1
|
Mok CY, Chu HY, Lam WWL, Au SWN. Structural insights into the assembly pathway of the Helicobacter pylori CagT4SS outer membrane core complex. Structure 2024; 32:1725-1736.e4. [PMID: 39032488 DOI: 10.1016/j.str.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Cag type IV secretion system (CagT4SS) translocates oncoprotein cytotoxin-associated gene A (CagA) into host cells and plays a key role in the pathogenesis of Helicobacter pylori. The structure of the outer membrane core complex (OMCC) in CagT4SS consists of CagX, CagY, CagM, CagT, and Cag3 in a stoichiometric ratio of 1:1:2:2:5 with 14-fold symmetry. However, the assembly pathway of OMCC remains elusive. Here, we report the crystal structures of CagT and Cag3-CagT complex, and the structural dynamics of Cag3 and CagT using hydrogen deuterium exchange-mass spectrometry (HDX-MS). The interwoven interaction of Cag3 and CagT involves conformational changes of CagT and β strand swapping. In conjunction with biochemical and biophysical assays, we further demonstrate the different oligomerization states of Cag3 and Cag3-CagT complex. Additionally, the association with CagM requires the pre-formation of Cag3-CagT complex. These results demonstrate the generation of different intermediate sub-assemblies and their structural flexibility, potentially representing different building blocks for OMCC assembly.
Collapse
Affiliation(s)
- Chin Yu Mok
- Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hoi Yee Chu
- Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wendy Wai Ling Lam
- Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shannon Wing Ngor Au
- Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
2
|
Mandlem VKK, Rivera A, Khan Z, Quazi SH, Deba F. TLR4 induced TRPM2 mediated neuropathic pain. Front Pharmacol 2024; 15:1472771. [PMID: 39329114 PMCID: PMC11424904 DOI: 10.3389/fphar.2024.1472771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels play an important role in mediating pain through signal transduction, regulation, and control of responses, particularly in neuropathic pain. Transient receptor potential channel superfamily plays an important role in cation permeability and cellular signaling. Transient receptor potential channel Melastatin 2 (TRPM2) subfamily regulates Ca2+ concentration in response to various chemicals and signals from the surrounding environment. TRPM2 has a role in several physiological functions such as cellular osmosis, temperature sensing, cellular proliferation, as well as the manifestation of many disease processes such as pain process, cancer, apoptosis, endothelial dysfunction, angiogenesis, renal and lung fibrosis, and cerebral ischemic stroke. Toll-like Receptor 4 (TLR4) is a critical initiator of the immune response to inflammatory stimuli, particularly those triggered by Lipopolysaccharide (LPS). It activates downstream pathways leading to the production of oxidative molecules and inflammatory cytokines, which are modulated by basal and store-operated calcium ion signaling. The cytokine production and release cause an imbalance of antioxidant enzymes and redox potential in the Endoplasmic Reticulum and mitochondria due to oxidative stress, which results from TLR-4 activation and consequently induces the production of inflammatory cytokines in neuronal cells, exacerbating the pain process. Very few studies have reported the role of TRPM2 and its association with Toll-like receptors in the context of neuropathic pain. However, the molecular mechanism underlying the interaction between TRPM2 and TLR-4 and the quantum of impact in acute and chronic neuropathic pain remains unclear. Understanding the link between TLR-4 and TRPM2 will provide more insights into pain regulation mechanisms for the development of new therapeutic molecules to address neuropathic pain.
Collapse
Affiliation(s)
- Venkata Kiran Kumar Mandlem
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Ana Rivera
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Zaina Khan
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Departmental of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Sohel H Quazi
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Department of Biology, Division of Natural and Computation Sciences, Texas College, Tyler, TX, United States
| | - Farah Deba
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
3
|
Linz B, Sticht H, Tegtmeyer N, Backert S. Cancer-associated SNPs in bacteria: lessons from Helicobacter pylori. Trends Microbiol 2024; 32:847-857. [PMID: 38485609 DOI: 10.1016/j.tim.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 09/06/2024]
Abstract
Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.
Collapse
Affiliation(s)
- Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg; 91054 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
4
|
Gou L, Yang X, Yun J, Ma Z, Zheng X, Du H, Zhang D. Roles of the components of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori. Future Microbiol 2024:1-15. [PMID: 39171625 DOI: 10.1080/17460913.2024.2383514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
The Helicobacter pylori (H. pylori) cytotoxin-associated gene pathogenicity island (cagPAI) encodes 31 genes that assemble the cag type IV secretion system (T4SS) apparatus, which includes structures such as the outer membrane core complex, periplasmic ring, inner membrane complex and bacterial hairs. These proteins interact with each other to inject CagA into the host gastric epithelium. There are also individual unique functions that help H. pylori interfere with host cellular pathways, modulate the immune response and colonize the host for a long time. However, the functions of some of the proteins remain unclear. This review summarizes what is known about the structure and function of these auxiliary components and discusses their role in H. pylori pathogenesis.
Collapse
Affiliation(s)
- Lingzhu Gou
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Department of Gastroenterology, Key Laboratory of Digestive Diseases of Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xiaoping Yang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Department of Gastroenterology, Key Laboratory of Digestive Diseases of Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Jianwei Yun
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zenghui Ma
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Department of Gastroenterology, Key Laboratory of Digestive Diseases of Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xiaofeng Zheng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hongwei Du
- Department of Gastroenterology, The Second People's Hospital of Lanzhou City, Lanzhou, People's Republic of China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Department of Gastroenterology, Key Laboratory of Digestive Diseases of Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
5
|
Costa TRD, Patkowski JB, Macé K, Christie PJ, Waksman G. Structural and functional diversity of type IV secretion systems. Nat Rev Microbiol 2024; 22:170-185. [PMID: 37814112 PMCID: PMC11290344 DOI: 10.1038/s41579-023-00974-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.
Collapse
Affiliation(s)
- Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK.
