1
|
Kovalchik KA, Hamelin DJ, Kubiniok P, Bourdin B, Mostefai F, Poujol R, Paré B, Simpson SM, Sidney J, Bonneil É, Courcelles M, Saini SK, Shahbazy M, Kapoor S, Rajesh V, Weitzen M, Grenier JC, Gharsallaoui B, Maréchal L, Wu Z, Savoie C, Sette A, Thibault P, Sirois I, Smith MA, Decaluwe H, Hussin JG, Lavallée-Adam M, Caron E. Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines. Nat Commun 2024; 15:10316. [PMID: 39609459 PMCID: PMC11604954 DOI: 10.1038/s41467-024-54734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computational framework incorporating a machine learning algorithm-MHCvalidator-to enhance mass spectrometry-based immunopeptidomics sensitivity. MHCvalidator identifies unique T-cell epitopes presented by the B7 supertype, including an epitope from a + 1-frameshift in a truncated Spike antigen, supported by ribosome profiling. Analysis of 100,512 COVID-19 patient proteomes shows Spike antigen truncation in 0.85% of cases, revealing frameshifted viral antigens at the population level. Our EpiTrack pipeline tracks global mutations of MHCvalidator-identified CD8 + T-cell epitopes from the BNT162b4 vaccine. While most vaccine epitopes remain globally conserved, an immunodominant A*01-associated epitope mutates in Delta and Omicron variants. This work highlights SARS-CoV-2 antigenic features and emphasizes the importance of continuous adaptation in T-cell vaccine development.
Collapse
Affiliation(s)
- Kevin A Kovalchik
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - David J Hamelin
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Benoîte Bourdin
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Fatima Mostefai
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Raphaël Poujol
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Bastien Paré
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Shawn M Simpson
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Éric Bonneil
- Institute of Research in Immunology and Cancer, Montreal, QC, Canada
| | | | - Sunil Kumar Saini
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mohammad Shahbazy
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Saketh Kapoor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Vigneshwar Rajesh
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Maya Weitzen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Bayrem Gharsallaoui
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Loïze Maréchal
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Zhaoguan Wu
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Christopher Savoie
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer, Montreal, QC, Canada
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Hélène Decaluwe
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Microbiology, Infectiology and Immunology Department, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Julie G Hussin
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.
- Mila-Quebec AI Institute, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Immuno-Oncology, Yale Center for Systems and Engineering Immunology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Braun A, Rowntree LC, Huang Z, Pandey K, Thuesen N, Li C, Petersen J, Littler DR, Raji S, Nguyen THO, Jappe Lange E, Persson G, Schantz Klausen M, Kringelum J, Chung S, Croft NP, Faridi P, Ayala R, Rossjohn J, Illing PT, Scull KE, Ramarathinam S, Mifsud NA, Kedzierska K, Sørensen AB, Purcell AW. Mapping the immunopeptidome of seven SARS-CoV-2 antigens across common HLA haplotypes. Nat Commun 2024; 15:7547. [PMID: 39214998 PMCID: PMC11364864 DOI: 10.1038/s41467-024-51959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Most COVID-19 vaccines elicit immunity against the SARS-CoV-2 Spike protein. However, Spike protein mutations in emerging strains and immune evasion by the SARS-CoV-2 virus demonstrates the need to develop more broadly targeting vaccines. To facilitate this, we use mass spectrometry to identify immunopeptides derived from seven relatively conserved structural and non-structural SARS-CoV-2 proteins (N, E, Nsp1/4/5/8/9). We use two different B-lymphoblastoid cell lines to map Human Leukocyte Antigen (HLA) class I and class II immunopeptidomes covering some of the prevalent HLA types across the global human population. We employ DNA plasmid transfection and direct antigen delivery approaches to sample different antigens and find 248 unique HLA class I and HLA class II bound peptides with 71 derived from N, 12 from E, 28 from Nsp1, 19 from Nsp4, 73 from Nsp8 and 45 peptides derived from Nsp9. Over half of the viral peptides are unpublished. T cell reactivity tested against 56 of the detected peptides shows CD8+ and CD4+ T cell responses against several peptides from the N, E, and Nsp9 proteins. Results from this study will aid the development of next-generation COVID vaccines targeting epitopes from across a number of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Asolina Braun
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ziyi Huang
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Chen Li
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jan Petersen
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Shabana Raji
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | | | - Shanzou Chung
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Patricia T Illing
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine E Scull
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sri Ramarathinam
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Kim GJ, Elnaggar JH, Varnado M, Feehan AK, Tauzier D, Rose R, Lamers SL, Sevalia M, Nicholas N, Gravois E, Fort D, Crabtree JS, Miele L. A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population. Front Immunol 2024; 15:1357731. [PMID: 38784379 PMCID: PMC11112498 DOI: 10.3389/fimmu.2024.1357731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In this computational study, we explored the CD8+ epitope diversity estimated in 27 of the most common HLA-A and HLA-B alleles, representing most of the United States population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100, AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1, BQ.1.1, XBB.1, XBB.1.5)] in analyzed MHC class I alleles revealed that SARS-CoV-2 CD8+ epitope conservation was estimated at 87.6%-96.5% in spike (S), 92.5%-99.6% in membrane (M), and 94.6%-99% in nucleocapsid (N). As the virus mutated, an increasing proportion of S epitopes experienced reduced predicted binding affinity: 70% of Omicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as compared with ~3% and ~15% in the earlier strains Delta AY.100-AY.44 and Omicron BA.1-BA.5, respectively. Additionally, we identified several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to determining the clinical severity of acute COVID-19. Achieving long-term COVID-19 immunity will require an understanding of the relationship between T cells, SARS-CoV-2 variants, and host MHC class I genetics. This project is one of the first to explore the SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United States population.
