1
|
Wang YG, Liu AQ, Khan Y, Zhang Y, Wang CC, Song YL, Du JH, Sima YH, Qiu JF, Xu SQ. The JNK signalling pathway gene BmJun is involved in the regulation of egg quality and production in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39539200 DOI: 10.1111/imb.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The Jun N-terminal kinase (JNK) signalling pathway has a key role in tissue remodelling during insect metamorphosis by regulating programmed cell death. However, multiple members of the JNK pathway in Lepidoptera remain uncharacterized. In this study, two key genes of the JNK pathway, BmJun and BmFos, were cloned from the silkworm Bombyx mori, a lepidopteran model insect, and their effects on reproductive development were investigated. BmJun and BmFos encode 239 and 380 amino acids, respectively. Both proteins have typical basic leucine zipper domains and form a BmJUN-BmFOS dimer activator protein to exert transcriptional regulation. During the wandering stage of silkworm development, interference in BmJun expression had no effect on pupation, whereas B. mori vitellogenin (BmVg) expression, which is essential for egg development, was suppressed in the fat body and egg laying was significantly reduced. Additionally, numerous eggs appeared shrivelled and deformed, suggesting that they were nutritionally stunted. Inhibition of the JNK pathway caused abnormal pupal metamorphosis, an increase in shrivelled, unfertilized eggs, a decrease in fat body synthesis, and accumulation of BmVg in the ovaries of female B. mori. The results indicated that BmJUN and BmFOS can form an AP-1 dimer. Interfering with BmJun or inhibiting the phosphorylation of BmJUN leads to a reduction in the synthesis of BmVg in the fat body and its accumulation in the ovaries, thereby affecting the quality and production of the progeny eggs. These findings suggest that regulating Jun in the JNK pathway could be a potential way to inhibit female reproduction in Lepidoptera.
Collapse
Affiliation(s)
- Yu-Guo Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - An-Qi Liu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yasir Khan
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yi Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Chen-Chen Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yao-Le Song
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jiang-Han Du
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yang-Hu Sima
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jian-Feng Qiu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Shi-Qing Xu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|
2
|
Yao Z, Lu Y, Wang P, Chen Z, Zhou L, Sang X, Yang Q, Wang K, Hao M, Cao G. The role of JNK signaling pathway in organ fibrosis. J Adv Res 2024:S2090-1232(24)00431-4. [PMID: 39366483 DOI: 10.1016/j.jare.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Fibrosis is a tissue damage repair response caused by multiple pathogenic factors which could occur in almost every apparatus and leading to the tissue structure damage, physiological abnormality, and even organ failure until death. Up to now, there is still no specific drugs or strategies can effectively block or changeover tissue fibrosis. JNKs, a subset of mitogen-activated protein kinases (MAPK), have been reported that participates in various biological processes, such as genetic expression, DNA damage, and cell activation/proliferation/death pathways. Increasing studies indicated that abnormal regulation of JNK signal pathway has strongly associated with tissue fibrosis. AIM OF REVIEW This review designed to sum up the molecular mechanism progresses in the role of JNK signal pathway in organ fibrosis, hoping to provide a novel therapy strategy to tackle tissue fibrosis. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that JNK signaling pathway could modulates inflammation, immunoreaction, oxidative stress and Multiple cell biological functions in organ fibrosis. Therefore, targeting the JNK pathway may be a useful strategy in cure fibrosis.
Collapse
Affiliation(s)
- Zhouhui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yandan Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pingping Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Licheng Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Songyang Research Institute of Zhejiang Chinese Medical University, Songyang, 323400, China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Ramesh P, Tiwari SK, Kaizer M, Jangra D, Ghosh K, Mandal S, Mandal L. The NF-κB Factor Relish maintains blood progenitor homeostasis in the developing Drosophila lymph gland. PLoS Genet 2024; 20:e1011403. [PMID: 39250509 PMCID: PMC11424005 DOI: 10.1371/journal.pgen.1011403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/25/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024] Open
Abstract
Post-larval hematopoiesis in Drosophila largely depends upon the stockpile of progenitors present in the blood-forming organ/lymph gland of the larvae. During larval stages, the lymph gland progenitors gradually accumulate reactive oxygen species (ROS), which is essential to prime them for differentiation. Studies have shown that ROS triggers the activation of JNK (c-Jun Kinase), which upregulates fatty acid oxidation (FAO) to facilitate progenitor differentiation. Intriguingly, despite having ROS, the entire progenitor pool does not differentiate simultaneously in the late larval stages. Using expression analyses, genetic manipulation and pharmacological approaches, we found that the Drosophila NF-κB transcription factor Relish (Rel) shields the progenitor pool from the metabolic pathway that inducts them into the differentiation program by curtailing the activation of JNK. Although ROS serves as the metabolic signal for progenitor differentiation, the input from ROS is monitored by the developmental signal TAK1, which is regulated by Relish. This developmental circuit ensures that the stockpile of ROS-primed progenitors is not exhausted entirely. Our study sheds light on how, during development, integrating NF-κB-like factors with metabolic pathways seem crucial to regulating cell fate transition during development.