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes and CNRS, Rennes, France
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK.
| |
Collapse
|
6
|
Vásquez-Suárez A, Ortega L, González-Chavarría I, Valenzuela A, Muñoz-Flores C, Altamirano C, Acosta J, Toledo JR. Agonistic effect of peptides derived from a truncated HMGB1 acidic tail sequence in TLR5 from Salmo salar. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109219. [PMID: 37952850 DOI: 10.1016/j.fsi.2023.109219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Based on the structural knowledge of TLR5 surface and using blind docking platforms, peptides derived from a truncated HMGB1 acidic tail from Salmo salar was designed as TLR5 agonistic. Additionally, a template peptide with the native N-terminal of the acidic tail sequence as a reference was included (SsOri). Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. The best peptides, termed 6WK and 5LWK, were selected for chemical synthesis and experimental functional assay. The agonist activity by immunoblotting and immunocytochemistry was determined following the NF-κBp65 phosphorylation (p-NF-κBp65) and the nuclear translocation of the NF-κBp65 subunit from the cytosol, respectively. HeLa cells stably expressing a S. salar TLR5 chimeric form (TLR5c7) showed increased p-NF-κBp65 levels regarding extracts from flagellin-treated cells. No statistically significant differences (p > 0.05) were found in the detected p-NF-κBp65 levels between cellular extracts treated with peptides or flagellin by one-way ANOVA. The image analysis of NF-κBp65 immunolabeled cells obtained by confocal microscopy showed increased nuclear NF-κBp65 co-localization in cells both 5LWK and flagellin stimulated, while 6WK and SsOri showed less effect on p65 nuclear translocation (p < 0.05). Also, an increased transcript expression profile of proinflammatory cytokines such as TNFα, IL-1β, and IL-8 in HKL cells isolated from Salmo salar was evidenced in 5LWK - stimulated by RT-PCR analysis. Overall, the result indicates the usefulness of novel peptides as a potential immunostimulant in S. salar.
Collapse
Affiliation(s)
- Aleikar Vásquez-Suárez
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción, CP. 4030000, Chile
| | - Leonardo Ortega
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción, CP. 4030000, Chile
| | - Iván González-Chavarría
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción, CP. 4030000, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Carolina Muñoz-Flores
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción, CP. 4030000, Chile
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2362803, Valparaíso, Chile
| | - Jannel Acosta
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción, CP. 4030000, Chile
| | - Jorge R Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción, CP. 4030000, Chile.
| |
Collapse
|
7
|
Tran SC, Bryant KN, Cover TL. The Helicobacter pylori cag pathogenicity island as a determinant of gastric cancer risk. Gut Microbes 2024; 16:2314201. [PMID: 38391242 PMCID: PMC10896142 DOI: 10.1080/19490976.2024.2314201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Helicobacter pylori strains can be broadly classified into two groups based on whether they contain or lack a chromosomal region known as the cag pathogenicity island (cag PAI). Colonization of the human stomach with cag PAI-positive strains is associated with an increased risk of gastric cancer and peptic ulcer disease, compared to colonization with cag PAI-negative strains. The cag PAI encodes a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS) that delivers CagA and non-protein substrates into host cells. Animal model experiments indicate that CagA and the Cag T4SS stimulate a gastric mucosal inflammatory response and contribute to the development of gastric cancer. In this review, we discuss recent studies defining structural and functional features of CagA and the Cag T4SS and mechanisms by which H. pylori strains containing the cag PAI promote the development of gastric cancer and peptic ulcer disease.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
8
|
Zehra M, Heo J, Chung JM, Durie CL. Comparative Analysis of T4SS Molecular Architectures. J Microbiol Biotechnol 2023; 33:1543-1551. [PMID: 37528551 PMCID: PMC10772558 DOI: 10.4014/jmb.2307.07006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.
Collapse
Affiliation(s)
- Mishghan Zehra
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jiwon Heo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi, Republic of Korea
| | - Jeong Min Chung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi, Republic of Korea
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
9
|
Zhang X, Zhang K, Yan L, Wang P, Zhao F, Hu S. The role of toll-like receptors in immune tolerance induced by Helicobacter pylori infection. Helicobacter 2023; 28:e13020. [PMID: 37691007 DOI: 10.1111/hel.13020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, microaerobic bacterium that colonizes the gastric mucosa in about half of the world's population. H. pylori infection can lead to various diseases. Chronic infection by H. pylori exposes the gastric mucosa to bacterial components such as lipopolysaccharide (LPS), outer membrane vesicles (OMVs), and several toxic proteins. Infected with H. pylori activates the release of pro-inflammatory factors and triggers inflammatory responses that damage the gastric mucosa. As the only microorganism that permanently colonizes the human stomach, H. pylori can suppress host immunity to achieve long-term colonization. Toll-like receptors (TLRs) play a crucial role in T-cell activation, promoting innate immune responses and immune tolerance during H. pylori infection. Among the 10 TLRs found in humans, TLR2, TLR4, TLR5, and TLR9 have been thoroughly investigated in relation to H. pylori-linked immune regulation. In the present review, we provide a comprehensive analysis of the various mechanisms employed by different TLRs in the induction of immune tolerance upon H. pylori infection, which will contribute to the research of pathogenic mechanism of H. pylori.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Ke Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Linlin Yan
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Pengfei Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Fan Zhao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Shoukui Hu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
10
|
López-Luis MA, Soriano-Pérez EE, Parada-Fabián JC, Torres J, Maldonado-Rodríguez R, Méndez-Tenorio A. A Proposal for a Consolidated Structural Model of the CagY Protein of Helicobacter pylori. Int J Mol Sci 2023; 24:16781. [PMID: 38069104 PMCID: PMC10706595 DOI: 10.3390/ijms242316781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
CagY is the largest and most complex protein from Helicobacter pylori's (Hp) type IV secretion system (T4SS), playing a critical role in the modulation of gastric inflammation and risk for gastric cancer. CagY spans from the inner to the outer membrane, forming a channel through which Hp molecules are injected into human gastric cells. Yet, a tridimensional structure has been reported for only short segments of the protein. This intricate protein was modeled using different approaches, including homology modeling, ab initio, and deep learning techniques. The challengingly long middle repeat region (MRR) was modeled using deep learning and optimized using equilibrium molecular dynamics. The previously modeled segments were assembled into a 1595 aa chain and a 14-chain CagY multimer structure was assembled by structural alignment. The final structure correlated with published structures and allowed to show how the multimer may form the T4SS channel through which CagA and other molecules are translocated to gastric cells. The model confirmed that MRR, the most polymorphic and complex region of CagY, presents numerous cysteine residues forming disulfide bonds that stabilize the protein and suggest this domain may function as a contractile region playing an essential role in the modulating activity of CagY on tissue inflammation.
