1
|
Fricke C, Ulrich L, Kochmann J, Gergen J, Kovacikova K, Roth N, Beer J, Schnepf D, Mettenleiter TC, Rauch S, Petsch B, Hoffmann D, Beer M, Corleis B, Dorhoi A. mRNA vaccine-induced IgG mediates nasal SARS-CoV-2 clearance in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102360. [PMID: 39524696 PMCID: PMC11550364 DOI: 10.1016/j.omtn.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus disease 2019 (COVID-19) mRNA vaccines that have contributed to controlling the SARS-CoV-2 pandemic induce specific serum antibodies, which correlate with protection. However, the neutralizing capacity of antibodies for emerging SARS-CoV-2 variants is altered. Suboptimal antibody responses are observed in patients with humoral immunodeficiency diseases, ongoing B cell depletion therapy, and aging. Common experimental mouse models with altered B cell compartments, such as B cell depletion or deficiency, do not fully recapitulate scenarios of declining or suboptimal antibody levels as observed in humans. We report on SARS-CoV-2 immunity in a transgenic mouse model with restricted virus-specific antibodies. Vaccination of C57BL/6-Tg(IghelMD4)4Ccg/J mice with unmodified or N1mΨ-modified mRNA encoding for ancestral spike (S) protein and subsequent challenge with mouse-adapted SARS-CoV-2 provided insights into antibody-independent immunity and the impact of antibody titers on mucosal immunity. Protection against fatal disease was independent of seroconversion following mRNA vaccination, suggesting that virus-specific T cells can compensate for suboptimal antibody levels. In contrast, mRNA-induced IgG in the nasal conchae limited the local viral load and disease progression. Our results indicate that parenteral mRNA immunization can elicit nasal IgG antibodies that effectively suppress local viral replication, highlighting the potential of vaccines in controlling SARS-CoV-2 transmission and epidemiology.
Collapse
Affiliation(s)
- Charlie Fricke
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | - Julius Beer
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Zhang Y, Gu A, An Z, Huang S, Zhang C, Zhong X, Hu Y. B cells enhance EphA2 chimeric antigen receptor T cells cytotoxicity against glioblastoma via improving persistence. Hum Immunol 2024; 85:111093. [PMID: 39243423 DOI: 10.1016/j.humimm.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a powerful adoptive immunotherapy against blood cancers, but the therapeutic effect was not efficient enough on solid tumors. B cells have been reported to play a critical role in regulating memory T differentiation and cytotoxic T development. However, as of yet the influence of such B cells on CAR T cells has not been discussed. In this study, using ephrin type-A receptor 2 (EphA2) specific CAR T cells, we cultured B cells successfully to stimulate CAR T cells in vitro, and investigated the cell differentiation and anti-tumor efficiency. We observed that EphA2-CAR T cells stimulated by B cells performed increased interferon γ (IFN γ) production and upregulated OX40 expression, as well as the enhanced anti-tumor activity and reduced PD-1 expression. The persistence of CAR T cells was enhanced after B cells stimulation for more than 7 days with the increased subset of central memory T cells (TCM). In addition, next generation sequencing was performed to explore the underlying mechanisms. The up-regulated genes clustered in, immune response activation, chemokine signaling pathway, calcium signaling pathway, cGMP-PKG signaling pathway and et al. which contributed to the upregulated anti-glioblastoma (GBM) activity of CAR T cells stimulated by B cell. Furthermore, MEF2C, CD40, SYK and TNFRSF13B were upregulated in CAR T cells after co-culturing with B cells. These genes functionally enriched in promoting lymphocytes proliferation and may contribute to the enhanced persistence of CAR T cells. In conclusion, these results indicated the critical role of B cells in prolonging CAR T cells longevity and enhancing anti-tumor activity, which paves the way for the therapeutic exploitation of EphA2-CAR T cells against GBM in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Aiqin Gu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhijing An
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuai Huang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Can Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yi Hu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
3
|
Bhatia U, Tadman S, Rocha A, Rudraboina R, Contreras-Ruiz L, Guinan EC. Allostimulation leads to emergence of a human B cell population with increased expression of HLA class I antigen presentation-associated molecules and the immunoglobulin receptor FcRL5. Am J Transplant 2024; 24:1968-1978. [PMID: 38992496 DOI: 10.1016/j.ajt.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024]