Collapse
Affiliation(s)
- Parvathy Ramesh
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Satish Kumar Tiwari
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Md Kaizer
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Deepak Jangra
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Kaustuv Ghosh
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali (IISER Mohali), Punjab, INDIA
| |
Collapse
|
4
|
Ji S, Zhou X, Hoffmann JA. Toll-mediated airway homeostasis is essential for fly survival upon injection of RasV12-GFP oncogenic cells. Cell Rep 2024; 43:113677. [PMID: 38236774 DOI: 10.1016/j.celrep.2024.113677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/08/2023] [Accepted: 01/01/2024] [Indexed: 03/02/2024] Open
Abstract
Toll signaling is well known for its pivotal role in the host response against the invasion of external pathogens. Here, we investigate the potential involvement of Toll signaling in the intersection between the host and oncogenic cells. We show that loss of myeloid differentiation factor 88 (Myd88) leads to drastic fly death after the injection of RasV12-GFP oncogenic cells. Transcriptomic analyses show that challenging flies with oncogenic cells or bacteria leads to distinct inductions of Myd88-dependent genes. We note that downregulation of Myd88 in the tracheal system accounts for fly mortality, and ectopic tracheal complementation of Myd88 rescues the survival defect in Myd88 loss-of-function mutants following RasV12-GFP injection. Further, molecular and genetic evidence indicate that Toll signaling modulates fly resistance to RasV12-GFP cells through mediating airway function in a rolled-dependent manner. Collectively, our data indicate a critical role of Toll signaling in tracheal homeostasis and host survival after the injection of oncogenic cells.
Collapse
Affiliation(s)
- Shanming Ji
- Insect Models of Innate Immunity (M3I; 9022), Institute of Molecular and Cellular Biology, CNRS, 67084 Strasbourg, France
| | - Xiaojing Zhou
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jules A Hoffmann
- Insect Models of Innate Immunity (M3I; 9022), Institute of Molecular and Cellular Biology, CNRS, 67084 Strasbourg, France; Institute for Advanced Study, University of Strasbourg, 67000 Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
5
|
Liu P, Wang Y, Chen C, Liu H, Ye J, Zhang X, Ma C, Zhao D. Research trends on airway remodeling: A bibliometrics analysis. Heliyon 2024; 10:e24824. [PMID: 38333835 PMCID: PMC10850909 DOI: 10.1016/j.heliyon.2024.e24824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Background Airway remodeling is an essential pathological basis of respiratory diseases such as asthma and COPD, which is significantly related to pulmonary function and clinical symptoms. And pulmonary disease can be improved by regulating airway remodeling. This study aimed to establish a knowledge map of airway remodeling to clarify current research hotspots and future research trends. Methods A comprehensive search was performed to analyze all relevant articles on airway remodeling using the Web of Science Core Collection Database from January 01, 2004 to June 03, 2023.2 reviewers screened the retrieved literature. Besides, the CiteSpace (6.2. R3) and VOSviewer (1.6.19) were utilized to visualize the research focus and trend regarding the effect of airway remodeling. Results A total of 4077 articles about airway remodeling were retrieved. The United States is the country with the most published literature, underscoring the country's role in airway remodeling. In recent years, China has been the country with the fastest growth in the number of published literature, suggesting that China will play a more critical role in airway remodeling in the future. From the perspective of co-operation among countries, European co-operation was closer than Asian co-operation. The co-citation analysis showed that 98,313 citations were recorded in 3594 articles, and 25 clusters could be realized. In recent years, Burst detection shows that oxidative stress and epithelial-mesenchymal transition are hot words. Conclusions Based on the bibliometric analysis of airway remodeling studies in the past 20 years, a multi-level knowledge structure map was drawn, it mainly includes countries, institutions, research fields, authors, journals, keywords and so on. The research directions represented by obstructive airway disease, PDGF-BB treatment of airway smooth muscle, allergen-induced airway remodeling, extracellular matrix, and non-coding RNA are the research hotspots in the field of airway remodeling. While the risk factors for airway remodeling, the application of new noninvasively assessing tools, biomarkers as well as The molecular mechanism represented by EMT and autophagy had been frontiers in recent years.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230000, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230000, China
| | - Chen Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230000, China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230000, China