Collapse
Affiliation(s)
- Grace J. Kim
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Lousiana State University Health Sciences Center (LSUHSC), New Orleans, LA, United States
| | - Mallory Varnado
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Amy K. Feehan
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Darlene Tauzier
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rebecca Rose
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Susanna L. Lamers
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Maya Sevalia
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Najah Nicholas
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Elizabeth Gravois
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Daniel Fort
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Judy S. Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
4
|
Weisbrod L, Capriotti L, Hofmann M, Spieler V, Dersch H, Voedisch B, Schmidt P, Knake S. FASTMAP-a flexible and scalable immunopeptidomics pipeline for HLA- and antigen-specific T-cell epitope mapping based on artificial antigen-presenting cells. Front Immunol 2024; 15:1386160. [PMID: 38779658 PMCID: PMC11109385 DOI: 10.3389/fimmu.2024.1386160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.
Collapse
Affiliation(s)
- Luisa Weisbrod
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Luigi Capriotti
- Analytical Biochemistry, Research and Development, CSL Behring AG, Bern, Switzerland
| | - Marco Hofmann
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Valerie Spieler
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Herbert Dersch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Bernd Voedisch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Peter Schmidt
- Protein Biochemistry, Bio21 Institute, CSL Limited, Parkville, VIC, Australia
| | - Susanne Knake
- Department of Neurology, Epilepsy Center Hessen, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
5
|
Wu F, Jiang Y, Yang H, Ma L. Development of Detection Antibody Targeting the Linear Epitope in SARS-CoV-2 Nucleocapsid Protein with Ultra-High Sensitivity. Int J Mol Sci 2024; 25:4436. [PMID: 38674021 PMCID: PMC11050370 DOI: 10.3390/ijms25084436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 highlighted the importance of reliable detection methods for disease control and surveillance. Optimizing detection antibodies by rational screening antigens would improve the sensitivity and specificity of antibody-based detection methods such as colloidal gold immunochromatography. In this study, we screened three peptide antigens with conserved sequences in the N protein of SARS-CoV-2 using bioinformatical and structural biological analyses. Antibodies that specifically recognize these peptides were prepared. The epitope of the peptide that had the highest binding affinity with its antibody was located on the surface of the N protein, which was favorable for antibody binding. Using the optimal antibody that can recognize this epitope, we developed colloidal gold immunochromatography, which can detect the N protein at 10 pg/mL. Importantly, this antibody could effectively recognize both the natural peptide antigen and mutated peptide antigen in the N protein, showing the feasibility of being applied in the large-scale population testing of SARS-CoV-2. Our study provides a platform with reference significance for the rational screening of detection antibodies with high sensitivity, specificity, and reliability for SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Feng Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Shenzhen Institute of Drug Control, Shenzhen 518057, China
| | - Yike Jiang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Hongtian Yang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
6
|
Bartels M, Sala Solé E, Sauerschnig LM, Rijkers GT. Back to the Future: Immune Protection or Enhancement of Future Coronaviruses. Microorganisms 2024; 12:617. [PMID: 38543668 PMCID: PMC10975256 DOI: 10.3390/microorganisms12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 11/12/2024] Open
Abstract
Before the emergence of SARS-CoV-1, MERS-CoV, and most recently, SARS-CoV-2, four other coronaviruses (the alpha coronaviruses NL63 and 229E and the beta coronaviruses OC43 and HKU1) had already been circulating in the human population. These circulating coronaviruses all cause mild respiratory illness during the winter seasons, and most people are already infected in early life. Could antibodies and/or T cells, especially against the beta coronaviruses, have offered some form of protection against (severe) COVID-19 caused by infection with SARS-CoV-2? Related is the question of whether survivors of SARS-CoV-1 or MERS-CoV would be relatively protected against SARS-CoV-2. More importantly, would humoral and cellular immunological memory generated during the SARS-CoV-2 pandemic, either by infection or vaccination, offer protection against future coronaviruses? Or rather than protection, could antibody-dependent enhancement have taken place, a mechanism by which circulating corona antibodies enhance the severity of COVID-19? Another related phenomenon, the original antigenic sin, would also predict that the effectiveness of the immune response to future coronaviruses would be impaired because of the reactivation of memory against irrelevant epitopes. The currently available evidence indicates that latter scenarios are highly unlikely and that especially cytotoxic memory T cells directed against conserved epitopes of human coronaviruses could at least offer partial protection against future coronaviruses.
Collapse
Affiliation(s)
| | | | | | - Ger T. Rijkers
- Science and Engineering Department, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.B.); (E.S.S.); (L.M.S.)
| |
Collapse
|
7
|
Gomez-Zepeda D, Arnold-Schild D, Beyrle J, Declercq A, Gabriels R, Kumm E, Preikschat A, Łącki MK, Hirschler A, Rijal JB, Carapito C, Martens L, Distler U, Schild H, Tenzer S. Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS 2Rescore with MS 2PIP timsTOF fragmentation prediction model. Nat Commun 2024; 15:2288. [PMID: 38480730 PMCID: PMC10937930 DOI: 10.1038/s41467-024-46380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Human leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key targets for developing vaccines and immunotherapies against infectious pathogens or cancer cells. Identifying HLAIps is challenging due to their high diversity, low abundance, and patient individuality. Here, we develop a highly sensitive method for identifying HLAIps using liquid chromatography-ion mobility-tandem mass spectrometry (LC-IMS-MS/MS). In addition, we train a timsTOF-specific peak intensity MS2PIP model for tryptic and non-tryptic peptides and implement it in MS2Rescore (v3) together with the CCS predictor from ionmob. The optimized method, Thunder-DDA-PASEF, semi-selectively fragments singly and multiply charged HLAIps based on their IMS and m/z. Moreover, the method employs the high sensitivity mode and extended IMS resolution with fewer MS/MS frames (300 ms TIMS ramp, 3 MS/MS frames), doubling the coverage of immunopeptidomics analyses, compared to the proteomics-tailored DDA-PASEF (100 ms TIMS ramp, 10 MS/MS frames). Additionally, rescoring boosts the HLAIps identification by 41.7% to 33%, resulting in 5738 HLAIps from as little as one million JY cell equivalents, and 14,516 HLAIps from 20 million. This enables in-depth profiling of HLAIps from diverse human cell lines and human plasma. Finally, profiling JY and Raji cells transfected to express the SARS-CoV-2 spike protein results in 16 spike HLAIps, thirteen of which have been reported to elicit immune responses in human patients.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany.