Abstract
In the extensive literature characterizing lymphocyte contributions to transplant-related pathologies including allograft rejection and graft-versus-host disease, T cell-focused investigation has outpaced investigation of B cells. Most B cell-related reports describe regulatory and antibody-producing functions, with less focus on the potential role of antigen-presenting capacity. Using in vitro human mixed lymphocyte reactions (MLRs) to model allostimulation, we analyzed responder B cells using transcriptional analysis, flow cytometry, and microscopy. We observed emergence of an activated responder B cell subpopulation phenotypically similar to that described in individuals with graft-versus-host disease or allograft rejection. This population had markedly increased expression of FcRL5 (Fc receptor like 5) and molecules associated with human leukocyte antigen class I antigen presentation. Consistent with this phenotype, these cells demonstrated increased internalization of irradiated cell debris and dextran macromolecules. The proportion of this subpopulation within MLR responders also correlated with emergence of activated, cytotoxic CD8+ T cells. B cells of similar profile were quite infrequent in unstimulated blood from healthy individuals but readily identifiable in disaggregated human splenocytes and increased in both cases upon allostimulation. Further characterization of the emergence and function of this subpopulation could potentially contribute to identification of novel biomarkers and targeted therapeutics relevant to curbing transplant-related pathology.
Collapse
Affiliation(s)
- Urvashi Bhatia
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Tadman
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alyssa Rocha
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rakesh Rudraboina
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Laura Contreras-Ruiz
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eva C Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Cao Q, Fang H, Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials 2024; 310:122628. [PMID: 38820767 DOI: 10.1016/j.biomaterials.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Messenger RNA (mRNA) therapeutics have been widely employed as strategies for the treatment and prevention of diseases. Amid the global outbreak of COVID-19, mRNA vaccines have witnessed rapid development. Generally, in the case of mRNA vaccines, the initiation of the innate immune system serves as a prerequisite for triggering subsequent adaptive immune responses. Critical cells, cytokines, and chemokines within the innate immune system play crucial and beneficial roles in coordinating tailored immune reactions towards mRNA vaccines. Furthermore, immunostimulators and delivery systems play a significant role in augmenting the immune potency of mRNA vaccines. In this comprehensive review, we systematically delineate the latest advancements in mRNA vaccine research, present an in-depth exploration of strategies aimed at amplifying the immune effectiveness of mRNA vaccines, and offer some perspectives and recommendations regarding the future advancements in mRNA vaccine development.
Collapse
Affiliation(s)
- Qiannan Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
5
|
Clark RD, Rabito F, Munyonho FT, Remcho TP, Kolls JK. Evaluation of anti-vector immune responses to adenovirus-mediated lung gene therapy and modulation by αCD20. Mol Ther Methods Clin Dev 2024; 32:101286. [PMID: 39070292 PMCID: PMC11283059 DOI: 10.1016/j.omtm.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Although the last decade has seen tremendous progress in drugs that treat cystic fibrosis (CF) due to mutations that lead to protein misfolding, there are approximately 8%-10% of subjects with mutations that result in no significant CFTR protein expression demonstrating the need for gene editing or gene replacement with inhaled mRNA or vector-based approaches. A limitation for vector-based approaches is the formation of neutralizing humoral responses. Given that αCD20 has been used to manage post-transplant lymphoproliferative disease in CF subjects with lung transplants, we studied the ability of αCD20 to module both T and B cell responses in the lung to one of the most immunogenic vectors, E1-deleted adenovirus serotype 5. We found that αCD20 significantly blocked luminal antibody responses and efficiently permitted re-dosing. αCD20 had more limited impact on the T cell compartment, but reduced tissue resident memory T cell responses in bronchoalveolar lavage fluid. Taken together, these pre-clinical studies suggest that αCD20 could be re-purposed for lung gene therapy protocols to permit re-dosing.