| | - Jing Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230000, China
| | - Xiaoming Zhang
- School of Basic Medicine, Anhui Medical University, Hefei, 230000, China
| | - Changxiu Ma
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230000, China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230000, China
| |
Collapse
|
6
|
Angstmann H, Pfeiffer S, Kublik S, Ehrhardt B, Uliczka K, Rabe KF, Roeder T, Wagner C, Schloter M, Krauss-Etschmann S. The microbial composition of larval airways from Drosophila melanogaster differ between specimens from laboratory and natural habitats. ENVIRONMENTAL MICROBIOME 2023; 18:55. [PMID: 37370177 DOI: 10.1186/s40793-023-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The fruit fly Drosophila melanogaster lives in natural habitats and has also long been used as a model organism in biological research. In this study, we used a molecular barcoding approach to analyse the airways microbiome of larvae of D. melanogaster, which were obtained from eggs of flies of the laboratory strain w1118 and from immune deficient flies (NF-kB-K), and from wild-caught flies. To assess intergenerational transmission of microbes, all eggs were incubated under the same semi-sterile conditions. RESULTS The airway microbiome of larvae from both lab-strains was dominated by the two families Acetobacteraceae and Lactobacillaceae, while larvae from wild-caught flies were dominated by Lactobacillaceae, Anaplasmataceae and Leuconostocaceae. Barcodes linked to Anaplasmataceae could be further assigned to Wolbachia sp., which is a widespread intracellular pathogen in arthropods. For Leuconostoceae, the most abundant reads were assigned to Weissella sp. Both Wolbachia and Weissella affect the development of the insects. Finally, a relative high abundance of Serratia sp. was found in larvae from immune deficient relish-/- compared to w1118 and wild-caught fly airways. CONCLUSIONS Our results show for the first time that larvae from D. melanogaster harbor an airway microbiome, which is of low complexity and strongly influenced by the environmental conditions and to a lesser extent by the immune status. Furthermore, our data indicate an intergenerational transmission of the microbiome as shaped by the environment.
Collapse
Affiliation(s)
- Hanna Angstmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Stefan Pfeiffer
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Birte Ehrhardt
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Karin Uliczka
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, Lungen Clinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Germany Member of the German Center for Lung Research, Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Christina Wagner
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Michael Schloter
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Susanne Krauss-Etschmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany.
- Department of Medicine, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany.
| |
Collapse
|
7
|
Bhattacharya D, Górska-Andrzejak J, Abaquita TAL, Pyza E. Effects of adenosine receptor overexpression and silencing in neurons and glial cells on lifespan, fitness, and sleep of Drosophila melanogaster. Exp Brain Res 2023:10.1007/s00221-023-06649-y. [PMID: 37335362 DOI: 10.1007/s00221-023-06649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/28/2023] [Indexed: 06/21/2023]
Abstract
A single adenosine receptor gene (dAdoR) has been detected in Drosophila melanogaster. However, its function in different cell types of the nervous system is mostly unknown. Therefore, we overexpressed or silenced the dAdoR gene in eye photoreceptors, all neurons, or glial cells and examined the fitness of flies, the amount and daily pattern of sleep, and the influence of dAdoR silencing on Bruchpilot (BRP) presynaptic protein. Furthermore, we examined the dAdoR and brp gene expression in young and old flies. We found that a higher level of dAdoR in the retina photoreceptors, all neurons, and glial cells negatively influenced the survival rate and lifespan of male and female Drosophila in a cell-dependent manner and to a different extent depending on the age of the flies. In old flies, expression of both dAdoR and brp was higher than in young ones. An excess of dAdoR in neurons improved climbing in older individuals. It also influenced sleep by lengthening nighttime sleep and siesta. In turn, silencing of dAdoR decreased the lifespan of flies, although it increased the survival rate of young flies. It hindered the climbing of older males and females, but did not change sleep. Silencing also affected the daily pattern of BRP abundance, especially when dAdoR expression was decreased in glial cells. The obtained results indicate the role of adenosine and dAdoR in the regulation of fitness in flies that is based on communication between neurons and glial cells, and the effect of glial cells on synapses.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Jagellonian University, Kraków, Poland.