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, Heidelberg, Germany.
| | - Danielle Arnold-Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Julian Beyrle
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, Heidelberg, Germany
| | - Arthur Declercq
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elena Kumm
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Annica Preikschat
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Mateusz Krzysztof Łącki
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Aurélie Hirschler
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC UMR 7178, University of Strasbourg, CNRS, ProFI - FR2048, Strasbourg, France
| | - Jeewan Babu Rijal
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC UMR 7178, University of Strasbourg, CNRS, ProFI - FR2048, Strasbourg, France
| | - Christine Carapito
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC UMR 7178, University of Strasbourg, CNRS, ProFI - FR2048, Strasbourg, France
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany.
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, Heidelberg, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
8
|
Saito T, Couzinet A, Murakami T, Shimomura M, Suzuki T, Katayama Y, Nakatsura T. Rapid and high throughput assessment of cellular immunity against SARS-CoV-2 based on the ex vivo activation of genes in leukocyte assay with whole blood. Biochem Biophys Res Commun 2024; 694:149398. [PMID: 38134475 DOI: 10.1016/j.bbrc.2023.149398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
During the novel coronavirus outbreak and vaccine development, antibody production garnered major focus as the primary immunogenic response. However, cellular immunity's recent demonstration of comparable or greater significance in controlling infection demands the re-evaluation of the importance of T-cell immunity in SARS-CoV-2 infection. Here, we developed a novel assay, the ex vivo activation of genes in leukocytes (EAGL), which employs short-term whole blood stimulation with the LeukoComplete™ system, to measure ex vivo SARS-CoV-2-specific T cell responses (cellular immunity). This assay measures upregulated mRNA expression related to leukocyte activation 4 h after antigen stimulation. LeukoComplete™ system uses whole blood samples, eliminating the need for pretreatment before analysis. Furthermore, this system's high reproducibility is ensured through a series of operations from mRNA extraction to cDNA synthesis on a 96-well plate. In the performance evaluation using fresh blood from previously SARS-CoV-2-infected and COVID-19-vaccinated individuals, the EAGL assay had a comparable sensitivity and specificity to the ELISpot assay (EAGL: 1.000/1.000; ELISpot: 0.900/0.973). As a simple, high-throughput assay, the EAGL assay is also a quantitative test that is useful in studies with large sample numbers, such as monitoring new vaccine efficacies against novel coronaviruses or epidemiologic studies that require cellular immune testing during viral infection.
Collapse
Affiliation(s)
- Taro Saito
- Minaris Medical Co., Ltd, Nagaizumi, Shizuoka, 411-0932, Japan
| | - Arnaud Couzinet
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, 277-8577, Japan
| | | | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, 277-8577, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, 277-8577, Japan
| | - Yuki Katayama
- Minaris Medical Co., Ltd, Nagaizumi, Shizuoka, 411-0932, Japan; Resonac Corporation, Minato, Tokyo, 105-7325, Japan.
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
9
|
Weingarten-Gabbay S, Chen DY, Sarkizova S, Taylor HB, Gentili M, Hernandez GM, Pearlman LR, Bauer MR, Rice CM, Clauser KR, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. The HLA-II immunopeptidome of SARS-CoV-2. Cell Rep 2024; 43:113596. [PMID: 38117652 PMCID: PMC10860710 DOI: 10.1016/j.celrep.2023.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Da-Yuan Chen
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | | | - Hannah B Taylor
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matteo Gentili
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | - Leah R Pearlman
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matthew R Bauer
- Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | - Mohsan Saeed
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
10
|
Ratishvili T, Quach HQ, Haralambieva IH, Suryawanshi YR, Ovsyannikova IG, Kennedy RB, Poland GA. A multifaceted approach for identification, validation, and immunogenicity of naturally processed and in silico-predicted highly conserved SARS-CoV-2 peptides. Vaccine 2024; 42:162-174. [PMID: 38105139 DOI: 10.1016/j.vaccine.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
SARS-CoV-2 remains a major global public health concern. Antibody waning and immune escape variant emergence necessitate the development of next generation vaccines that induce cross-reactive durable immune responses. T cell responses to SARS-CoV-2 demonstrate higher conservation, antigenic breadth, and longevity than antibody responses. Therefore, we sought to identify pathogen-derived T cell epitopes for a potential peptide-based vaccine. We pursued an approach leveraging: 1) liquid chromatography and tandem mass spectrometry (LC-MS/MS)-based identification of peptides from ancestral SARS-CoV-2-infected cell lines, 2) epitope prediction algorithms, and 3) overlapping peptide libraries. From this strategy, we identified 380 unique SARS-CoV-2-derived peptide sequences, including 53 antigenic HLA class I and class II peptides from multiple structural and non-structural/accessory viral proteins. These peptide sequences were highly conserved across variants of concern/interest (VoC/VoIs), and are estimated to achieve coverage of >96% of the world population. Our findings validate this discovery pipeline for peptide identification and immunogenicity testing, and are a crucial step toward the development of a next-generation multi-epitope SARS-CoV-2 peptide vaccine, and a novel vaccine platform methodology.
Collapse
Affiliation(s)
- Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yogesh R Suryawanshi
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Weissert R. Nervous system-related tropism of SARS-CoV-2 and autoimmunity in COVID-19 infection. Eur J Immunol 2024; 54:e2250230. [PMID: 37733584 DOI: 10.1002/eji.202250230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/05/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
The effects of SARS-CoV-2 in COVID-19 on the nervous system are incompletely understood. SARS-CoV-2 can infect endothelial cells, neurons, astrocytes, and oligodendrocytes with consequences for the host. There are indications that infection of these CNS-resident cells may result in long-term effects, including emergence of neurodegenerative diseases. Indirect effects of infection with SARS-CoV-2 relate to the induction of autoimmune disease involving molecular mimicry or/and bystander activation of T- and B cells and emergence of autoantibodies against various self-antigens. Data obtained in preclinical models of coronavirus-induced disease gives important clues for the understanding of nervous system-related assault of SARS-CoV-2. The pathophysiology of long-COVID syndrome and post-COVID syndrome in which autoimmunity and immune dysregulation might be the driving forces are still incompletely understood. A better understanding of nervous-system-related immunity in COVID-19 might support the development of therapeutic approaches. In this review, the current understanding of SARS-CoV-2 tropism for the nervous system, the associated immune responses, and diseases are summarized. The data indicates that there is viral tropism of SARS-CoV-2 in the nervous system resulting in various disease conditions. Prevention of SARS-CoV-2 infection by means of vaccination is currently the best strategy for the prevention of subsequent tissue damage involving the nervous system.