Collapse
Affiliation(s)
- Mario Angel López-Luis
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - Eva Elda Soriano-Pérez
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - José Carlos Parada-Fabián
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Rogelio Maldonado-Rodríguez
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| |
Collapse
|
11
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
12
|
Tran SC, McClain MS, Cover TL. Role of the CagY antenna projection in Helicobacter pylori Cag type IV secretion system activity. Infect Immun 2023; 91:e0015023. [PMID: 37638724 PMCID: PMC10501215 DOI: 10.1128/iai.00150-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
Helicobacter pylori strains containing the cag pathogenicity island (PAI) are associated with the development of gastric adenocarcinoma and peptic ulcer disease. The cag PAI encodes a secreted effector protein (CagA) and a type IV secretion system (Cag T4SS). Cag T4SS activity is required for the delivery of CagA and non-protein substrates into host cells. The Cag T4SS outer membrane core complex (OMCC) contains a channel-like domain formed by helix-loop-helix elements (antenna projections, AP) from 14 copies of the CagY protein (a VirB10 ortholog). Similar VirB10 antenna regions are present in T4SS OMCCs from multiple bacterial species and are predicted to span the outer membrane. In this study, we investigated the role of the CagY antenna region in Cag T4SS OMCC assembly and Cag T4SS function. An H. pylori mutant strain with deletion of the entire CagY AP (∆AP) retained the capacity to produce CagY and assemble an OMCC, but it lacked T4SS activity (CagA translocation and IL-8 induction in AGS gastric epithelial cells). In contrast, a mutant strain with Gly-Ser substitutions in the unstructured CagY AP loop retained Cag T4SS activity. Mutants containing CagY AP loops with shortened lengths were defective in CagA translocation and exhibited reduced IL-8-inducing activity compared to control strains. These data indicate that the CagY AP region is required for Cag T4SS activity and that Cag T4SS activity can be modulated by altering the length of the CagY AP unstructured loop.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Pachathundikandi SK, Tegtmeyer N, Backert S. Masking of typical TLR4 and TLR5 ligands modulates inflammation and resolution by Helicobacter pylori. Trends Microbiol 2023; 31:903-915. [PMID: 37012092 DOI: 10.1016/j.tim.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
Helicobacter pylori is a paradigm of chronic bacterial infection and is associated with peptic ulceration and malignancies. H. pylori uses specific masking mechanisms to avoid canonical ligands from activating Toll-like receptors (TLRs), such as lipopolysaccharide (LPS) modification and specific flagellin sequences that are not detected by TLR4 and TLR5, respectively. Thus, it was believed for a long time that H. pylori evades TLR recognition as a crucial strategy for immune escape and bacterial persistence. However, recent data indicate that multiple TLRs are activated by H. pylori and play a role in the pathology. Remarkably, H. pylori LPS, modified through changes in acylation and phosphorylation, is mainly sensed by other TLRs (TLR2 and TLR10) and induces both pro- and anti-inflammatory responses. In addition, two structural components of the cag pathogenicity island-encoded type IV secretion system (T4SS), CagL and CagY, were shown to contain TLR5-activating domains. These domains stimulate TLR5 and enhance immunity, while LPS-driven TLR10 signaling predominantly activates anti-inflammatory reactions. Here, we discuss the specific roles of these TLRs and masking mechanisms during infection. Masking of typical TLR ligands combined with evolutionary shifting to other TLRs is unique for H. pylori and has not yet been described for any other species in the bacterial kingdom. Finally, we highlight the unmasked T4SS-driven activation of TLR9 by H. pylori, which mainly triggers anti-inflammatory responses.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany; Babasaheb Bhimrao Ambedkar University, Dept. of Environmental Microbiology, School of Earth and Environmental Sciences, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Nicole Tegtmeyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
14
|
Steininger H, Moltzau-Anderson J, Lynch SV. Contributions of the early-life microbiome to childhood atopy and asthma development. Semin Immunol 2023; 69:101795. [PMID: 37379671 DOI: 10.1016/j.smim.2023.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
The rapid rise in atopy and asthma in industrialized nations has led to the identification of early life environmental factors that promote these conditions and spurred research into how such exposures may mediate the trajectory to childhood disease development. Over the past decade, the human microbiome has emerged as a key determinant of human health. This is largely due to the increasing appreciation for the myriad of non-mutually exclusive mechanisms by which microbes tune and train host immunity. Microbiomes, particularly those in early life, are shaped by extrinsic and intrinsic factors, including many of the exposures known to influence allergy and asthma risk. This has led to the over-arching hypothesis that such exposures mediate their effect on childhood atopy and asthma by altering the functions and metabolic productivity of microbiomes that shape immune function during this critical developmental period. The capacity to study microbiomes at the genetic and molecular level in humans from the pre-natal period into childhood with well-defined clinical outcomes, offers an unprecedented opportunity to identify early-life and inter-generational determinants of atopy and asthma outcomes. Moreover, such studies provide an integrative microbiome research framework that can be applied to other chronic inflammatory conditions. This review attempts to capture key studies in the field that offer insights into the developmental origins of childhood atopy and asthma, providing novel insights into microbial mediators of maladaptive immunity and chronic inflammatory disease in childhood.