| |
Collapse
|
8
|
Chen ST, Yang N. Constructing ferroptosis-related competing endogenous RNA networks and exploring potential biomarkers correlated with immune infiltration cells in asthma using combinative bioinformatics strategy. BMC Genomics 2023; 24:294. [PMID: 37259023 DOI: 10.1186/s12864-023-09400-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Asthma is a common chronic respiratory disease worldwide. Recent studies have revealed the critical effects of the ceRNA network and ferroptosis on patients with asthma. Thus, this study aimed to explore the potential ferroptosis-related ceRNA network, investigate the immune cell infiltration level in asthma through integrated analysis of public asthma microarray datasets, and find suitable diagnostic biomarkers for asthma. METHODS First, three asthma-related datasets which were downloaded from the Gene Expression Omnibus (GEO) database were integrated into one pooled dataset after correcting for batch effects. Next, we screened differentially expressed lncRNAs (DElncRNAs) between patients and healthy subjects, constructed a ceRNA network using the StarBase database and screened ferroptosis-related genes from the predicted target mRNAs for Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We also performed Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) on the batch effect-corrected mRNA expression profile. Then, Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to screen potential diagnostic biomarkers, and the diagnostic efficacy was assessed using a receiver operating characteristic (ROC) curve. Finally, we determined the proportion of 22 immune cells in patients with asthma using CIBERSORT and investigated the correlation between key RNAs and immune cells. RESULTS We obtained 19 DElncRNAs, of which only LUCAT1 and MIR222HG had corresponding target miRNAs. The differentially expressed ferroptosis-related genes were involved in multiple programmed cell death-related pathways. We also found that the mRNA expression profile was primarily enriched in innate immune system responses. We screened seven candidate diagnostic biomarkers for asthma using LASSO regression (namely, BCL10, CD300E, IER2, MMP13, OAF, TBC1D3, and TMEM151A), among which the area under the curve (AUC) value for CD300E and IER2 were 0.722 and 0.856, respectively. Finally, we revealed the infiltration ratio of different immune cells in asthma and found a correlation between LUCAT1, MIR222HG, CD300E, and IER2 with some immune cells. CONCLUSION This study explored a potential lncRNA-miRNA-mRNA regulatory network and its underlying diagnostic biomarkers (CD300E and IER2) in asthma and identified the immune cells most associated with them, providing possible diagnostic markers and immunotherapeutic targets for asthma.
Collapse
Affiliation(s)
- Shao-Tian Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Liaoning Province, 110004, Shenyang, China
| | - Nan Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street Liaoning Province, 110004, Shenyang, China.
| |
Collapse
|
9
|
Bossen J, Kühle JP, Roeder T. The tracheal immune system of insects - A blueprint for understanding epithelial immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103960. [PMID: 37235953 DOI: 10.1016/j.ibmb.2023.103960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The unique design of respiratory organs in multicellular organisms makes them prone to infection by pathogens. To cope with this vulnerability, highly effective local immune systems evolved that are also operative in the tracheal system of insects. Many pathogens and parasites (including viruses, bacteria, fungi, and metazoan parasites) colonize the trachea or invade the host via this route. Currently, only two modules of the tracheal immune system have been characterized in depth: 1) Immune deficiency pathway-mediated activation of antimicrobial peptide gene expression and 2) local melanization processes that protect the structure from wounding. There is an urgent need to increase our understanding of the architecture of tracheal immune systems, especially regarding those mechanisms that enable the maintenance of immune homeostasis. This need for new studies is particularly exigent for species other than Drosophila.
