana "Adri" Gittenberger-de Groot and in appreciation of her work in the field of developmental cardiovascular biology and the legacy that she has left behind. During her impressive career, Dr. Gittenberger-de Groot studied many aspects of heart development, including aspects of cardiac valve formation and disease and the role of the epicardium in the formation of the heart. In this contribution, we review some of the work on the role of epicardially-derived cells (EPDCs) in the development of the atrioventricular valves and their potential involvement in the pathogenesis of myxomatous valve disease (MVD). We provide an overview of critical events in the development of the atrioventricular junction, discuss the role of the epicardium in these events, and illustrate how interfering with molecular mechanisms that are involved in the epicardial-dependent formation of the atrioventricular junction leads to a number of abnormalities. These abnormalities include defects of the AV valves that resemble those observed in humans that suffer from MVD. The studies demonstrate the importance of the epicardium for the proper formation and maturation of the AV valves and show that the possibility of epicardial-associated developmental defects should be taken into consideration when determining the genetic origin and pathogenesis of MVD.
Collapse
|
38
|
Liu C, Hu C, Li J, Jiang L, Zhao C. Identification of Epithelial-Mesenchymal Transition-Related lncRNAs that Associated With the Prognosis and Immune Microenvironment in Colorectal Cancer. Front Mol Biosci 2021; 8:633951. [PMID: 33898515 PMCID: PMC8059639 DOI: 10.3389/fmolb.2021.633951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The expression of long non-coding RNA (lncRNA) is associated with the epithelial-mesenchymal transition (EMT) in tumorigenicity, but the role of EMT-related lncRNA in colorectal cancer (CRC) remains unclear. Methods: The clinical data and gene expression profile of CRC patients were obtained from The Cancer Genome Atlas database. Differential expression analysis, Cox regression model, and Kaplan-Meier analysis were used to study the relationship between EMT-related lncRNAs and the prognosis of CRC. Functional analysis and unsupervised clustering analysis were performed to explore the influence of certain lncRNAs on CRC. Finally, Cytoscape was used to construct mRNA-lncRNA networks. Results: Two signatures incorporating six and ten EMT-related lncRNAs were constructed for predicting the overall survival (OS) and disease-free survival (DFS), respectively. Kaplan-Meier survival curves indicated that patients in the high-risk group had a poorer prognosis than those in the low-risk group. The results of the functional analysis suggested that the P53 and ECM-receptor pathways affect the prognosis of CRC, and AL591178.1 is a key prognostic EMT-related lncRNA, which is negatively related to immune cells, P53 pathway, and ECM-receptor pathway. Conclusion: Six OS-related and ten DFS-related EMT-related lncRNAs were correlated with the prognosis of CRC by potentially affecting the immune microenvironment, and AL591178.1 plays a key role as a prognostic factor.
Collapse
Affiliation(s)
- Chuan Liu
- Graduate College, China Medical University, Shenyang, China
| | - Chuan Hu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianyi Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqing Jiang
- Graduate College, China Medical University, Shenyang, China
| | - Chengliang Zhao
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Ibrahimovic M, Franzmann E, Mondul AM, Weh KM, Howard C, Hu JJ, Goodwin WJ, Kresty LA. Disparities in Head and Neck Cancer: A Case for Chemoprevention with Vitamin D. Nutrients 2020; 12:E2638. [PMID: 32872541 PMCID: PMC7551909 DOI: 10.3390/nu12092638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Blacks experience disproportionate head and neck cancer (HNC) recurrence and mortality compared to Whites. Overall, vitamin D status is inversely associated to HNC pointing to a potential protective linkage. Although hypovitaminosis D in Blacks is well documented it has not been investigated in Black HNC patients. Thus, we conducted a prospective pilot study accessing vitamin D status in newly diagnosed HNC patients stratified by race and conducted in vitro studies to investigate mechanisms associated with potential cancer inhibitory effects of vitamin D. Outcome measures included circulating levels of vitamin D, related nutrients, and risk factor characterization as well as dietary and supplemental estimates. Vitamin D-based in vitro assays utilized proteome and microRNA (miR) profiling. Nineteen patients were enrolled, mean circulating vitamin D levels were significantly reduced in Black compared to White HNC patients, 27.3 and 20.0 ng/mL, respectively. Whites also supplemented vitamin D more frequently than Blacks who had non-significantly higher vitamin D from dietary sources. Vitamin D treatment of HNC cell lines revealed five significantly altered miRs regulating genes targeting multiple pathways in cancer based on enrichment analysis (i.e., negative regulation of cell proliferation, angiogenesis, chemokine, MAPK, and WNT signaling). Vitamin D further altered proteins involved in cancer progression, metastasis and survival supporting a potential role for vitamin D in targeted cancer prevention.
Collapse
Affiliation(s)
- Mirela Ibrahimovic
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Franzmann
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA; (E.F.); (J.J.H.); (W.J.G.)
- Department of Otolaryngology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Alison M. Mondul
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine M. Weh
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
| | - Connor Howard
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer J. Hu
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA; (E.F.); (J.J.H.); (W.J.G.)
- Department of Public Health Sciences, University of Miami School of Medicine, Miami, FL 33136, USA
| | - W. Jarrard Goodwin
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA; (E.F.); (J.J.H.); (W.J.G.)
- Department of Public Health Sciences, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Laura A. Kresty
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|