Collapse
Affiliation(s)
- Holly Steininger
- Division of Gastroenterology, University of California, San Francisco, USA; Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, USA
| | - Jacqueline Moltzau-Anderson
- Division of Gastroenterology, University of California, San Francisco, USA; Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, USA
| | - Susan V Lynch
- Division of Gastroenterology, University of California, San Francisco, USA; Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, USA.
| |
Collapse
|
15
|
Sharafutdinov I, Tegtmeyer N, Linz B, Rohde M, Vieth M, Tay ACY, Lamichhane B, Tuan VP, Fauzia KA, Sticht H, Yamaoka Y, Marshall BJ, Backert S. A single-nucleotide polymorphism in Helicobacter pylori promotes gastric cancer development. Cell Host Microbe 2023; 31:1345-1358.e6. [PMID: 37490912 DOI: 10.1016/j.chom.2023.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) in various human genes are key factors in carcinogenesis. However, whether SNPs in bacterial pathogens are similarly crucial in cancer development is unknown. Here, we analyzed 1,043 genomes of the stomach pathogen Helicobacter pylori and pinpointed a SNP in the serine protease HtrA (position serine/leucine 171) that significantly correlates with gastric cancer. Our functional studies reveal that the 171S-to-171L mutation triggers HtrA trimer formation and enhances proteolytic activity and cleavage of epithelial junction proteins occludin and tumor-suppressor E-cadherin. 171L-type HtrA, but not 171S-HtrA-possessing H. pylori, inflicts severe epithelial damage, enhances injection of oncoprotein CagA into epithelial cells, increases NF-κB-mediated inflammation and cell proliferation through nuclear accumulation of β-catenin, and promotes host DNA double-strand breaks, collectively triggering malignant changes. These findings highlight the 171S/L HtrA mutation as a unique bacterial cancer-associated SNP and as a potential biomarker for risk predictions in H. pylori infections.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Alfred Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia
| | - Binit Lamichhane
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia
| | - Vo Phuoc Tuan
- Department of Endoscopy, Choray Hospital, Ho Chi Minh, Vietnam; Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan; Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barry J Marshall
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia; University of Western Australia, Marshall Centre, M504, Crawley, WA, Australia; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
16
|
Liu M, Hu Z, Wang C, Zhang Y. The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori. J Mol Med (Berl) 2023; 101:767-781. [PMID: 37195446 DOI: 10.1007/s00109-023-02332-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Helicobacter pylori-induced chronic gastritis represents a well-established risk factor for gastric cancer (GC). However, the mechanism by which chronic inflammation caused by H. pylori induces the development of GC is unclear. H. pylori can influence host cell signalling pathways to induce gastric disease development and mediate cancer promotion and progression. Toll-like receptors (TLRs), as pattern recognition receptors (PRRs), play a key role in the gastrointestinal innate immune response, and their signalling has been implicated in the pathogenesis of an increasing number of inflammation-associated cancers. The core adapter myeloid differentiation factor-88 (MyD88) is shared by most TLRs and functions primarily in H. pylori-triggered innate immune signalling. MyD88 is envisioned as a potential target for the regulation of immune responses and is involved in the regulation of tumourigenesis in a variety of cancer models. In recent years, the TLR/MyD88 signalling pathway has received increasing attention for its role in regulating innate and adaptive immune responses, inducing inflammatory activation and promoting tumour formation. In addition, TLR/MyD88 signalling can manipulate the expression of infiltrating immune cells and various cytokines in the tumour microenvironment (TME). In this review, we discuss the pathogenetic regulatory mechanisms of the TLR/MyD88 signalling cascade pathway and its downstream molecules in H. pylori infection-induced-associated GC. The focus is to elucidate the immunomolecular mechanisms of pathogen recognition and innate immune system activation of H. pylori in the TME of inflammation-associated GC. Ultimately, this study will provide insight into the mechanism of H. pylori-induced chronic inflammation-induced GC development and provide thoughts for GC prevention and treatment strategies.
Collapse
Affiliation(s)
- Meiqi Liu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Zhizhong Hu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Chengkun Wang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| | - Yang Zhang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| |
Collapse
|
17
|
Blanc M, Lettl C, Guérin J, Vieille A, Furler S, Briand-Schumacher S, Dreier B, Bergé C, Plückthun A, Vadon-Le Goff S, Fronzes R, Rousselle P, Fischer W, Terradot L. Designed Ankyrin Repeat Proteins provide insights into the structure and function of CagI and are potent inhibitors of CagA translocation by the Helicobacter pylori type IV secretion system. PLoS Pathog 2023; 19:e1011368. [PMID: 37155700 DOI: 10.1371/journal.ppat.1011368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/18/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.
Collapse
Affiliation(s)
- Marine Blanc
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Clara Lettl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jérémy Guérin
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Anaïs Vieille
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Sven Furler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Célia Bergé
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), Lyon, France
| | - Rémi Fronzes
- European Institute of Chemistry and Biology, CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Univ. Bordeaux, Pessac, France
| | - Patricia Rousselle
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), Lyon, France
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
18
|
Villarroel-Espindola F, Ejsmentewicz T, Gonzalez-Stegmaier R, Jorquera RA, Salinas E. Intersections between innate immune response and gastric cancer development. World J Gastroenterol 2023; 29:2222-2240. [PMID: 37124883 PMCID: PMC10134417 DOI: 10.3748/wjg.v29.i15.2222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastric cancer (GC) is the fifth most commonly diagnosed malignancy. It has a reduced prevalence but has maintained its poor prognosis being the fourth leading cause of deaths related to cancer. The highest mortality rates occur in Asian and Latin American countries, where cases are usually diagnosed at advanced stages. Overall, GC is viewed as the consequence of a multifactorial process, involving the virulence of the Helicobacter pylori (H. pylori) strains, as well as some environmental factors, dietary habits, and host intrinsic factors. The tumor microenvironment in GC appears to be chronically inflamed which promotes tumor progression and reduces the therapeutic opportunities. It has been suggested that inflammation assessment needs to be measured qualitatively and quantitatively, considering cell-infiltration types, availability of receptors to detect damage and pathogens, and presence or absence of aggressive H. pylori strains. Gastrointestinal epithelial cells express several Toll-like receptors and determine the first defensive line against pathogens, and have been also described as mediators of tumorigenesis. However, other molecules, such as cytokines related to inflammation and innate immunity, including immune checkpoint molecules, interferon-gamma pathway and NETosis have been associated with an increased risk of GC. Therefore, this review will explore innate immune activation in the context of premalignant lesions of the gastric epithelium and established gastric tumors.