Collapse
Affiliation(s)
- Robert Weissert
- Department of Neurology, University of Regensburg Hospital, Regensburg, Germany
| |
Collapse
|
12
|
Boulton S, Poutou J, Gill R, Alluqmani N, He X, Singaravelu R, Crupi MJ, Petryk J, Austin B, Angka L, Taha Z, Teo I, Singh S, Jamil R, Marius R, Martin N, Jamieson T, Azad T, Diallo JS, Ilkow CS, Bell JC. A T cell-targeted multi-antigen vaccine generates robust cellular and humoral immunity against SARS-CoV-2 infection. Mol Ther Methods Clin Dev 2023; 31:101110. [PMID: 37822719 PMCID: PMC10562195 DOI: 10.1016/j.omtm.2023.101110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rida Gill
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Nouf Alluqmani
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J.F. Crupi
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Leonard Angka
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Iris Teo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Siddarth Singh
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rameen Jamil
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikolas Martin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
13
|
Wang L, Nicols A, Turtle L, Richter A, Duncan CJA, Dunachie SJ, Klenerman P, Payne RP. T cell immune memory after covid-19 and vaccination. BMJ MEDICINE 2023; 2:e000468. [PMID: 38027416 PMCID: PMC10668147 DOI: 10.1136/bmjmed-2022-000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains.
Collapse
Affiliation(s)
- Lulu Wang
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Alex Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Christopher JA Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Susanna J Dunachie
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Faculty of Science, Bangkok, Thailand
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Chen R, Fulton KM, Tran A, Duque D, Kovalchik K, Caron E, Twine SM, Li J. Integrated Immunopeptidomics and Proteomics Study of SARS-CoV-2-Infected Calu-3 Cells Reveals Dynamic Changes in Allele-specific HLA Abundance and Antigen Presentation. Mol Cell Proteomics 2023; 22:100645. [PMID: 37709257 PMCID: PMC10580047 DOI: 10.1016/j.mcpro.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
We present an integrated immunopeptidomics and proteomics study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to comprehensively decipher the changes in host cells in response to viral infection. Immunopeptidomics analysis identified viral antigens presented by host cells through both class I and class II MHC system for recognition by the adaptive immune system. The host proteome changes were characterized by quantitative proteomics and glycoproteomics and from these data, the activation of toll-like receptor 3-interferon pathway was identified. Glycosylation analysis of human leukocyte antigen (HLA) proteins from the elution and flow-through of immunoprecipitation revealed that SARS-CoV-2 infection changed the glycosylation pattern of certain HLA alleles with different HLA alleles, showing distinct dynamic changes in relative abundance. The difference in the glycosylation and abundance of HLA alleles changed the number of strong binding antigens each allele presented, suggesting the impact of SARS-CoV-2 infection on antigen presentation is allele-specific. These results could be further exploited to explain the imbalanced response from innate and adaptive immune system in coronavirus disease 2019 cases, which would be helpful for the development of therapeutics and vaccine for coronavirus disease 2019 and preparation for future pandemic.
Collapse
Affiliation(s)
- Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| | - Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anh Tran
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kevin Kovalchik
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Quebec, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Brito-Sierra CA, Lannan MB, Malherbe LP, Siegel RW. The HLA class I immunopeptidomes of AAV capsid proteins. Front Immunol 2023; 14:1212136. [PMID: 37662941 PMCID: PMC10469481 DOI: 10.3389/fimmu.2023.1212136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Cellular immune responses against AAV vector capsid represent an obstacle for successful gene therapy. Previous studies have used overlapping peptides spanning the entire capsid sequence to identify T cell epitopes recognized by AAV-specific CD8+ T cells. However, the repertoire of peptides naturally displayed by HLA class I molecules for CD8 T cell recognition is unknown. Methods Using mRNA transfected monocyte-derived dendritic cells (MDDCs) and MHC-associated peptide proteomics (MAPPs), we identified the HLA class I immunopeptidomes of AAV2, AAV6 and AAV9 capsids. MDDCs were isolated from a panel of healthy donors that have diverse alleles across the US population. mRNA-transfected MDDCs were lysed, the peptide:HLA complexes immunoprecipitated, and peptides eluted and analyzed by mass spectrometry. Results We identified 65 AAV capsid-derived peptides loaded on HLA class I molecules of mRNA transfected monocyte derived dendritic cells. The HLA class I peptides are distributed along the entire capsid and more than 60% are contained within HLA class II clusters. Most of the peptides are organized as single species, however we identified twelve clusters containing at least 2 peptides of different lengths. Only 9% of the identified peptides have been previously identified as T cell epitopes, demonstrating that the immunogenicity potential for the vast majority of the AAV HLA class I immunopeptidome remains uncharacterized. In contrast, 12 immunogenic epitopes identified before were not found to be naturally processed in our study. Remarkably, 11 naturally presented AAV peptides were highly conserved among the three serotypes analyzed suggesting the possibility of cross-reactive AAV-specific CD8 T cells. Discussion This work is the first comprehensive study identifying the naturally displayed HLA class I peptides derived from the capsid of AAVs. The results from this study can be used to generate strategies to assess immunogenicity risk and cross-reactivity among serotypes during gene therapies.