Collapse
Affiliation(s)
- Robert D.E. Clark
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Felix Rabito
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ferris T. Munyonho
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - T. Parks Remcho
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K. Kolls
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Feng MH, Lai YR, Deng YW, Li XY, Pan L, Tian Z, Tang GY, Wang YF. B Cells Infiltration Potentially Responded Better to Systemic Corticoids in Oral Lichen Planus and Oral Lichenoid Lesions. Inflammation 2024:10.1007/s10753-024-02112-4. [PMID: 39117788 DOI: 10.1007/s10753-024-02112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Oral lichen planus (OLP) and oral lichenoid lesion (OLL) are chronic inflammatory diseases involving the oral mucosa. B cells infiltration in OLP and OLL, however, little is known about these cells in OLP and OLL. To analyze the function and infiltrating features of B lymphocytes in OLP and OLL, and to preliminarily evaluate their correlation with clinical outcomes. Tissue samples were collected from OLP, OLL, and healthy mucosa. The phenotypes and amounts of B cells in tissues were analyzed by single-cell sequencing. Their proportion and infiltrating features in tissues were examined by immunohistochemistry and immunofluorescence. With the systemic medication of corticoids, the correlation between B cells infiltrating characteristics and the clinical outcomes were evaluated. A quantified proportion increase of B cells was shown in both OLP and OLL. B cells in OLP demonstrated heightened activation and enhanced regulation in immune response. A cohort of 100 patients with OLP/OLL and 13 healthy controls were examined to investigate the B cells infiltration pattern. B cells were distributed in the superficial layer of lamina propria in 92.9% and 41.9% of OLP and OLL, respectively(P < 0.01); focally distributed in 25.0% and 62.9% of OLP and OLL, respectively(P < 0.01). With the systemic medication of corticoids, the cases with B cell infiltration (B+) in OLP and OLL groups showed a statistically significant reduction in REU scores before and after treatment (P < 0.01). B cells are widely present in OLP and OLL, and B cell infiltration in OLP and OLL are related to the better therapeutic effect of oral corticoids.
Collapse
Grants
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
Collapse
Affiliation(s)
- Ming-Hua Feng
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Stomatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yi-Rao Lai
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yi-Wen Deng
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xi-Ye Li
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lei Pan
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guo-Yao Tang
- Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu-Feng Wang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
7
|
Cheang NYZ, Tan KS, Tan PS, Purushotorma K, Yap WC, Tullett KM, Chua BYL, Yeoh AYY, Tan CQH, Qian X, Chen H, Tay DJW, Caminschi I, Tan YJ, Macary PA, Tan CW, Lahoud MH, Alonso S. Single-shot dendritic cell targeting SARS-CoV-2 vaccine candidate induces broad, durable and protective systemic and mucosal immunity in mice. Mol Ther 2024; 32:2299-2315. [PMID: 38715364 PMCID: PMC11286822 DOI: 10.1016/j.ymthe.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.