Collapse
Affiliation(s)
- Franz Villarroel-Espindola
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Troy Ejsmentewicz
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Roxana Gonzalez-Stegmaier
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Roddy A Jorquera
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Esteban Salinas
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| |
Collapse
|
19
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
20
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|
21
|
Tas SK, Kirkik D, Altunkanat D, Uzunoglu AS, Uzunoglu MS, Celik BA, Ilgar E. Immune Response and Therapeutic Vaccination against Helicobacter pylori. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2023; 66. [DOI: 10.1590/1678-4324-2023230123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
|
22
|
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile group of nanomachines that can horizontally transfer DNA through conjugation and deliver effector proteins into a wide range of target cells. The components of T4SSs in gram-negative bacteria are organized into several large subassemblies: an inner membrane complex, an outer membrane core complex, and, in some species, an extracellular pilus. Cryo-electron tomography has been used to define the structures of T4SSs in intact bacteria, and high-resolution structural models are now available for isolated core complexes from conjugation systems, the Xanthomonas citri T4SS, the Helicobacter pylori Cag T4SS, and the Legionella pneumophila Dot/Icm T4SS. In this review, we compare the molecular architectures of these T4SSs, focusing especially on the structures of core complexes. We discuss structural features that are shared by multiple T4SSs as well as evolutionary strategies used for T4SS diversification. Finally, we discuss how structural variations among T4SSs may confer specialized functional properties.
Collapse
Affiliation(s)
- Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
23
|
Cheok YY, Tan GMY, Lee CYQ, Abdullah S, Looi CY, Wong WF. Innate Immunity Crosstalk with Helicobacter pylori: Pattern Recognition Receptors and Cellular Responses. Int J Mol Sci 2022; 23:ijms23147561. [PMID: 35886908 PMCID: PMC9317022 DOI: 10.3390/ijms23147561] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is one of the most successful gastric pathogens that has co-existed with human for centuries. H. pylori is recognized by the host immune system through human pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), C-type lectin like receptors (CLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs), which activate downstream signaling pathways. Following bacterial recognition, the first responders of the innate immune system, including neutrophils, macrophages, and dendritic cells, eradicate the bacteria through phagocytic and inflammatory reaction. This review provides current understanding of the interaction between the innate arm of host immunity and H. pylori, by summarizing H. pylori recognition by PRRs, and the subsequent signaling pathway activation in host innate immune cells.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
- Correspondence:
| |
Collapse
|
24
|
Neuper T, Frauenlob T, Posselt G, Horejs-Hoeck J. Beyond the gastric epithelium - the paradox of Helicobacter pylori-induced immune responses. Curr Opin Immunol 2022; 76:102208. [PMID: 35569416 DOI: 10.1016/j.coi.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Chronic infections are typically characterized by an ineffective immune response to the inducing pathogen. While failing to clear the infectious microbe, the provoked inflammatory processes may cause severe tissue damage culminating in functional impairment of the affected organ. The human pathogen Helicobacter pylori is a uniquely successful Gram-negative microorganism inhabiting the gastric mucosa in approximately 50% of the world's population. This bacterial species has evolved spectacular means of evading immune surveillance and influencing host immunity, leading to a fragile equilibrium between proinflammatory and anti-inflammatory signals, the breakdown of which can have serious consequences for the host, including gastric ulceration and cancer. This review highlights novel insights into this delicate interaction between host and pathogen from an immunological perspective.
Collapse
Affiliation(s)
- Theresa Neuper
- Department of Biosciences and Medical Biology, University of Salzburg, Austria
| | - Tobias Frauenlob
- Department of Biosciences and Medical Biology, University of Salzburg, Austria; Cancer Cluster Salzburg (CCS), Austria
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, University of Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, Austria; Cancer Cluster Salzburg (CCS), Austria.
| |
Collapse
|
25
|
Sijmons D, Guy AJ, Walduck AK, Ramsland PA. Helicobacter pylori and the Role of Lipopolysaccharide Variation in Innate Immune Evasion. Front Immunol 2022; 13:868225. [PMID: 35634347 PMCID: PMC9136243 DOI: 10.3389/fimmu.2022.868225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Helicobacter pylori is an important human pathogen that infects half the human population and can lead to significant clinical outcomes such as acute and chronic gastritis, duodenal ulcer, and gastric adenocarcinoma. To establish infection, H. pylori employs several mechanisms to overcome the innate and adaptive immune systems. H. pylori can modulate interleukin (IL) secretion and innate immune cell function by the action of several virulence factors such as VacA, CagA and the type IV secretion system. Additionally, H. pylori can modulate local dendritic cells (DC) negatively impacting the function of these cells, reducing the secretion of immune signaling molecules, and influencing the differentiation of CD4+ T helper cells causing a bias to Th1 type cells. Furthermore, the lipopolysaccharide (LPS) of H. pylori displays a high degree of phase variation and contains human blood group carbohydrate determinants such as the Lewis system antigens, which are proposed to be involved in molecular mimicry of the host. Lastly, the H. pylori group of outer membrane proteins such as BabA play an important role in attachment and interaction with host Lewis and other carbohydrate antigens. This review examines the various mechanisms that H. pylori utilises to evade the innate immune system as well as discussing how the structure of the H. pylori LPS plays a role in immune evasion.
Collapse
Affiliation(s)
- Daniel Sijmons
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Andrew J. Guy
- School of Science, RMIT University, Melbourne, VIC, Australia
- ZiP Diagnostics, Collingwood, VIC, Australia
| | - Anna K. Walduck
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Paul A. Ramsland
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- *Correspondence: Paul A. Ramsland,
| |
Collapse
|
26
|
Helicobacter pylori Pathogen-Associated Molecular Patterns: Friends or Foes? Int J Mol Sci 2022; 23:ijms23073531. [PMID: 35408892 PMCID: PMC8998707 DOI: 10.3390/ijms23073531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Microbial infections are sensed by the host immune system by recognizing signature molecules called Pathogen-Associated Molecular Patterns—PAMPs. The binding of these biomolecules to innate immune receptors, called Pattern Recognition Receptors (PRRs), alerts the host cell, activating microbicidal and pro-inflammatory responses. The outcome of the inflammatory cascade depends on the subtle balance between the bacterial burn and the host immune response. The role of PRRs is to promote the clearance of the pathogen and to limit the infection by bumping inflammatory response. However, many bacteria, including Helicobacter pylori, evolved to escape PRRs’ recognition through different camouflages in their molecular pattern. This review examines all the different types of H. pylori PAMPs, their roles during the infection, and the mechanisms they evolved to escape the host recognition.