Collapse
Affiliation(s)
| | | | - Laurent P. Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
16
|
Lerner A, Benzvi C, Vojdani A. SARS-CoV-2 Gut-Targeted Epitopes: Sequence Similarity and Cross-Reactivity Join Together for Molecular Mimicry. Biomedicines 2023; 11:1937. [PMID: 37509576 PMCID: PMC10376948 DOI: 10.3390/biomedicines11071937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The gastrointestinal tract can be heavily infected by SARS-CoV-2. Being an auto-immunogenic virus, SARS-CoV-2 represents an environmental factor that might play a role in gut-associated autoimmune diseases. However, molecular mimicry between the virus and the intestinal epitopes is under-investigated. The present study aims to elucidate sequence similarity between viral antigens and human enteric sequences, based on known cross-reactivity. SARS-CoV-2 epitopes that cross-react with human gut antigens were explored, and sequence alignment was performed against self-antigens implicated in enteric autoimmune conditions. Experimental SARS-CoV-2 epitopes were aggregated from the Immune Epitope Database (IEDB), while enteric antigens were obtained from the UniProt Knowledgebase. A Pairwise Local Alignment tool, EMBOSS Matcher, was employed for the similarity search. Sequence similarity and targeted cross-reactivity were depicted between 10 pairs of immunoreactive epitopes. Similar pairs were found in four viral proteins and seven enteric antigens related to ulcerative colitis, primary biliary cholangitis, celiac disease, and autoimmune hepatitis. Antibodies made against the viral proteins that were cross-reactive with human gut antigens are involved in several essential cellular functions. The relationship and contribution of those intestinal cross-reactive epitopes to SARS-CoV-2 or its potential contribution to gut auto-immuno-genesis are discussed.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel
- Research Department, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel
| | | |
Collapse
|
17
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T-cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. PLoS Pathog 2023; 19:e1011032. [PMID: 37498934 PMCID: PMC10409285 DOI: 10.1371/journal.ppat.1011032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but the T-cell response to seasonal coronaviruses remains largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal coronavirus OC43. We identified MHC-bound peptides derived from each of the viral structural proteins (spike, nucleoprotein, hemagglutinin-esterase, membrane, and envelope) as well as non-structural proteins nsp3, nsp5, nsp6, and nsp12. Eighty MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. Fewer and less abundant MHC-I bound OC43-derived peptides were observed, possibly due to MHC-I downregulation induced by OC43 infection. The MHC-II peptides elicited low-abundance recall T-cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T-cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T-cell lines. Among the validated epitopes, spike protein S903-917 presented by DPA1*01:03/DPB1*04:01 and S1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. Nucleoprotein N54-68 and hemagglutinin-esterase HE128-142 presented by DRB1*15:01 and HE259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow CD4 T-cell cross-reactivity after infection or vaccination, and to guide selection of epitopes for inclusion in pan-coronavirus vaccines.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
18
|
Ternette N, Adamopoulou E, Purcell AW. How mass spectrometric interrogation of MHC class I ligandomes has advanced our understanding of immune responses to viruses. Semin Immunol 2023; 68:101780. [PMID: 37276649 DOI: 10.1016/j.smim.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK.
| | - Eleni Adamopoulou
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
19
|
Weingarten-Gabbay S, Chen DY, Sarkizova S, Taylor HB, Gentili M, Pearlman LR, Bauer MR, Rice CM, Clauser KR, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. The HLA-II immunopeptidome of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542482. [PMID: 37398281 PMCID: PMC10312465 DOI: 10.1101/2023.05.26.542482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks; yet the design of these vaccines requires a comprehensive knowledge of viral immunogens, including T-cell epitopes. Having previously mapped the SARS-CoV-2 HLA-I landscape, here we report viral peptides that are naturally processed and loaded onto HLA-II complexes in infected cells. We identified over 500 unique viral peptides from canonical proteins, as well as from overlapping internal open reading frames (ORFs), revealing, for the first time, the contribution of internal ORFs to the HLA-II peptide repertoire. Most HLA-II peptides co-localized with the known CD4+ T cell epitopes in COVID-19 patients. We also observed that two reported immunodominant regions in the SARS-CoV-2 membrane protein are formed at the level of HLA-II presentation. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and non-structural and non-canonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize the vaccine effectiveness.
Collapse
|
20
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
22
|
Abelin JG, Bergstrom EJ, Rivera KD, Taylor HB, Klaeger S, Xu C, Verzani EK, Jackson White C, Woldemichael HB, Virshup M, Olive ME, Maynard M, Vartany SA, Allen JD, Phulphagar K, Harry Kane M, Rachimi S, Mani DR, Gillette MA, Satpathy S, Clauser KR, Udeshi ND, Carr SA. Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues. Nat Commun 2023; 14:1851. [PMID: 37012232 PMCID: PMC10070353 DOI: 10.1038/s41467-023-37547-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Serial multi-omic analysis of proteome, phosphoproteome, and acetylome provides insights into changes in protein expression, cell signaling, cross-talk and epigenetic pathways involved in disease pathology and treatment. However, ubiquitylome and HLA peptidome data collection used to understand protein degradation and antigen presentation have not together been serialized, and instead require separate samples for parallel processing using distinct protocols. Here we present MONTE, a highly sensitive multi-omic native tissue enrichment workflow, that enables serial, deep-scale analysis of HLA-I and HLA-II immunopeptidome, ubiquitylome, proteome, phosphoproteome, and acetylome from the same tissue sample. We demonstrate that the depth of coverage and quantitative precision of each 'ome is not compromised by serialization, and the addition of HLA immunopeptidomics enables the identification of peptides derived from cancer/testis antigens and patient specific neoantigens. We evaluate the technical feasibility of the MONTE workflow using a small cohort of patient lung adenocarcinoma tumors.
