1
|
Gerken OJ, Catone N, Legler DF. Identification of critical residues at the C-terminal tip of ACKR4 regulating chemokine internalization and βarrestin involvement. Cell Commun Signal 2024; 22:576. [PMID: 39623381 PMCID: PMC11610291 DOI: 10.1186/s12964-024-01961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Atypical chemokine receptors (ACKRs) play an important role in regulating the availability of chemokines and are responsible for the formation of chemokine gradients required for the directed migration of immune cells in health and disease. ACKR4 shapes gradients of the chemokines CCL19 and CCL21, which are essential for guiding leukocyte homing to lymphoid organs where they initiate an adaptive immune response against invading pathogens. How ACKRs internalize and scavenge chemokines on the molecular level remains poorly understood. Current state-of the art methods to study βarrestin recruitment, signaling and trafficking of ACKRs - and G-protein-coupled receptors in general - rely heavily on C-terminally tagged receptors with unknown consequences for receptor functions. METHODS Fluorescently labelled CCL19 was used to quantify chemokine internalization by native and tagged receptors as assessed by flow cytometry and live cell confocal microscopy. Steady-state interaction and chemokine-driven recruitment of βarrestins was determined by NanoBiT bystander assays. βarrestin-dependency for CCL19 internalization was determined in wild-type versus βarrestin1/2-double deficient cell lines. Statistical significance was determined by unpaired t-test or one-way ANOVA with Dunnett's or Tukey's multiple comparison tests. RESULTS Addition of a C-terminal tag selectively affected the function of ACKR4, but not other ACKRs. Fusing a short peptide tag or a fluorescent protein to ACKR4 significantly augmented its ability to internalize its cognate ligand CCL19. In comparison to native ACKR4, its C-terminal tagging provoked an elevated pre-association of βarrestins with the plasma membrane, yet a reduction in chemokine-driven βarrestin recruitment. Furthermore, the addition of a C-terminal tag led to a shift from a βarrestin-dependent towards a βarrestin-independent endocytosis pathway. Similar results on chemokine uptake and on βarrestin-dependency were obtained with ACKR4 variants, in which a putative class II PDZ-binding domain located at the C-terminal tip of the receptor was mutated. CONCLUSION This study identifies that the integrity of the C-terminus of ACKR4 is critical for receptor function. The addition of a C-terminal tag to ACKR4 enhances chemokine uptake and alters the involvement of βarrestins in receptor trafficking.
Collapse
Affiliation(s)
- Oliver J Gerken
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, CH-3012, Switzerland
| | - Nicola Catone
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Daniel F Legler
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland.
- Theodor Kocher Institute, University of Bern, Bern, CH-3012, Switzerland.
- Faculty of Biology, University of Konstanz, D-78464, Konstanz, Germany.
| |
Collapse
|
2
|
Comerford I, McColl SR. Atypical chemokine receptors in the immune system. Nat Rev Immunol 2024; 24:753-769. [PMID: 38714818 DOI: 10.1038/s41577-024-01025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/10/2024]
Abstract
Leukocyte migration is a fundamental component of innate and adaptive immune responses as it governs the recruitment and localization of these motile cells, which is crucial for immune cell priming, effector functions, memory responses and immune regulation. This complex cellular trafficking system is controlled to a large extent via highly regulated production of secreted chemokines and the restricted expression of their membrane-tethered G-protein-coupled receptors. The activity of chemokines and their receptors is also regulated by a subfamily of molecules known as atypical chemokine receptors (ACKRs), which are chemokine receptor-like molecules that do not couple to the classical signalling pathways that promote cell migration in response to chemokine ligation. There has been a great deal of progress in understanding the biology of these receptors and their functions in the immune system in the past decade. Here, we describe the contribution of the various ACKRs to innate and adaptive immune responses, focussing specifically on recent progress. This includes recent findings that have defined the role for ACKRs in sculpting extracellular chemokine gradients, findings that broaden the spectrum of chemokine ligands recognized by these receptors, candidate new additions to ACKR family, and our increasing understanding of the role of these receptors in shaping the migration of innate and adaptive immune cells.