Collapse
|
27
|
Tegtmeyer N, Linz B, Yamaoka Y, Backert S. Unique TLR9 Activation by Helicobacter pylori Depends on the cag T4SS, But Not on VirD2 Relaxases or VirD4 Coupling Proteins. Curr Microbiol 2022; 79:121. [PMID: 35239059 PMCID: PMC8894178 DOI: 10.1007/s00284-022-02813-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
The genomes of the gastric bacterial pathogen Helicobacter pylori harbor multiple type-IV secretion systems (T4SSs). Here we analyzed components of three T4SSs, the cytotoxin-associated genes (cag) T4SS, TFS3 and TFS4. The cag T4SS delivers the effector protein CagA and the LPS-metabolite ADP-heptose into gastric epithelial cells, which plays a pivotal role in chronic infection and development of gastric disease. In addition, the cag T4SS was reported to facilitate conjugative transport of chromosomal bacterial DNA into the host cell cytoplasm, where injected DNA activates intracellular toll-like receptor 9 (TLR9) and triggers anti-inflammatory signaling. Canonical DNA-delivering T4SSs in a variety of bacteria are composed of 11 VirB proteins (VirB1-11) which assemble and engage VirD2 relaxase and VirD4 coupling proteins that mediate DNA processing and guiding of the covalently bound DNA through the T4SS channel. Nevertheless, the role of the latter components in H. pylori is unclear. Here, we utilized isogenic knockout mutants of various virB (virB9 and virB10, corresponding to cagX and cagY), virD2 (rlx1 and rlx2), virD4 (cag5, traG1/2) and xerD recombinase genes in H. pylori laboratory strain P12 and studied their role in TLR9 activation by reporter assays. While inactivation of the structural cag T4SS genes cagX and cagY abolished TLR9 activation, the deletion of rlx1, rlx2, cag5, traG or xerD genes had no effect. The latter mutants activated TLR9 similar to wild-type bacteria, suggesting the presence of a unique non-canonical T4SS-dependent mechanism of TLR9 stimulation by H. pylori that is not mediated by VirD2, VirD4 and XerD proteins. These findings were confirmed by the analysis of TLR9 activation by H. pylori strains of worldwide origin that possess different sets of T4SS genes. The exact mechanism of TLR9 activation should be explored in future studies.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Chair of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Bodo Linz
- Department of Biology, Chair of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Steffen Backert
- Department of Biology, Chair of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
28
|
Tegtmeyer N, Soltan Esmaeili D, Sharafutdinov I, Knorr J, Naumann M, Alter T, Backert S. Importance of cortactin for efficient epithelial NF-ĸB activation by Helicobacter pylori, Salmonella enterica and Pseudomonas aeruginosa, but not Campylobacter spp. Eur J Microbiol Immunol (Bp) 2022; 11:95-103. [PMID: 35060920 PMCID: PMC8830411 DOI: 10.1556/1886.2021.00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Abstract
Transcription factors of the nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF-ĸB) family control important signaling pathways in the regulation of the host innate immune system. Various bacterial pathogens in the human gastrointestinal tract induce NF-ĸB activity and provoke pro-inflammatory signaling events in infected epithelial cells. NF-ĸB activation requires the phosphorylation-dependent proteolysis of inhibitor of ĸB (IĸB) molecules including the NF-ĸB precursors through ubiquitin-mediated proteolysis. The canonical NF-ĸB pathway merges on IĸB kinases (IKKs), which are required for signal transduction. Using CRISPR-Cas9 technology, secreted embryonic alkaline phosphatase (SEAP) reporter assays and cytokine enzyme-linked immunosorbent assay (ELISA), we demonstrate that the actin-binding protein cortactin is involved in NF-ĸB activation and subsequent interleukin-8 (IL-8) production upon infection by Helicobacter pylori, Salmonella enterica and Pseudomonas aeruginosa. Our data indicate that cortactin is needed to efficiently activate the c-Sarcoma (Src) kinase, which can positively stimulate NF-ĸB during infection. In contrast, cortactin is not involved in activation of NF-ĸB and IL-8 expression upon infection with Campylobacter species C. jejuni, C. coli or C. consisus, suggesting that Campylobacter species pluralis (spp.) induce a different signaling pathway upstream of cortactin to trigger the innate immune response.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Delara Soltan Esmaeili
- Department of Biology, Division of Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Jakob Knorr
- Department of Biology, Division of Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University Magdeburg, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Centre for Veterinary Public Health, Freie Universität Berlin, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
| |
Collapse
|
29
|
Cortactin Promotes Effective AGS Cell Scattering by Helicobacter pylori CagA, but Not Cellular Vacuolization and Apoptosis Induced by the Vacuolating Cytotoxin VacA. Pathogens 2021; 11:pathogens11010003. [PMID: 35055951 PMCID: PMC8777890 DOI: 10.3390/pathogens11010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Cortactin is an actin-binding protein and actin-nucleation promoting factor regulating cytoskeletal rearrangements in eukaryotes. Helicobacter pylori is a gastric pathogen that exploits cortactin to its own benefit. During infection of gastric epithelial cells, H. pylori hijacks multiple cellular signaling pathways, leading to the disruption of key cell functions. Two bacterial virulence factors play important roles in this scenario, the vacuolating cytotoxin VacA and the translocated effector protein CagA of the cag type IV secretion system (T4SS). Specifically, by overruling the phosphorylation status of cortactin, H. pylori alternates the activity of molecular interaction partners of this important protein, thereby manipulating the performance of cytoskeletal rearrangements, endosomal trafficking and cell movement. Based on shRNA knockdown and other studies, it was previously reported that VacA utilizes cortactin for its cellular uptake, intracellular travel and induction of apoptosis by a mitochondria-dependent mechanism, while CagA induces cell scattering, motility and elongation. To investigate the role of cortactin in these phenotypes in more detail, we produced a complete knockout mutant of cortactin in the gastric adenocarcinoma cell line AGS by CRISPR-Cas9. These cells were infected with H. pylori wild-type or various isogenic mutant strains. Unexpectedly, cortactin deficiency did not prevent the uptake and formation of VacA-dependent vacuoles, nor the induction of apoptosis by internalized VacA, while the induction of T4SS- and CagA-dependent AGS cell movement and elongation were strongly reduced. Thus, we provide evidence that cortactin is required for the function of internalized CagA, but not VacA.