Collapse
Affiliation(s)
- Nicholas You Zhi Cheang
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peck Szee Tan
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kiren Purushotorma
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kirsteen McInnes Tullett
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benson Yen Leong Chua
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aileen Ying-Yan Yeoh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Caris Qi Hui Tan
- Histology Core Facility, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Xinlei Qian
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huixin Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Douglas Jie Wen Tay
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Yee Joo Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul Anthony Macary
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chee Wah Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mireille Hanna Lahoud
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Dekojová T, Gmucová H, Macečková D, Klieber R, Ostašov P, Leba M, Vlas T, Jungová A, Caputo VS, Čedíková M, Lysák D, Jindra P, Holubová M. Lymphocyte profile in peripheral blood of patients with multiple myeloma. Ann Hematol 2024:10.1007/s00277-024-05820-x. [PMID: 38832999 DOI: 10.1007/s00277-024-05820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Multiple myeloma (MM) is a disease which remains incurable. One of the main reasons is a weakened immune system that allows MM cells to survive. Therefore, the current research is focused on the study of immune system imbalance in MM to find the most effective immunotherapy strategies. Aiming to identify the key points of immune failure in MM patients, we analysed peripheral lymphocytes subsets from MM patients (n = 57) at various stages of the disease course and healthy individuals (HI, n = 15) focusing on T, NK, iNKT, B cells and NK-cell cytokines. Our analysis revealed that MM patients exhibited immune alterations in all studied immune subsets. Compared to HI, MM patients had a significantly lower proportion of CD4 + T cells (19.55% vs. 40.85%; p < 0.001) and CD4 + iNKT cells (18.8% vs. 40%; p < 0.001), within B cells an increased proportion of CD21LCD38L subset (4.5% vs. 0.4%; p < 0.01) and decreased level of memory cells (unswitched 6.1% vs. 14.7%; p < 0.001 and switched 7.8% vs. 11.2%; NS), NK cells displaying signs of activation and exhaustion characterised by a more than 2-fold increase in SLAMF7 MFI (p < 0.001), decreased expression of NKG2D (MFI) and NKp46 (%) on CD16 + 56 + and CD16 + 56- subset respectively (p < 0.05), Effective immunotherapy needs to consider these immune defects and monitoring of the immune status of MM patients is essential to define better interventions in the future.
Collapse
Affiliation(s)
- Tereza Dekojová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Hana Gmucová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Diana Macečková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Robin Klieber
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Pavel Ostašov
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Martin Leba
- Faculty of Applied Science, University of West Bohemia, Pilsen, 301 00, Czech Republic
| | - Tomáš Vlas
- Institute of Allergology and Immunology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Alexandra Jungová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Valentina S Caputo
- Cancer Biology and Therapy laboratory, School of Applied Sciences, London South Bank University, London, UK
| | - Miroslava Čedíková
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Daniel Lysák
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Monika Holubová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic.
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
| |
Collapse
|
9
|
Flippot R, Teixeira M, Rey-Cardenas M, Carril-Ajuria L, Rainho L, Naoun N, Jouniaux JM, Boselli L, Naigeon M, Danlos FX, Escudier B, Scoazec JY, Cassard L, Albiges L, Chaput N. B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors. J Immunother Cancer 2024; 12:e008636. [PMID: 38631710 PMCID: PMC11029261 DOI: 10.1136/jitc-2023-008636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marcus Teixeira
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Macarena Rey-Cardenas
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lucia Carril-Ajuria
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
- Medical Oncology, CHU Brugmann, Brussels, Belgium
| | - Larissa Rainho
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lisa Boselli
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marie Naigeon
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Francois-Xavier Danlos
- LRTI, INSERM U1015, Gustave Roussy, Villejuif, France
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Bernard Escudier
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lydie Cassard
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Nathalie Chaput
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
10
|
Li C, Clauson R, Bugada LF, Ke F, He B, Yu Z, Chen H, Jacobovitz B, Hu H, Chuikov P, Hill BD, Rizvi SM, Song Y, Sun K, Axenov P, Huynh D, Wang X, Garmire L, Lei YL, Grigorova I, Wen F, Cascalho M, Gao W, Sun D. Antigen-Clustered Nanovaccine Achieves Long-Term Tumor Remission by Promoting B/CD 4 T Cell Crosstalk. ACS NANO 2024; 18:9584-9604. [PMID: 38513119 PMCID: PMC11130742 DOI: 10.1021/acsnano.3c13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Current cancer vaccines using T cell epitopes activate antitumor T cell immunity through dendritic cell/macrophage-mediated antigen presentation, but they lack the ability to promote B/CD4 T cell crosstalk, limiting their anticancer efficacy. We developed antigen-clustered nanovaccine (ACNVax) to achieve long-term tumor remission by promoting B/CD4 T cell crosstalk. The topographic features of ACNVax were achieved using an iron nanoparticle core attached with an optimal number of gold nanoparticles, where the clusters of HER2 B/CD4 T cell epitopes were conjugated on the gold surface with an optimal intercluster distance of 5-10 nm. ACNVax effectively trafficked to lymph nodes and cross-linked with BCR, which are essential for stimulating B cell antigen presentation-mediated B/CD4 T cell crosstalk in vitro and in vivo. ACNVax, combined with anti-PD-1, achieved long-term tumor remission (>200 days) with 80% complete response in mice with HER2+ breast cancer. ACNVax not only remodeled the tumor immune microenvironment but also induced a long-term immune memory, as evidenced by complete rejection of tumor rechallenge and a high level of antigen-specific memory B, CD4, and CD8 cells in mice (>200 days). This study provides a cancer vaccine design strategy, using B/CD4 T cell epitopes in an antigen clustered topography, to achieve long-term durable anticancer efficacy through promoting B/CD4 T cell crosstalk.