Collapse
Affiliation(s)
- Judith Bossen
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Jan-Philip Kühle
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
10
|
Bossen J, Prange R, Kühle JP, Künzel S, Niu X, Hammel JU, Krieger L, Knop M, Ehrhardt B, Uliczka K, Krauss-Etschmann S, Roeder T. Adult and Larval Tracheal Systems Exhibit Different Molecular Architectures in Drosophila. Int J Mol Sci 2023; 24:ijms24065628. [PMID: 36982710 PMCID: PMC10052349 DOI: 10.3390/ijms24065628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Knowing the molecular makeup of an organ system is required for its in-depth understanding. We analyzed the molecular repertoire of the adult tracheal system of the fruit fly Drosophila melanogaster using transcriptome studies to advance our knowledge of the adult insect tracheal system. Comparing this to the larval tracheal system revealed several major differences that likely influence organ function. During the transition from larval to adult tracheal system, a shift in the expression of genes responsible for the formation of cuticular structure occurs. This change in transcript composition manifests in the physical properties of cuticular structures of the adult trachea. Enhanced tonic activation of the immune system is observed in the adult trachea, which encompasses the increased expression of antimicrobial peptides. In addition, modulatory processes are conspicuous, in this case mainly by the increased expression of G protein-coupled receptors in the adult trachea. Finally, all components of a peripheral circadian clock are present in the adult tracheal system, which is not the case in the larval tracheal system. Comparative analysis of driver lines targeting the adult tracheal system revealed that even the canonical tracheal driver line breathless (btl)-Gal4 is not able to target all parts of the adult tracheal system. Here, we have uncovered a specific transcriptome pattern of the adult tracheal system and provide this dataset as a basis for further analyses of the adult insect tracheal system.
Collapse
Affiliation(s)
- Judith Bossen
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
- German Lung Center (DZL), Airway Research Center North (ARCN), 24118 Kiel, Germany
| | - Ruben Prange
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Jan-Philip Kühle
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Xiao Niu
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Jörg U. Hammel
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, 21502 Geesthacht, Germany
| | - Laura Krieger
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Mirjam Knop
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Birte Ehrhardt
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLD, 23485 Borstel, Germany
| | - Karin Uliczka
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLD, 23485 Borstel, Germany
| | - Susanne Krauss-Etschmann
- German Lung Center (DZL), Airway Research Center North (ARCN), 24118 Kiel, Germany
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLD, 23485 Borstel, Germany
- Institute for Experimental Medicine, Kiel University, 24118 Kiel, Germany
| | - Thomas Roeder
- Department Zoology, Molecular Physiology, Kiel University, 24118 Kiel, Germany
- German Lung Center (DZL), Airway Research Center North (ARCN), 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-880-81
| |
Collapse
|
11
|
Li D, Wang T, Ma Q, Zhou L, Le Y, Rao Y, Jin L, Pei Y, Cheng Y, Huang C, Gai X, Sun Y. IL-17A Promotes Epithelial ADAM9 Expression in Cigarette Smoke-Related COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:2589-2602. [PMID: 36267325 PMCID: PMC9578481 DOI: 10.2147/copd.s375006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Background It has been reported that a disintegrin and metalloproteinase 9 (ADAM9) is involved in the pathogenesis of cigarette smoke (CS)-associated chronic obstructive pulmonary disease (COPD). But how CS exposure leads to upregulation of ADAM9 remains unknown. Methods Patients who underwent lobectomy for a solitary pulmonary nodule were enrolled and divided into three groups: non-smokers with normal lung function, smokers without COPD and smoker patients with COPD. Immunoreactivity of interleukin (IL)-17A and ADAM9 in small airways and alveolar walls was measured by immunohistochemistry. Wild-type and Il17a−/− C57BL/6 mice were exposed to CS for six months, and ADAM9 expression in the airway epithelia was measured by immunoreactivity. In addition, the protein and mRNA expression levels of IL-17A and ADAM9 were assessed in CS extract (CSE) and/or IL-17A-treated human bronchial epithelial (HBE) cells. Results The immunoreactivity of ADAM9 was increased in the airway epithelia and alveolar walls of patients with COPD compared to that of the controls. The expression of IL-17A was also upregulated in airway epithelial cells of patients with COPD and correlated positively with the level of ADAM9. The results from the animal model showed that Il17a−/− mice were protected from emphysema induced by CS exposure, together with a reduced level of ADAM9 expression in the airway epithelia, suggesting a possible link between ADAM9 and IL-17A. Consistently, our in vitro cell model showed that CSE stimulated the expression of ADAM9 and IL-17A in HBE cells in a dose- and time-dependent manner. Recombinant IL-17A induced ADAM9 upregulation in HBE cells and had a synergistic effect with CSE, whereas blocking IL-17A inhibited CSE-induced ADAM9 expression. Further analysis revealed that IL-17A induced c-Jun N-terminal kinase (JNK) phosphorylation, thereby increasing ADAM9 expression. Conclusion Our results revealed a novel role of IL-17A in CS-related COPD, where IL-17A contributes to ADAM9 expression by activating JNK signaling.