Collapse
|
30
|
Huang WT, Kuo SH, Kuo YC, Lin CW. miR-155-regulated mTOR and Toll-like receptor 5 in gastric diffuse large B-cell lymphoma. Cancer Med 2021; 11:555-570. [PMID: 34913612 PMCID: PMC8817081 DOI: 10.1002/cam4.4466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Gastric diffuse large B-cell lymphoma (DLBCL) is often associated with Helicobacter pylori (H. pylori) infection. Those in the early stage could be treated with H. pylori eradication therapy, and are classified into a sensitive group and a resistant group. METHODS Genome-wide miRNA and miRNA expression profiles were obtained from biopsy specimens of gastric DLBCL. MiRNAs and their targets as predictors of responses to H. pylori eradication therapy were identified through differential expression and pathway enrichment analysis, and further confirmed with transfection experiments in lymphoma cell lines of B-cell origin. RESULTS Genome-wide miRNA and mRNA profiles showed miR-200 was associated with the sensitive group, and that the resistant group had higher levels of miR-155 and lower levels of DEPTOR (an inhibitor of mTOR) than the sensitive group. BJAB cells transfected with miR-155 also had lower DEPTOR and higher mTOR levels. Therefore, miR-155-mediated inhibition of DEPTOR with secondary activation of mTOR was a potential marker for resistance to H. pylori eradication therapy. In contrast, pathway enrichment analysis showed that Toll-like receptor 5 (TLR5), the receptor for bacterial flagellin, was a potential marker for sensitivity to H. pylori eradication therapy. In an independent series, stronger expression of pS6K1 (a direct target of mTOR) was associated with the resistant group and morphologic evidence of active gastritis was associated with the sensitive group. CONCLUSIONS These findings showed that activation of the miR-155-DEPTOR pathway is a marker for resistance to H. pylori eradication therapy, and that histological evaluation of active gastritis might be used as a surrogate marker to predict responses to H. pylori eradication therapy in gastric DLBCL.
Collapse
Affiliation(s)
- Wei-Ting Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chun Kuo
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wu Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Abstract
Helicobacter pylori (HP) is the primary etiologic factor that induces events in the immune system that lead to peptic ulcers. Toll-like receptors (TLRs) are an important part of the innate immune system, as they play pivotal roles in pathogen-associated molecular pattern (PAMP) recognition of HP as well host-associated damage-associated molecular patterns (DAMPs). Recent advancements such as COX-2 production, LPS recognition through TLR2, CagL, and CagY protein of HP activating TLR5, TLR9 activation via type IV secretion system (T4SS) using DNA transfer, TLR polymorphisms, their adaptor molecules, cytokines, and other factors play a significant role in PUD. Thus, some novel PUD treatments including Chuyou Yuyang granules, function by TLR4/NF-κB signaling pathway suppression and TNF-α and IL-18 inhibition also rely on TLR signaling. Similarly glycyrrhetinic acid (GA) treatment activates TLR-4 in Ana-1 cells not via TRIF, but via MYD88 expression, which is significantly upregulated to cure PUD. Therefore, understanding TLR signaling complexity and its resultant immune modulation after host-pathogen interactions is pivotal to drug and vaccine development for other diseases as well including cancer and recent pandemic COVID-19. In this review, we summarize the TLRs and HP interaction; its pathophysiology-related signaling pathways, polymorphisms, and pharmaceutical approaches toward PUD.
Collapse
Affiliation(s)
- Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Narayan Nepal
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| | - Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
32
|
Song X, He Y, Liu M, Yang Y, Yuan Y, Yan J, Zhang M, Huang J, Zhang S, Mo F. Mechanism underlying Polygonum capitatum effect on Helicobacter pylori-associated gastritis based on network pharmacology. Bioorg Chem 2021; 114:105044. [PMID: 34157554 DOI: 10.1016/j.bioorg.2021.105044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) infection is a common disease that can cause H. pylori-associated gastritis (HAG), peptic ulcers, and gastric cancer. As a traditional Chinese medicine, Polygonum capitatum (PC) manifests its unique advantages in the prevention and treatment of complex diseases and chronic diseases, due to its ability to clear heat, detoxify and relieve pain, promote blood circulation, and remove blood stasis. In order to explore the molecular mechanism of PC for HAG, the study collected the predicted targets of active compounds, conducted functional analysis by the STRING database, collected HAG differential expression genes, and conducted KEGG enrichment analysis on the intersection of predicted targets and differential expression genes of gastritis by Cluego. The results show that PC works mainly by affecting phosphorylation of IκBα, NF-κB p65, p38MAPK, and ERK1/2 and nuclear transposition of NF-κB p65 and p-p38MAPK, which has been proved by in vivo and in vitro experiments. These results suggest that PC may act on HAG with multiple targets and pathways, and play a key role in the process of HAG treatment.
Collapse
Affiliation(s)
- Xiaohan Song
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Yun He
- Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang 550004, China
| | - Min Liu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Ye Yang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Yan Yuan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jiaoyan Yan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Mengwei Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jian Huang
- Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang 550004, China
| | - Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China; Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang 550004, China.