Collapse
Affiliation(s)
- Chengyi Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ryan Clauson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Luke F Bugada
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fang Ke
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bing He
- Department of Computational Medicine & Bioinformatics, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhixin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Binyamin Jacobovitz
- Microscopy Core, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Polina Chuikov
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brett Dallas Hill
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Syed M Rizvi
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yudong Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kai Sun
- Department of Materials Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pasieka Axenov
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel Huynh
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinyi Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lana Garmire
- Department of Computational Medicine & Bioinformatics, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Leo Lei
- Departments of Head and Neck Surgery, Cancer Biology, and Translational Molecular Pathology, the University of Texas M.D. Anderson Cancer Center, Houston, Texas 77054, United States
| | - Irina Grigorova
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marilia Cascalho
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Wang H, Wu X, Sun Y, Liu A, He Y, Xu Z, Lu Y, Zhan C. A natural IgM hitchhiking strategy for delivery of cancer nanovaccines to splenic marginal zone B cells. J Control Release 2024; 368:208-218. [PMID: 38395156 DOI: 10.1016/j.jconrel.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
B cell-targeted cancer vaccines are receiving increasing attention in immunotherapy due to the combined antibody-secreting and antigen-presenting functions. In this study, we propose a natural IgM-hitchhiking delivery strategy to co-deliver tumor antigens and adjuvants to splenic marginal zone B (MZB) cells. We constructed nanovaccines (FA-sLip/OVA/MPLA) consisting of classical folic acid (FA)-conjugated liposomes co-loaded with ovalbumin (OVA) and toll-like receptor 4 agonists, MPLA. We found that natural IgM absorption could be manipulated at the bio-nano interface on FA-sLip/OVA/MPLA, enabling targeted delivery to splenic MZB cells. Systemic administration of FA-sLip/OVA/MPLA effectively activated splenic MZB cells via IgM-mediated multiplex pathways, eliciting antigen-specific humoral and cytotoxic T lymphocyte responses, and ultimately retarding E.G7-OVA tumor growth. In addition, combining FA-sLip/OVA/MPLA immunization with anti-PD-1 treatments showed improved antitumor efficiency. Overall, this natural IgM-hitchhiking delivery strategy holds great promise for efficient, splenic MZB cell-targeted delivery of cancer vaccines in future applications.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Yuhan Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Anze Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Yingying He
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Ziyi Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Ying Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 201399, PR China.
| |
Collapse
|
12
|
Kellermann G, Leulliot N, Cherfils-Vicini J, Blaud M, Brest P. Activated B-Cells enhance epitope spreading to support successful cancer immunotherapy. Front Immunol 2024; 15:1382236. [PMID: 38571942 PMCID: PMC10989059 DOI: 10.3389/fimmu.2024.1382236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Immune checkpoint therapies (ICT) have transformed the treatment of cancer over the past decade. However, many patients do not respond or suffer relapses. Successful immunotherapy requires epitope spreading, but the slow or inefficient induction of functional antitumoral immunity delays the benefit to patients or causes resistances. Therefore, understanding the key mechanisms that support epitope spreading is essential to improve immunotherapy. In this review, we highlight the major role played by B-cells in breaking immune tolerance by epitope spreading. Activated B-cells are key Antigen-Presenting Cells (APC) that diversify the T-cell response against self-antigens, such as ribonucleoproteins, in autoimmunity but also during successful cancer immunotherapy. This has important implications for the design of future cancer vaccines.