Collapse
Affiliation(s)
- Danyang Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Tong Wang
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Lu Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Liang Jin
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yuqiang Pei
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yaning Cheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Chen Huang
- Center of Basic Medical Research, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China,Correspondence: Xiaoyan Gai; Yongchang Sun, Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, People’s Republic of China, Email ;
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| |
Collapse
|
12
|
Sirocko KT, Angstmann H, Papenmeier S, Wagner C, Spohn M, Indenbirken D, Ehrhardt B, Kovacevic D, Hammer B, Svanes C, Rabe KF, Roeder T, Uliczka K, Krauss-Etschmann S. Early-life exposure to tobacco smoke alters airway signaling pathways and later mortality in D. melanogaster. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119696. [PMID: 35780997 DOI: 10.1016/j.envpol.2022.119696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/31/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Early life environmental influences such as exposure to cigarette smoke (CS) can disturb molecular processes of lung development and thereby increase the risk for later development of chronic respiratory diseases. Among the latter, asthma and chronic obstructive pulmonary disease (COPD) are the most common. The airway epithelium plays a key role in their disease pathophysiology but how CS exposure in early life influences airway developmental pathways and epithelial stress responses or survival is poorly understood. Using Drosophila melanogaster larvae as a model for early life, we demonstrate that CS enters the entire larval airway system, where it activates cyp18a1 which is homologues to human CYP1A1 to metabolize CS-derived polycyclic aromatic hydrocarbons and further induces heat shock protein 70. RNASeq studies of isolated airways showed that CS dysregulates pathways involved in oxidative stress response, innate immune response, xenobiotic and glutathione metabolic processes as well as developmental processes (BMP, FGF signaling) in both sexes, while other pathways were exclusive to females or males. Glutathione S-transferase genes were further validated by qPCR showing upregulation of gstD4, gstD5 and gstD8 in respiratory tracts of females, while gstD8 was downregulated and gstD5 unchanged in males. ROS levels were increased in airways after CS. Exposure to CS further resulted in higher larval mortality, lower larval-pupal transition, and hatching rates in males only as compared to air-exposed controls. Taken together, early life CS induces airway epithelial stress responses and dysregulates pathways involved in the fly's branching morphogenesis as well as in mammalian lung development. CS further affected fitness and development in a highly sex-specific manner.
Collapse
Affiliation(s)
- Karolina-Theresa Sirocko
- Division for Invertebrate Models, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | | | - Stephanie Papenmeier
- Division for Invertebrate Models, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Christina Wagner
- Division for Invertebrate Models, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Michael Spohn
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Draginja Kovacevic
- DZL Laboratory - Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Early Origins of Chronic Lung Disease
| | - Barbara Hammer
- DZL Laboratory - Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Early Origins of Chronic Lung Disease
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Klaus F Rabe
- LungenClinic, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany; Department of Medicine, Christian Albrechts University, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Germany
| | - Karin Uliczka
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Division of Early Origins of Chronic Lung Disease
| | - Susanne Krauss-Etschmann
- Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; Division of Early Origins of Chronic Lung Disease.