Collapse
Affiliation(s)
- Iain Comerford
- The Chemokine Biology Laboratory, School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Shaun R McColl
- The Chemokine Biology Laboratory, School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Naser IH, Hamza AA, Alhili A, Faisal AN, Ali MS, Kadhim NA, Suliman M, Alshahrani MY, Alawadi A. Atypical chemokine receptor 4 (ACKR4/CCX-CKR): A comprehensive exploration across physiological and pathological landscapes in contemporary research. Cell Biochem Funct 2024; 42:e4009. [PMID: 38597217 DOI: 10.1002/cbf.4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Atypical chemokine receptor 4 (ACKR4), also known as CCX-CKR, is a member of the chemokine receptor family that lacks typical G protein signaling activity. Instead, ACKR4 functions as a scavenger receptor that can bind and internalize a wide range of chemokines, influencing their availability and activity in the body. ACKR4 is involved in various physiological processes, such as immune cell trafficking and the development of thymus, spleen, and lymph nodes. Moreover, ACKR4 has been implicated in several pathological conditions, including cancer, heart and lung diseases. In cancer, ACKR4 plays a complex role, acting as a tumor suppressor or promoter depending on the type of cancer and the stage of the disease. For instance, ACKR4 may inhibit the growth and metastasis of breast cancer, but it may also promote the progression of hepatocellular carcinoma and gastric cancer. In inflammatory situations, ACKR4 has been found to modulate the recruitment and activation of immune cells, contributing to the pathogenesis of diseases such as myocardial infraction and pulmonary sarcoidosis. The study of ACKR4 is still ongoing, and further research is needed to fully understand its role in different physiological and pathological contexts. Nonetheless, ACKR4 represents a promising target for the development of novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University College, Hillah, Babil, Iraq
| | - Asia Ali Hamza
- Department of Pharmaceutics, Faculty of pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Samus M, Rot A. Atypical chemokine receptors in cancer. Cytokine 2024; 176:156504. [PMID: 38266462 DOI: 10.1016/j.cyto.2024.156504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Atypical chemokine receptors (ACKRs) are a group of seven-transmembrane spanning serpentine receptors that are structurally homologous to classical G-protein-coupled receptors and bind cognate chemokines with high affinities but do not signal via G-proteins or mediate cell migration. However, ACKRs efficiently modify the availability and function of chemokines in defined microanatomical environments, can signal via intracellular effectors other than G-proteins, and play complex roles in physiology and disease, including in cancer. In this review, we summarize the findings on the diverse contributions of individual ACKRs to cancer development, progression, and tumor-host interactions. We discuss how changes in ACKR expression within tumor affect cancer growth, tumor vascularization, leukocyte infiltration, and metastasis formation, ultimately resulting in differential disease outcomes. Across many studies, ACKR3 expression was shown to support tumor growth and dissemination, whereas ACKR1, ACKR2, and ACKR4 in tumors were more likely to contribute to tumor suppression. With few notable exceptions, the insights on molecular and cellular mechanisms of ACKRs activities in cancer remain sparse, and the intricacies of their involvement are not fully appreciated. This is particularly true for ACKR1, ACKR2 and ACKR4. A better understanding of how ACKR expression and functions impact cancer should pave the way for their future targeting by new and effective therapies.
Collapse
Affiliation(s)
- Maryna Samus
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich 80336, Germany.
| |
Collapse
|
5
|
Alexandre YO, Mueller SN. Splenic stromal niches in homeostasis and immunity. Nat Rev Immunol 2023; 23:705-719. [PMID: 36973361 DOI: 10.1038/s41577-023-00857-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
The spleen is a gatekeeper of systemic immunity where immune responses against blood-borne pathogens are initiated and sustained. Non-haematopoietic stromal cells construct microanatomical niches in the spleen that make diverse contributions to physiological spleen functions and regulate the homeostasis of immune cells. Additional signals from spleen autonomic nerves also modify immune responses. Recent insight into the diversity of the splenic fibroblastic stromal cells has revised our understanding of how these cells help to orchestrate splenic responses to infection and contribute to immune responses. In this Review, we examine our current understanding of how stromal niches and neuroimmune circuits direct the immunological functions of the spleen, with a focus on T cell immunity.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Melgrati S, Gerken OJ, Artinger M, Radice E, Szpakowska M, Chevigné A, D’Uonnolo G, Antonello P, Thelen S, Pelczar P, Legler DF, Thelen M. GPR182 is a broadly scavenging atypical chemokine receptor influencing T-independent immunity. Front Immunol 2023; 14:1242531. [PMID: 37554323 PMCID: PMC10405735 DOI: 10.3389/fimmu.2023.1242531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Immune responses highly depend on the effective trafficking of immune cells into and within secondary lymphoid organs (SLOs). Atypical chemokine receptors (ACKRs) scavenge chemokines to eliminate them from the extracellular space, thereby generating gradients that guide leukocytes. In contrast to canonical chemokine receptors, ACKRs do not induce classical intracellular signaling that results in cell migration. Recently, the closest relative of ACKR3, GPR182, has been partially deorphanized as a potential novel ACKR. We confirm and extend previous studies by identifying further ligands that classify GPR182 as a broadly scavenging chemokine receptor. We validate the "atypical" nature of the receptor, wherein canonical G-protein-dependent intracellular signaling is not activated following ligand stimulation. However, β-arrestins are required for ligand-independent internalization and chemokine scavenging whereas the C-terminus is in part dispensable. In the absence of GPR182 in vivo, we observed elevated chemokine levels in the serum but also in SLO interstitium. We also reveal that CXCL13 and CCL28, which do not bind any other ACKR, are bound and efficiently scavenged by GPR182. Moreover, we found a cooperative relationship between GPR182 and ACKR3 in regulating serum CXCL12 levels, and between GPR182 and ACKR4 in controlling CCL20 levels. Furthermore, we unveil a new phenotype in GPR182-KO mice, in which we observed a reduced marginal zone (MZ), both in size and in cellularity, and thus in the T-independent antibody response. Taken together, we and others have unveiled a novel, broadly scavenging chemokine receptor, which we propose should be named ACKR5.