Collapse
Affiliation(s)
- Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Erik J Bergstrom
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Keith D Rivera
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Hannah B Taylor
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Charles Xu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - C Jackson White
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Hilina B Woldemichael
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Maya Virshup
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Myranda Maynard
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Stephanie A Vartany
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Joseph D Allen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Kshiti Phulphagar
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Namrata D Udeshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
23
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
24
|
Contemplating immunopeptidomes to better predict them. Semin Immunol 2023; 66:101708. [PMID: 36621290 DOI: 10.1016/j.smim.2022.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
The identification of T-cell epitopes is key for a complete molecular understanding of immune recognition mechanisms in infectious diseases, autoimmunity and cancer. T-cell epitopes further provide targets for personalized vaccines and T-cell therapy, with several therapeutic applications in cancer immunotherapy and elsewhere. T-cell epitopes consist of short peptides displayed on Major Histocompatibility Complex (MHC) molecules. The recent advances in mass spectrometry (MS) based technologies to profile the ensemble of peptides displayed on MHC molecules - the so-called immunopeptidome - had a major impact on our understanding of antigen presentation and MHC ligands. On the one hand, these techniques enabled researchers to directly identify hundreds of thousands of peptides presented on MHC molecules, including some that elicited T-cell recognition. On the other hand, the data collected in these experiments revealed fundamental properties of antigen presentation pathways and significantly improved our ability to predict naturally presented MHC ligands and T-cell epitopes across the wide spectrum of MHC alleles found in human and other organisms. Here we review recent computational developments to analyze experimentally determined immunopeptidomes and harness these data to improve our understanding of antigen presentation and MHC binding specificities, as well as our ability to predict MHC ligands. We further discuss the strengths and limitations of the latest approaches to move beyond predictions of antigen presentation and tackle the challenges of predicting TCR recognition and immunogenicity.
Collapse
|
25
|
Schroeder SM, Nelde A, Walz JS. Viral T-cell epitopes - Identification, characterization and clinical application. Semin Immunol 2023; 66:101725. [PMID: 36706520 DOI: 10.1016/j.smim.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.
Collapse
Affiliation(s)
- Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Department for Otorhinolaryngology, Head, and Neck Surgery, University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Abd El-Baky N, Amara AA, Redwan EM. HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines (Basel) 2023; 11:548. [PMID: 36992131 PMCID: PMC10058130 DOI: 10.3390/vaccines11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia
| |
Collapse
|
27
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
28
|
Francisco Junior RDS, Temerozo JR, Ferreira CDS, Martins Y, Souza TML, Medina-Acosta E, de Vasconcelos ATR. Differential haplotype expression in class I MHC genes during SARS-CoV-2 infection of human lung cell lines. Front Immunol 2023; 13:1101526. [PMID: 36818472 PMCID: PMC9929942 DOI: 10.3389/fimmu.2022.1101526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Cell entry of SARS-CoV-2 causes genome-wide disruption of the transcriptional profiles of genes and biological pathways involved in the pathogenesis of COVID-19. Expression allelic imbalance is characterized by a deviation from the Mendelian expected 1:1 expression ratio and is an important source of allele-specific heterogeneity. Expression allelic imbalance can be measured by allele-specific expression analysis (ASE) across heterozygous informative expressed single nucleotide variants (eSNVs). ASE reflects many regulatory biological phenomena that can be assessed by combining genome and transcriptome information. ASE contributes to the interindividual variability associated with the disease. We aim to estimate the transcriptome-wide impact of SARS-CoV-2 infection by analyzing eSNVs. Methods We compared ASE profiles in the human lung cell lines Calu-3, A459, and H522 before and after infection with SARS-CoV-2 using RNA-Seq experiments. Results We identified 34 differential ASE (DASE) sites in 13 genes (HLA-A, HLA-B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H, TNFRSF11A, UMPS), all of which are enriched in protein binding functions and play a role in COVID-19. Most DASE sites were assigned to the MHC class I locus and were predominantly upregulated upon infection. DASE sites in the MHC class I locus also occur in iPSC-derived airway epithelium basal cells infected with SARS-CoV-2. Using an RNA-Seq haplotype reconstruction approach, we found DASE sites and adjacent eSNVs in phase (i.e., predicted on the same DNA strand), demonstrating differential haplotype expression upon infection. We found a bias towards the expression of the HLA alleles with a higher binding affinity to SARS-CoV-2 epitopes. Discussion Independent of gene expression compensation, SARS-CoV-2 infection of human lung cell lines induces transcriptional allelic switching at the MHC loci. This suggests a response mechanism to SARS-CoV-2 infection that swaps HLA alleles with poor epitope binding affinity, an expectation supported by publicly available proteome data.
Collapse
Affiliation(s)
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Cristina dos Santos Ferreira
- Bioinformatics Laboratory (LABINFO), National Laboratory of Scientific Computation (LNCC/MCTIC), Petrópolis, Brazil
| | - Yasmmin Martins
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| | - Thiago Moreno L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Neglected Diseases Neglected Populations (INCT/IDNP), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Enrique Medina-Acosta
- Molecular Identification and Diagnostics Unit (NUDIM), Laboratory of Biotechnology, Center for Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | | |
Collapse
|
29
|
Meyer S, Blaas I, Bollineni RC, Delic-Sarac M, Tran TT, Knetter C, Dai KZ, Madssen TS, Vaage JT, Gustavsen A, Yang W, Nissen-Meyer LSH, Douvlataniotis K, Laos M, Nielsen MM, Thiede B, Søraas A, Lund-Johansen F, Rustad EH, Olweus J. Prevalent and immunodominant CD8 T cell epitopes are conserved in SARS-CoV-2 variants. Cell Rep 2023; 42:111995. [PMID: 36656713 PMCID: PMC9826989 DOI: 10.1016/j.celrep.2023.111995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOC) is driven by mutations that mediate escape from neutralizing antibodies. There is also evidence that mutations can cause loss of T cell epitopes. However, studies on viral escape from T cell immunity have been hampered by uncertain estimates of epitope prevalence. Here, we map and quantify CD8 T cell responses to SARS-CoV-2-specific minimal epitopes in blood drawn from April to June 2020 from 83 COVID-19 convalescents. Among 37 HLA ligands eluted from five prevalent alleles and an additional 86 predicted binders, we identify 29 epitopes with an immunoprevalence ranging from 3% to 100% among individuals expressing the relevant HLA allele. Mutations in VOC are reported in 10.3% of the epitopes, while 20.6% of the non-immunogenic peptides are mutated in VOC. The nine most prevalent epitopes are conserved in VOC. Thus, comprehensive mapping of epitope prevalence does not provide evidence that mutations in VOC are driven by escape of T cell immunity.