Collapse
Affiliation(s)
| | - Nicolas Leulliot
- Université Paris Cité, Centre national de la recherche scientifique (CNRS), Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Paris, France
| | - Julien Cherfils-Vicini
- Université Côte d’Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Centre Antoine Lacassagne, Institut Hospitalo-Universitaire (IHU), RESPIRera, Fédérations Hospitalo-Universitaires (FHU)OncoAge, Nice, France
| | - Magali Blaud
- Université Paris Cité, Centre national de la recherche scientifique (CNRS), Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), Paris, France
| | - Patrick Brest
- Université Côte d’Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Centre Antoine Lacassagne, Institut Hospitalo-Universitaire (IHU), RESPIRera, Fédérations Hospitalo-Universitaires (FHU)OncoAge, Nice, France
| |
Collapse
|
13
|
Tandel N, Patel D, Thakkar M, Shah J, Tyagi RK, Dalai SK. Poly(I:C) and R848 ligands show better adjuvanticity to induce B and T cell responses against the antigen(s). Heliyon 2024; 10:e26887. [PMID: 38455541 PMCID: PMC10918150 DOI: 10.1016/j.heliyon.2024.e26887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Poly(I:C) and R848, synthetic ligands that activate Toll-like receptor 3 (TLR3) and TLR7/8 respectively, have been well-established for their ability to stimulate the immune system and induce antigen-specific immune responses. These ligands are capable of inducing the production of cytokines and chemokines, and hence support the activation and differentiation of B and T cells. We saw the long-lasting and perdurable immune responses by these adjuvants essentially required for an efficacious subunit vaccine. In this study, we investigated the potential of poly(I:C) and R848 to elicit B and T cell responses to the OVA antigen. We assessed the stimulatory effects of these ligands on the immune system, their impact on B and T cell activation, and their ability to enhanced generation of B and T cells. Collectively, our findings contribute to the understanding how poly(I:C) and R848 can be utilized as an adjuvant system to enhance immune responses to protein-based subunit vaccines. In the end, this work provides insights for the development of novel vaccination strategies and improving the vaccine efficacy. Present work shall help formulate newer strategies for subunit vaccines to address the infectious diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Digna Patel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Mansi Thakkar
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Jagrut Shah
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K. Dalai
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Aldridge DL, Moodley D, Park J, Phan AT, Rausch M, White KF, Ren Y, Golin K, Radaelli E, Kedl R, Holland PM, Hill J, Hunter CA. Endogenous IL-27 during toxoplasmosis limits early monocyte responses and their inflammatory activation by pathological T cells. mBio 2024; 15:e0008324. [PMID: 38376210 PMCID: PMC10936422 DOI: 10.1128/mbio.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Mice that lack the genes for IL-27, or the IL-27 receptor, and infected with Toxoplasma gondii develop T cell-mediated pathology. Here, studies were performed to determine the impact of endogenous IL-27 on the immune response to T. gondii in wild-type (WT) mice. Analysis of infected mice revealed the early production of IL-27p28 by a subset of Ly6Chi, inflammatory monocytes, and sustained IL-27p28 production at sites of acute and chronic infection. Administration of anti-IL-27p28 prior to infection resulted in an early (day 5) increase in levels of macrophage and granulocyte activation, as well as enhanced effector T cell responses, as measured by both cellularity, cytokine production, and transcriptional profiling. This enhanced acute response led to immune pathology, while blockade during the chronic phase of infection resulted in enhanced T cell responses but no systemic pathology. In the absence of IL-27, the enhanced monocyte responses observed at day 10 were a secondary consequence of activated CD4+ T cells. Thus, in WT mice, IL-27 has distinct suppressive effects that impact innate and adaptive immunity during different phases of this infection. IMPORTANCE The molecule IL-27 is critical in limiting the immune response to the parasite Toxoplasma gondii. In the absence of IL-27, a lethal, overactive immune response develops during infection. However, when exactly in the course of infection this molecule is needed was unclear. By selectively inhibiting IL-27 during this parasitic infection, we discovered that IL-27 was only needed during, but not prior to, infection. Additionally, IL-27 is only needed in the active areas in which the parasite is replicating. Finally, our work found that a previously unstudied cell type, monocytes, was regulated by IL-27, which contributes further to our understanding of the regulatory networks established by this molecule.