Collapse
Affiliation(s)
- Serena Melgrati
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver J. Gerken
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Marc Artinger
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Egle Radice
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Giulia D’Uonnolo
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Paola Antonello
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Pawel Pelczar
- University of Basel, Center for Transgenic Models, Basel, Switzerland
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, Konstanz, Germany
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
7
|
Jiang CY, Wu LW, Liu YW, Feng B, Ye LC, Huang X, He YY, Shen Y, Zhu YF, Zhou XL, Jiang DJ, Qi HK, Zhang H, Yan Y. Identification of ACKR4 as an immune checkpoint in pulmonary arterial hypertension. Front Immunol 2023; 14:1153573. [PMID: 37449198 PMCID: PMC10337759 DOI: 10.3389/fimmu.2023.1153573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Objective Inflammation is recognized as a contributor in the development of pulmonary arterial hypertension (PAH), and the recruitment and functional capacity of immune cells are well-orchestrated by chemokines and their receptors. This study is aimed at identification of critical chemokines in the progression of PAH via transcriptomic analysis. Methods Differentially expressed genes (DEGs) from lungs of PAH patients were achieved compared to controls based on Gene Expression Omnibus (GEO) database. Gene set enrichment analysis (GSEA) was applied for functional annotation and pathway enrichement. The abundance of immune cells was estimated by the xCell algorithm. Weighted correlation network analysis (WGCNA) was used to construct a gene expression network, based on which a diagnostic model was generated to determine its accuracy to distinguish PAH from control subjects. Target genes were then validated in lung of hypoxia-induce pulmonary hypertension (PH) mouse model. Results ACKR4 (atypical chemokine receptor 4) was downregulated in PAH lung tissues in multiple datasets. PAH relevant biological functions and pathways were enriched in patients with low-ACKR4 level according to GSEA enrichment analysis. Immuno-infiltration analysis revealed a negative correlation of activated dendritic cells, Th1 and macrophage infiltration with ACKR4 expression. Three gene modules were associated with PAH via WGCNA analysis, and a model for PAH diagnosis was generated using CXCL12, COL18A1 and TSHZ2, all of which correlated with ACKR4. The ACKR4 expression was also downregulated in lung tissues of our experimental PH mice compared to that of controls. Conclusions The reduction of ACKR4 in lung tissues of human PAH based on transcriptomic data is consistent with the alteration observed in our rodent PH. The correlation with immune cell infiltration and functional annotation indicated that ACKR4 might serve as a protective immune checkpoint for PAH.