Collapse
Affiliation(s)
- Saskia Meyer
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Isaac Blaas
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Marina Delic-Sarac
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Trung T. Tran
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Cathrine Knetter
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ke-Zheng Dai
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - John T. Vaage
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | | | - Karolos Douvlataniotis
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Morten Milek Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Arne Søraas
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway,ImmunoLingo Convergence Center, University of Oslo, 0372 Oslo, Norway
| | - Even H. Rustad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| |
Collapse
|
30
|
Jin X, Liu X, Shen C. A systemic review of T-cell epitopes defined from the proteome of SARS-CoV-2. Virus Res 2023; 324:199024. [PMID: 36526016 PMCID: PMC9757803 DOI: 10.1016/j.virusres.2022.199024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection remains in a global pandemic, and no eradicative therapy is currently available. Host T cells have been shown to play a crucial role in the antiviral immune protection and pathology in Coronavirus disease 2019 (COVID-19) patients; thus, identifying sufficient T-cell epitopes from the SARS-CoV-2 proteome can contribute greatly to the development of T-cell epitope vaccines and the precise evaluation of host SARS-CoV-2-specific cellular immunity. This review presents a comprehensive map of T-cell epitopes functionally validated from SARS-CoV-2 antigens, the human leukocyte antigen (HLA) supertypes to present these epitopes, and the strategies to screen and identify T-cell epitopes. To the best of our knowledge, a total of 1349 CD8+ T-cell epitopes and 790 CD4+ T-cell epitopes have been defined by functional experiments thus far, but most are presented by approximately twenty common HLA supertypes, such as HLA-A0201, A2402, B0702, DR15, DR7 and DR11 molecules, and 74-80% of the T-cell epitopes are derived from S protein and nonstructural protein. These data provide useful insight into the development of vaccines and specific T-cell detection systems. However, the currently defined T-cell epitope repertoire cannot cover the HLA polymorphism of major populations in an indicated geographic region. More research is needed to depict an overall landscape of T-cell epitopes, which covers the overall SARS-CoV-2 proteome and global patients.
Collapse
Affiliation(s)
- Xiaoxiao Jin
- Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China 225002; Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China 210009
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China 210009
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, China 210009.
| |
Collapse
|
31
|
Brito-Sierra CA, Lannan MB, Siegel RW, Malherbe LP. The HLA class-II immunopeptidomes of AAV capsids proteins. Front Immunol 2022; 13:1067399. [PMID: 36605211 PMCID: PMC9807805 DOI: 10.3389/fimmu.2022.1067399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Gene therapies are using Adeno-associated viruses (AAVs) as vectors, but immune responses against the capsids pose challenges to their efficiency and safety. Helper T cell recognition of capsid-derived peptides bound to human leukocyte antigen (HLA) class II molecules is an essential step in the AAV-specific adaptive immunity. Methods Using MHC-associated peptide proteomics, we identified the HLA-DR and HLA-DQ immunopeptidomes of the capsid proteins of three different AAV serotypes (AAV2, AAV6, and AAV9) from a panel of healthy donors selected to represent a majority of allele usage. Results The identified sequences span the capsids of all serotypes, with AAV2 having the highest peptide count. For all the serotypes, multiple promiscuous peptides were identified and displayed by both HLA-DR and -DQ. However, despite high sequence homology, there were few identical peptides among AAV2, AAV6, and AAV9 immunopeptidomes, and none were promiscuous. Discussion Results from this work represent a comprehensive immunopeptidomics research of potential CD4+ T cell epitopes and provide the basis for immunosurveillance efforts for safer and more efficient AAV-based gene therapies.
Collapse
Affiliation(s)
| | | | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Laurent P. Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
32
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.01.518643. [PMID: 36482973 PMCID: PMC9727760 DOI: 10.1101/2022.12.01.518643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but identification and characterization of the T cell response to seasonal human coronaviruses remain largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal human coronavirus OC43. We identified MHC-I and MHC-II bound peptides derived from the viral spike, nucleocapsid, hemagglutinin-esterase, 3C-like proteinase, and envelope proteins. Only three MHC-I bound OC43-derived peptides were observed, possibly due to the potent MHC-I downregulation induced by OC43 infection. By contrast, 80 MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. These peptides elicited low-abundance recall T cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T cell lines. Among the validated epitopes, S 903-917 presented by DPA1*01:03/DPB1*04:01 and S 1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. N 54-68 and HE 128-142 presented by DRB1*15:01 and HE 259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow T cell cross-reactivity after infection or vaccination and could aid in the selection of epitopes for inclusion in pan-coronavirus vaccines. Author Summary There is much current interest in cellular immune responses to seasonal common-cold coronaviruses because of their possible role in mediating protection against SARS-CoV-2 infection or pathology. However, identification of relevant T cell epitopes and systematic studies of the T cell responses responding to these viruses are scarce. We conducted a study to identify naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in following immune responses to seasonal coronaviruses and identifying their roles in COVID-19 vaccination, infection, and pathogenesis.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
33
|
Evaluation of Free Light Chains (FLCs) Synthesis in Response to Exposure to SARS-CoV-2. Int J Mol Sci 2022; 23:ijms231911589. [PMID: 36232891 PMCID: PMC9569841 DOI: 10.3390/ijms231911589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this study is to assess the synthesis of kappa (κ) and lambda (λ) free light chains (FLCs) in the serum of patients with COVID-19. All the 120 serum samples were collected from patients with COVID-19 and from healthy controls (vaccinated and non-vaccinated against SARS-CoV-2). FLCs, IgG total, IgG4, IgG anti-Nucleocapsid (N), anti-spike S1 receptor binding domain (S-RBD) antibodies and IL-6 were measured according to the manufacturers' instructions. The concentrations of anti-N IgG, IgG total, IgG4 and IL-6 were elevated in the COVID-19 group in comparison to the vaccinated and non-vaccinated controls. The levels of anti-S-RBD IgG and κFLC were increased in COVID-19 and healthy vaccinated patients when compared to non-vaccinated controls. λFLC concentration was higher in the COVID-19 group than in the non-vaccinated group. The κ:λ ratio was lower in both COVID-19 and non-vaccinated groups in comparison to vaccinated controls. κFLC correlated with all tested parameters (anti-S-RBD IgG, anti-N IgG, λFLC, κ:λ ratio, IgG total, IgG4 and IL-6) except CRP, whereas λFLC correlated with all examined parameters except IgG4. Elevated levels of FLCs in COVID-19 and healthy vaccinated against SARS-CoV-2 patients, as well as the correlation between free light chains with specific anti-SARS-CoV-2 antibodies and IL-6, reflect hyperactivation of the immune system after contact with coronavirus. Furthermore, it seems that serum levels of FLCs might be used as predictive markers of COVID-19. Our findings suggest that free light chains are involved in SARS-CoV-2 infection. However, understanding the exact mechanism requires further investigation.