| |
Collapse
|
13
|
Ehrhardt B, El-Merhie N, Kovacevic D, Schramm J, Bossen J, Roeder T, Krauss-Etschmann S. Airway remodeling: The Drosophila model permits a purely epithelial perspective. FRONTIERS IN ALLERGY 2022; 3:876673. [PMID: 36187164 PMCID: PMC9520053 DOI: 10.3389/falgy.2022.876673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Airway remodeling is an umbrella term for structural changes in the conducting airways that occur in chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). The pathobiology of remodeling involves multiple mesenchymal and lymphoid cell types and finally leads to a variety of hardly reversible changes such as hyperplasia of goblet cells, thickening of the reticular basement membrane, deposition of collagen, peribronchial fibrosis, angiogenesis and hyperplasia of bronchial smooth muscle cells. In order to develop solutions for prevention or innovative therapies, these complex processes must be understood in detail which requires their deconstruction into individual building blocks. In the present manuscript we therefore focus on the role of the airway epithelium and introduce Drosophila melanogaster as a model. The simple architecture of the flies’ airways as well as the lack of adaptive immunity allows to focus exclusively on the importance of the epithelium for the remodeling processes. We will review and discuss genetic and environmentally induced changes in epithelial structures and molecular responses and propose an integrated framework of research for the future.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Natalia El-Merhie
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Juliana Schramm
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Judith Bossen
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Correspondence: Susanne Krauss-Etschmann
| |
Collapse
|
14
|
Zhang X, Wang G, Shen D, Feng Y, Zhang Y, Zhang C, Li Y, Liao H. Protective effects of budesonide on LPS‑induced podocyte injury by modulating macrophage M1/M2 polarization: Evidence from in vitro and in silico studies. Exp Ther Med 2022; 24:589. [PMID: 35949344 PMCID: PMC9353530 DOI: 10.3892/etm.2022.11526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022] Open
Abstract
Budesonide (Bud), one of the most widely used lung medicines, is currently used as a repurposing medicine for immunoglobulin A nephropathy (IgAN) treatment. The progression of IgAN is related to inflammation involving macrophages and podocytes. The present study aimed to explore the effects of Bud on classically activated (M1)/alternatively activated (M2) macrophage polarization and podocyte injury under lipopolysaccharide (LPS)-induced inflammatory stress in vitro. Anti-inflammatory bioinformation of Bud was identified based on the Gene Expression Omnibus database. RAW264.7 cells were treated with normal medium, LPS, curcumin (Cur, positive control), or Bud 5, 10, or 20 µM. The expression levels of inducible nitric oxide synthase (iNOS), TNF-α, mannose receptor (CD206) and arginase (Arg)-1 were quantified by western blotting. The collected supernatants from macrophages were termed (Nor)MS, (LPS)MS, (Cur)MS and (Bud)MS. The TNF-α, IL-1β and nitric oxide (NO) levels in the supernatants were evaluated by ELISA and Griess assay. The podocytes were cultured in different supernatants and their survival rates were assessed by bromodeoxyuridine assay. TNF signaling is an important pathway by which Bud exerts anti-inflammatory activities. Compared with the LPS group, 5, 10 and 20 µM Bud significantly increased Arg-1 and decreased iNOS expression (Six: P<0.05) and 20 µM Bud significantly increased Arg-1 and CD206 and decreased iNOS and TNF-α expression (Four: P<0.05). Cur significantly decreased iNOS and TNF-α expression (Two: P<0.05). Compared with LPS, 5, 10 and 20 µM Bud and Cur significantly decreased TNF-α, IL-1β and NO levels (All: P<0.05). The podocyte survival rates of (Bud)MS and (Cur)MS were significantly higher than those of (LPS)MS (Four: P<0.05). The protective effect of Bud on podocyte injury is related to its modulation of M1/M2 polarization.
Collapse
Affiliation(s)
- Xilan Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guangying Wang
- Department of Pharmacy, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, Shanxi 030012, P.R. China
| | - Dayue Shen
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yan Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, Shanxi 030012, P.R. China
| | - Chao Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, Shanxi 030012, P.R. China
| | - Yuanping Li
- Department of Pharmacy , Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, Shanxi 030012, P.R. China
| | - Hui Liao
- Departments of Pharmacy, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
15
|
Tiwari A, Hobbs BD, Li J, Kho AT, Amr S, Celedón JC, Weiss ST, Hersh CP, Tantisira KG, McGeachie MJ. Blood miRNAs Are Linked to Frequent Asthma Exacerbations in Childhood Asthma and Adult COPD. Noncoding RNA 2022; 8:ncrna8020027. [PMID: 35447890 PMCID: PMC9030787 DOI: 10.3390/ncrna8020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs have been independently associated with asthma and COPD; however, it is unclear if microRNA associations will overlap when evaluating retrospective acute exacerbations. Objective: We hypothesized that peripheral blood microRNAs would be associated with retrospective acute asthma exacerbations in a pediatric asthma cohort and that such associations may also be relevant to acute COPD exacerbations. Methods: We conducted small-RNA sequencing on 374 whole-blood samples from children with asthma ages 6-14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS) and 450 current and former adult smokers with and without COPD who participated in the COPDGene study. Measurements and Main Results: After QC, we had 351 samples and 649 microRNAs for Differential Expression (DE) analysis between the frequent (n = 183) and no or infrequent exacerbation (n = 168) groups in GACRS. Fifteen upregulated miRs had odds ratios (OR) between 1.22 and 1.59 for a doubling of miR counts, while five downregulated miRs had ORs between 0.57 and 0.8. These were assessed for generalization in COPDGene, where three of the upregulated miRs (miR-532-3p, miR-296-5p, and miR-766-3p) and two of the downregulated miRs (miR-7-5p and miR-451b) replicated. Pathway enrichment analysis showed MAPK and PI3K-Akt signaling pathways were strongly enriched for target genes of DE miRNAs and miRNAs generalizing to COPD exacerbations, as well as infection response pathways to various pathogens. Conclusion: miRs (451b; 7-5p; 532-3p; 296-5p and 766-3p) associated with both childhood asthma and adult COPD exacerbations may play a vital role in airflow obstruction and exacerbations and point to shared genomic regulatory machinery underlying exacerbations in both diseases.