Collapse
Affiliation(s)
- Chen-Yu Jiang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Wei Wu
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Wei Liu
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Feng
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Cai Ye
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Huang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Yi Shen
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Fan Zhu
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Liang Zhou
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dai-Ji Jiang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Kun Qi
- School of Biomedical Engineering, Shanghaitech University, Shanghai, China
| | - Hao Zhang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yan
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Melgrati S, Radice E, Ameti R, Hub E, Thelen S, Pelczar P, Jarrossay D, Rot A, Thelen M. Atlas of the anatomical localization of atypical chemokine receptors in healthy mice. PLoS Biol 2023; 21:e3002111. [PMID: 37159457 PMCID: PMC10198502 DOI: 10.1371/journal.pbio.3002111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/19/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Atypical chemokine receptors (ACKRs) scavenge chemokines and can contribute to gradient formation by binding, internalizing, and delivering chemokines for lysosomal degradation. ACKRs do not couple to G-proteins and fail to induce typical signaling induced by chemokine receptors. ACKR3, which binds and scavenges CXCL12 and CXCL11, is known to be expressed in vascular endothelium, where it has immediate access to circulating chemokines. ACKR4, which binds and scavenges CCL19, CCL20, CCL21, CCL22, and CCL25, has also been detected in lymphatic and blood vessels of secondary lymphoid organs, where it clears chemokines to facilitate cell migration. Recently, GPR182, a novel ACKR-like scavenger receptor, has been identified and partially deorphanized. Multiple studies point towards the potential coexpression of these 3 ACKRs, which all interact with homeostatic chemokines, in defined cellular microenvironments of several organs. However, an extensive map of ACKR3, ACKR4, and GPR182 expression in mice has been missing. In order to reliably detect ACKR expression and coexpression, in the absence of specific anti-ACKR antibodies, we generated fluorescent reporter mice, ACKR3GFP/+, ACKR4GFP/+, GPR182mCherry/+, and engineered fluorescently labeled ACKR-selective chimeric chemokines for in vivo uptake. Our study on young healthy mice revealed unique and common expression patterns of ACKRs in primary and secondary lymphoid organs, small intestine, colon, liver, and kidney. Furthermore, using chimeric chemokines, we were able to detect distinct zonal expression and activity of ACKR4 and GPR182 in the liver, which suggests their cooperative relationship. This study provides a broad comparative view and a solid stepping stone for future functional explorations of ACKRs based on the microanatomical localization and distinct and cooperative roles of these powerful chemokine scavengers.
Collapse
Affiliation(s)
- Serena Melgrati
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Egle Radice
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rafet Ameti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Elin Hub
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Pawel Pelczar
- University of Basel, Center for Transgenic Models, Basel, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Antal Rot
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, London, United Kingdom
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
9
|
Crawford KS, Volkman BF. Prospects for targeting ACKR1 in cancer and other diseases. Front Immunol 2023; 14:1111960. [PMID: 37006247 PMCID: PMC10050359 DOI: 10.3389/fimmu.2023.1111960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The chemokine network is comprised of a family of signal proteins that encode messages for cells displaying chemokine G-protein coupled receptors (GPCRs). The diversity of effects on cellular functions, particularly directed migration of different cell types to sites of inflammation, is enabled by different combinations of chemokines activating signal transduction cascades on cells displaying a combination of receptors. These signals can contribute to autoimmune disease or be hijacked in cancer to stimulate cancer progression and metastatic migration. Thus far, three chemokine receptor-targeting drugs have been approved for clinical use: Maraviroc for HIV, Plerixafor for hematopoietic stem cell mobilization, and Mogalizumab for cutaneous T-cell lymphoma. Numerous compounds have been developed to inhibit specific chemokine GPCRs, but the complexity of the chemokine network has precluded more widespread clinical implementation, particularly as anti-neoplastic and anti-metastatic agents. Drugs that block a single signaling axis may be rendered ineffective or cause adverse reactions because each chemokine and receptor often have multiple context-specific functions. The chemokine network is tightly regulated at multiple levels, including by atypical chemokine receptors (ACKRs) that control chemokine gradients independently of G-proteins. ACKRs have numerous functions linked to chemokine immobilization, movement through and within cells, and recruitment of alternate effectors like β-arrestins. Atypical chemokine receptor 1 (ACKR1), previously known as the Duffy antigen receptor for chemokines (DARC), is a key regulator that binds chemokines involved in inflammatory responses and cancer proliferation, angiogenesis, and metastasis. Understanding more about ACKR1 in different diseases and populations may contribute to the development of therapeutic strategies targeting the chemokine network.