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China; Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang 550004, China.
| |
Collapse
|
33
|
Della Bella C, Soluri MF, Puccio S, Benagiano M, Grassi A, Bitetti J, Cianchi F, Sblattero D, Peano C, D’Elios MM. The Helicobacter pylori CagY Protein Drives Gastric Th1 and Th17 Inflammation and B Cell Proliferation in Gastric MALT Lymphoma. Int J Mol Sci 2021; 22:ijms22179459. [PMID: 34502367 PMCID: PMC8431018 DOI: 10.3390/ijms22179459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Background: the neoplastic B cells of the Helicobacter pylori-related low-grade gastric mucosa-associated lymphoid tissue (MALT) lymphoma proliferate in response to H. pylori, however, the nature of the H. pylori antigen responsible for proliferation is still unknown. The purpose of the study was to dissect whether CagY might be the H. pylori antigen able to drive B cell proliferation. Methods: the B cells and the clonal progeny of T cells from the gastric mucosa of five patients with MALT lymphoma were compared with those of T cell clones obtained from five H. pylori–infected patients with chronic gastritis. The T cell clones were assessed for their specificity to H. pylori CagY, cytokine profile and helper function for B cell proliferation. Results: 22 of 158 CD4+ (13.9%) gastric clones from MALT lymphoma and three of 179 CD4+ (1.7%) clones from chronic gastritis recognized CagY. CagY predominantly drives Interferon-gamma (IFN-γ) and Interleukin-17 (IL-17) secretion by gastric CD4+ T cells from H. pylori-infected patients with low-grade gastric MALT lymphoma. All MALT lymphoma-derived clones dose dependently increased their B cell help, whereas clones from chronic gastritis lost helper activity at T-to-B-cell ratios greater than 1. Conclusion: the results obtained indicate that CagY drives both B cell proliferation and T cell activation in gastric MALT lymphomas.
Collapse
Affiliation(s)
- Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Maria Felicia Soluri
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Simone Puccio
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, 20090 Milan, Italy;
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Alessia Grassi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Jacopo Bitetti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, 20090 Milan, Italy;
- Human Technopole, 20157 Milan, Italy
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
- Correspondence: ; Tel.: +39-055-275-8331
| |
Collapse
|
34
|
Maubach G, Lim MCC, Sokolova O, Backert S, Meyer TF, Naumann M. TIFA has dual functions in Helicobacter pylori-induced classical and alternative NF-κB pathways. EMBO Rep 2021; 22:e52878. [PMID: 34328245 PMCID: PMC8419686 DOI: 10.15252/embr.202152878] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Helicobacter pylori infection constitutes one of the major risk factors for the development of gastric diseases including gastric cancer. The activation of nuclear factor‐kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) via classical and alternative pathways is a hallmark of H. pylori infection leading to inflammation in gastric epithelial cells. Tumor necrosis factor receptor‐associated factor (TRAF)‐interacting protein with forkhead‐associated domain (TIFA) was previously suggested to trigger classical NF‐κB activation, but its role in alternative NF‐κB activation remains unexplored. Here, we identify TRAF6 and TRAF2 as binding partners of TIFA, contributing to the formation of TIFAsomes upon H. pylori infection. Importantly, the TIFA/TRAF6 interaction enables binding of TGFβ‐activated kinase 1 (TAK1), leading to the activation of classical NF‐κB signaling, while the TIFA/TRAF2 interaction causes the transient displacement of cellular inhibitor of apoptosis 1 (cIAP1) from TRAF2, and proteasomal degradation of cIAP1, to facilitate the activation of the alternative NF‐κB pathway. Our findings therefore establish a dual function of TIFA in the activation of classical and alternative NF‐κB signaling in H. pylori‐infected gastric epithelial cells.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michelle C C Lim
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany.,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig Holstein, Kiel, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
35
|
Sharafutdinov I, Backert S, Tegtmeyer N. The Helicobacter pylori type IV secretion system upregulates epithelial cortactin expression by a CagA- and JNK-dependent pathway. Cell Microbiol 2021; 23:e13376. [PMID: 34197673 DOI: 10.1111/cmi.13376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
Cortactin represents an important actin-binding factor, which controls actin-cytoskeletal remodelling in host cells. In this way, cortactin has been shown to exhibit crucial functions both for cell movement and tumour cell invasion. In addition, the cortactin gene cttn is amplified in various cancer types of humans. Helicobacter pylori is the causative agent of multiple gastric diseases and represents a significant risk factor for the development of gastric adenocarcinoma. It has been repeatedly shown that H. pylori manipulates cancer-related signal transduction events in infected gastric epithelial cells such as the phosphorylation status of cortactin. In fact, H. pylori modifies the activity of cortactin's binding partners to stimulate changes in the actin-cytoskeleton, cell adhesion and motility. Here we show that H. pylori infection of cultured AGS and Caco-2 cells for 24-48 hr leads to the overexpression of cortactin by 2-3 fold at the protein level. We demonstrate that this activity requires the integrity of the type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI) as well as the translocated effector protein CagA. We further show that ectopic expression of CagA is sufficient to stimulate cortactin overexpression. Furthermore, phosphorylation of CagA at the EPIYA-repeat region is not required, suggesting that this CagA activity proceeds in a phosphorylation-independent fashion. Inhibitor studies further demonstrate that the involved signalling pathway comprises the mitogen-activated protein kinase JNK (c-Jun N-terminal kinase), but not ERK1/2 or p38. Taken together, using H. pylori as a model system, this study discovered a previously unrecognised cortactin activation cascade by a microbial pathogen. We suggest that H. pylori targets cortactin to manipulate the cellular architecture and epithelial barrier functions that can impact gastric cancer development. TAKE AWAYS: Helicobacter pylori infection induces overexpression of cortactin at the protein level Cortactin upregulation requires the T4SS and effector protein CagA Ectopic expression of CagA is sufficient to stimulate cortactin overexpression Overexpression of cortactin proceeds CagA phosphorylation-independent The involved host cell signalling pathway comprises the MAP kinase JNK.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
36
|
Liu T, Liu S, Zhou X. Innate Immune Responses and Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:53-71. [PMID: 34019263 DOI: 10.1007/978-3-030-68748-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Innate immunity is the first defense line of the host against various infectious pathogens, environmental insults, and other stimuli causing cell damages. Upon stimulation, pattern recognition receptors (PRRs) act as sensors to activate innate immune responses, containing NF-κB signaling, IFN response, and inflammasome activation. Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and other nucleic acid sensors are involved in innate immune responses. The activation of innate immune responses can facilitate the host to eliminate pathogens and maintain tissue homeostasis. However, the activity of innate immune responses needs to be tightly controlled to ensure the optimal intensity and duration of activation under various contexts. Uncontrolled innate immune responses can lead to various disorders associated with aberrant inflammatory response, including pulmonary diseases such as COPD, asthma, and COVID-19. In this chapter, we will have a broad overview of how innate immune responses function and the regulation and activation of innate immune response at molecular levels as well as their contribution to various pulmonary diseases. A better understanding of such association between innate immune responses and pulmonary diseases may provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|