Collapse
|
34
|
Cellular immunity in patients with COVID-19: molecular biology, pathophysiology, and clinical implications. КЛИНИЧЕСКАЯ ПРАКТИКА 2022. [DOI: 10.17816/clinpract106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The COVID-19 pandemic is caused by the SARS-CoV-2 coronavirus. From the viewpoint of factors critical to contain the virus, the neutralizing antibodies to SARS-CoV-2 garner most of the attention, however, it is essential to acknowledge that it is the level of the virus-specific T cell and B cell response that forms a basis for an effective neutralizing antibody response. T cell responses develop early and correlate with the protection, but they are relatively attenuated in the severe disease, in part due to lymphopenia. Understanding the role of different T cell subpopulations in the protection or the COVID-19 pathogenesis is critical to the prevention and treatment. The expression profile of different T cell subpopulations varies with the COVID-19 severity and is associated with the degree of T cell responses and the disease outcome. The structural changes in the genome, transcriptome, and proteome of SARS-CoV-2 promote the emergence of new variants of the virus and can reduce its interaction with antibodies and result in avoiding the neutralization. There is a strong correlation between the number of virus-specific CD4 T cells and neutralizing IgG antibody titers against SARS-CoV-2. During the primary viral infection, there is a wide variation in the cellular and humoral immune responses, patients with severe and prolonged symptoms showing highly imbalanced cellular and humoral immune responses. This review focuses on the generation and clinical significance of cellular immunity in the protection against severe acute infection and reinfection, as well as the potential involvement of seasonal coronavirus-specific cross-reactive T cells in response to SARS-CoV-2.
Collapse
|
35
|
Hensen L, Illing PT, Rowntree LC, Davies J, Miller A, Tong SYC, Habel JR, van de Sandt CE, Flanagan K, Purcell AW, Kedzierska K, Clemens EB. T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Front Immunol 2022; 13:812393. [PMID: 35603215 PMCID: PMC9121770 DOI: 10.3389/fimmu.2022.812393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.
Collapse
Affiliation(s)
- Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD, Australia
| | - Steven Y. C. Tong
- Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Katie L. Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - E. Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
36
|
Abstract
The adaptive immune response is a major determinant of the clinical outcome after SARS-CoV-2 infection and underpins vaccine efficacy. T cell responses develop early and correlate with protection but are relatively impaired in severe disease and are associated with intense activation and lymphopenia. A subset of T cells primed against seasonal coronaviruses cross reacts with SARS-CoV-2 and may contribute to clinical protection, particularly in early life. T cell memory encompasses broad recognition of viral proteins, estimated at around 30 epitopes within each individual, and seems to be well sustained so far. This breadth of recognition can limit the impact of individual viral mutations and is likely to underpin protection against severe disease from viral variants, including Omicron. Current COVID-19 vaccines elicit robust T cell responses that likely contribute to remarkable protection against hospitalization or death, and novel or heterologous regimens offer the potential to further enhance cellular responses. T cell immunity plays a central role in the control of SARS-CoV-2 and its importance may have been relatively underestimated thus far.
Collapse
Affiliation(s)
- Paul Moss
- University of Birmingham, Birmingham, UK.
| |
Collapse
|
37
|
Vályi-Nagy I, Matula Z, Gönczi M, Tasnády S, Bekő G, Réti M, Ajzner É, Uher F. Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans. GeroScience 2021; 43:2321-2331. [PMID: 34633612 PMCID: PMC8503874 DOI: 10.1007/s11357-021-00471-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
In the present study, humoral and T cell-mediated immune responses elicited by BBIBP-CorV (inactivated virus) and BNT162b2 (mRNA-based) vaccines against SARS-CoV-2 virus were compared. Convalescent volunteers were also investigated to evaluate adaptive immunity induced by live virus. Although both vaccines induced antibody- and T cell-mediated immune responses, our analysis revealed significant quantitative and qualitative differences between the two types of challenges. The BBIBP-CorV vaccine elicited antireceptor-binding domain (RBD) IgG, as well as anti-spike protein (S) IgG and IgA antibodies in healthy individuals, the levels of which were much lower than after BNT162b2 vaccination but still higher than in the convalescent patients. The cumulative IFNγ-positive T cell response, however, was only twofold higher in participants injected with BNT162b2 compared to those who were primed and boosted with BBIBP-CorV vaccine. Moreover, the inactivated virus vaccine induced T cell response that targets not only the S but also the nucleocapsid (N) and membrane (M) proteins, whereas the mRNA vaccine was able to elicit a much narrower response that targets the S protein epitopes only. Thus, the pattern of BBIBP-CorV-induced T cell response in virus-naive participants was similar to the cell-mediated anti-SARS-CoV-2 response observed in convalescent patients. Based on these data, we can conclude that the BBIBP-CorV inactivated virus vaccine is immunologically effective. However, the duration of BBIBP-CorV-induced integrated, antibody, and T cell-mediated, immune responses needs further investigation.
Collapse
Affiliation(s)
- István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, 1097, Hungary
| | - Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Nagyvarad ter 1., Budapest, H-1097, Hungary
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, 1097, Hungary
| | - Szabolcs Tasnády
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, 1097, Hungary
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, 1097, Hungary
| | - Marienn Réti
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, 1097, Hungary
| | - Éva Ajzner
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, 1097, Hungary
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Nagyvarad ter 1., Budapest, H-1097, Hungary.
| |
Collapse
|