Collapse
Affiliation(s)
- Kyler S. Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
10
|
Zhang Y, Garcia-Ibanez L, Ulbricht C, Lok LSC, Pike JA, Mueller-Winkler J, Dennison TW, Ferdinand JR, Burnett CJM, Yam-Puc JC, Zhang L, Alfaro RM, Takahama Y, Ohigashi I, Brown G, Kurosaki T, Tybulewicz VLJ, Rot A, Hauser AE, Clatworthy MR, Toellner KM. Recycling of memory B cells between germinal center and lymph node subcapsular sinus supports affinity maturation to antigenic drift. Nat Commun 2022; 13:2460. [PMID: 35513371 PMCID: PMC9072412 DOI: 10.1038/s41467-022-29978-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Infection or vaccination leads to the development of germinal centers (GC) where B cells evolve high affinity antigen receptors, eventually producing antibody-forming plasma cells or memory B cells. Here we follow the migratory pathways of B cells emerging from germinal centers (BEM) and find that many BEM cells migrate into the lymph node subcapsular sinus (SCS) guided by sphingosine-1-phosphate (S1P). From the SCS, BEM cells may exit the lymph node to enter distant tissues, while some BEM cells interact with and take up antigen from SCS macrophages, followed by CCL21-guided return towards the GC. Disruption of local CCL21 gradients inhibits the recycling of BEM cells and results in less efficient adaption to antigenic variation. Our findings thus suggest that the recycling of antigen variant-specific BEM cells and transport of antigen back to GC may support affinity maturation to antigenic drift.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Laura Garcia-Ibanez
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Laurence S C Lok
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Thomas W Dennison
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - John R Ferdinand
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Cameron J M Burnett
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Juan C Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lingling Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- The Francis Crick Institute, London, UK
| | - Raul Maqueda Alfaro
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan
| | - Geoffrey Brown
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | | | - Antal Rot
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, EC1M 6BQ, London, UK
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336, Munich, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Menna R Clatworthy
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Friess MC, Kritikos I, Schineis P, Medina-Sanchez JD, Gkountidi AO, Vallone A, Sigmund EC, Schwitter C, Vranova M, Matti C, Arasa J, Saygili Demir C, Bovay E, Proulx ST, Tomura M, Rot A, Legler DF, Petrova TV, Halin C. Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate T cell de-adhesion and passive transport by flow in inflamed afferent lymphatics. Cell Rep 2022; 38:110334. [PMID: 35108538 DOI: 10.1016/j.celrep.2022.110334] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022] Open
Abstract
T cell migration via afferent lymphatics to draining lymph nodes (dLNs) depends on expression of CCR7 in T cells and CCL21 in the lymphatic vasculature. Once T cells have entered lymphatic capillaries, they slowly migrate into contracting collecting vessels. Here, lymph flow picks up, inducing T cell detachment and rapid transport to the dLNs. We find that the atypical chemokine receptor 4 (ACKR4), which binds and internalizes CCL19 and CCL21, is induced by lymph flow in endothelial cells lining lymphatic collectors, enabling them to scavenge these chemokines. In the absence of ACKR4, migration of T cells to dLNs in TPA-induced inflammation is significantly reduced. While entry into capillaries is not impaired, T cells accumulate in the ACKR4-deficient dermal collecting vessel segments. Overall, our findings identify an ACKR4-mediated mechanism by which lymphatic collectors facilitate the detachment of lymph-borne T cells in inflammation and their transition from crawling to free-flow toward the dLNs.
Collapse
Affiliation(s)
- Mona C Friess
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Ioannis Kritikos
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Angela Vallone
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Elena C Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Corina Schwitter
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christoph Matti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cansaran Saygili Demir
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Esther Bovay
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland; Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, London, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland; Theodor Kocher Institute, University of Bern, Bern, Switzerland; Faculty of Biology, University of Konstanz, Konstanz, Germany
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
13
|
ACKR4 in Tumor Cells Regulates Dendritic Cell Migration to Tumor-Draining Lymph Nodes and T-Cell Priming. Cancers (Basel) 2021; 13:cancers13195021. [PMID: 34638505 PMCID: PMC8507805 DOI: 10.3390/cancers13195021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in both morbidity and mortality. Immune checkpoint blockade (ICB) treatments have been successful in a portion of mismatch repair-deficient (dMMR) CRC patients but have failed in mismatch repair-proficient (pMMR) CRC patients. Atypical Chemokine Receptor 4 (ACKR4) is implicated in regulating dendritic cell (DC) migration. However, the roles of ACKR4 in CRC development and anti-tumor immunoregulation are not known. By analyzing human CRC tissues, transgenic animals, and genetically modified CRC cells lines, our study revealed an important function of ACKR4 in maintaining CRC immune response. Loss of ACKR4 in CRC is associated with poor immune infiltration in the tumor microenvironment. More importantly, loss of ACKR4 in CRC tumor cells, rather than stromal cells, restrains the DC migration and antigen presentation to the tumor-draining lymph nodes (TdLNs). Moreover, tumors with ACKR4 knockdown become less sensitive to immune checkpoint blockade. Finally, we identified that microRNA miR-552 negatively regulates ACKR4 expression in human CRC. Taken together, our studies identified a novel and crucial mechanism for the maintenance of the DC-mediated T-cell priming in the TdLNs. These new findings demonstrate a novel mechanism leading to immunosuppression and ICB treatment resistance in CRC.
Collapse
|