Collapse
Affiliation(s)
- Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Brian D. Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Samir Amr
- Translational Genomics Core, Mass General Brigham Personalized Medicine, Cambridge, MA 02139, USA;
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kelan G. Tantisira
- Division of Pediatric Respiratory Medicine, Rady Children’s Hospital, University of California, San Diego, CA 92123, USA;
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Correspondence: ; Tel.: +617-525-2272; Fax: 617-731-1541
| |
Collapse
|
16
|
Musiol S, Alessandrini F, Jakwerth CA, Chaker AM, Schneider E, Guerth F, Schnautz B, Grosch J, Ghiordanescu I, Ullmann JT, Kau J, Plaschke M, Haak S, Buch T, Schmidt-Weber CB, Zissler UM. TGF-β1 Drives Inflammatory Th Cell But Not Treg Cell Compartment Upon Allergen Exposure. Front Immunol 2022; 12:763243. [PMID: 35069535 PMCID: PMC8777012 DOI: 10.3389/fimmu.2021.763243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
TGF-β1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-β is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFβ-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-β and IL-9 secretion. Altogether, these findings support that neutralization of TGF-β represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.
Collapse
Affiliation(s)
- Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany.,Department of Otorhinolaryngology, Klinikum rechts der Isar, TUM School of Medicine, Technical University Munich, Munich, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Johanna Grosch
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ileana Ghiordanescu
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefan Haak
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
17
|
Karkali K, Martin-Blanco E. Dissection of the Regulatory Elements of the Complex Expression Pattern of Puckered, a Dual-Specificity JNK Phosphatase. Int J Mol Sci 2021; 22:ijms222212205. [PMID: 34830088 PMCID: PMC8623796 DOI: 10.3390/ijms222212205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
For developmental processes, we know most of the gene networks controlling specific cell responses. We still have to determine how these networks cooperate and how signals become integrated. The JNK pathway is one of the key elements modulating cellular responses during development. Yet, we still know little about how the core components of the pathway interact with additional regulators or how this network modulates cellular responses in the whole organism in homeostasis or during tissue morphogenesis. We have performed a promoter analysis, searching for potential regulatory sequences of puckered (puc) and identified different specific enhancers directing gene expression in different tissues and at different developmental times. Remarkably, some of these domains respond to the JNK activity, but not all. Altogether, these analyses show that puc expression regulation is very complex and that JNK activities participate in non-previously known processes during the development of Drosophila.
Collapse
|
18
|
JNK Signaling in Drosophila Aging and Longevity. Int J Mol Sci 2021; 22:ijms22179649. [PMID: 34502551 PMCID: PMC8431792 DOI: 10.3390/ijms22179649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The evolutionarily conserved c-Jun N-terminal kinase (JNK) signaling pathway is a critical genetic determinant in the control of longevity. In response to extrinsic and intrinsic stresses, JNK signaling is activated to protect cells from stress damage and promote survival. In Drosophila, global JNK upregulation can delay aging and extend lifespan, whereas tissue/organ-specific manipulation of JNK signaling impacts lifespan in a context-dependent manner. In this review, focusing on several tissues/organs that are highly associated with age-related diseases-including metabolic organs (intestine and fat body), neurons, and muscles-we summarize the distinct effects of tissue/organ-specific JNK signaling on aging and lifespan. We also highlight recent progress in elucidating the molecular mechanisms underlying the tissue-specific effects of JNK activity. Together, these studies highlight an important and comprehensive role for JNK signaling in the regulation of longevity in Drosophila.
Collapse
|