Collapse
Affiliation(s)
- Daniel L. Aldridge
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jeongho Park
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Kangwon National University College of Veterinary Medicine and Institute of Veterinary Science, Chuncheon, South Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, South Korea
| | - Anthony T. Phan
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Yue Ren
- Surface Oncology, Cambridge, Massachusetts, USA
| | - Karin Golin
- Surface Oncology, Cambridge, Massachusetts, USA
| | - Enrico Radaelli
- Comparative Pathology Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ross Kedl
- Surface Oncology, Cambridge, Massachusetts, USA
- University of Colorado, Anschuitz Medical Campus, Aurora, Colorado, USA
| | | | | | - Christopher A. Hunter
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Ashokkumar C, Ningappa M, Raghu V, Mazariegos G, Higgs BW, Morgan P, Remaley L, Fazzolare Martin T, Holzer P, Trostle K, Xu Q, Zeevi A, Squires J, Soltys K, Horslen S, Khanna A, Ganoza A, Sindhi R. Enhanced Donor Antigen Presentation by B Cells Predicts Acute Cellular Rejection and Late Outcomes After Transplantation. Transplant Direct 2024; 10:e1589. [PMID: 38414976 PMCID: PMC10898653 DOI: 10.1097/txd.0000000000001589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 02/29/2024] Open
Abstract
Background Enhanced B-cell presentation of donor alloantigen relative to presentation of HLA-mismatched reference alloantigen is associated with acute cellular rejection (ACR), when expressed as a ratio called the antigen presenting index (API) in an exploratory cohort of liver and intestine transplant (LT and IT) recipients. Methods To test clinical performance, we measured the API using the previously described 6-h assay in 84 LT and 54 IT recipients with median age 3.3 y (0.05-23.96). Recipients experiencing ACR within 60 d after testing were termed rejectors. Results We first confirmed that B-cell uptake and presentation of alloantigen induced and thus reflected the alloresponse of T-helper cells, which were incubated without and with cytochalasin and primaquine to inhibit antigen uptake and presentation, respectively. Transplant recipients included 76 males and 62 females. Rejectors were tested at median 3.6 d before diagnosis. The API was higher among rejectors compared with nonrejectors (2.2 ± 0.2 versus 0.6 ± 0.04, P value = 1.7E-09). In logistic regression and receiver-operating-characteristic analysis, API ≥1.1 achieved sensitivity, specificity, and positive and negative predictive values for predicting ACR in 99 training set samples. Corresponding metrics ranged from 80% to 88% in 32 independent posttransplant samples, and 73% to 100% in 20 independent pretransplant samples. In time-to-event analysis, API ≥1.1 predicted higher incidence of late donor-specific anti-HLA antibodies after API measurements in LT recipients (P = 0.011) and graft loss in IT recipients (P = 0.008), compared with recipients with API <1.1, respectively. Conclusions Enhanced donor antigen presentation by circulating B cells predicts rejection after liver or intestine transplantation as well as higher incidence of DSA and graft loss late after transplantation.
Collapse
Affiliation(s)
- Chethan Ashokkumar
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Mylarappa Ningappa
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Vikram Raghu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, UPMC Children’s Hospital Pittsburgh, PA
| | - George Mazariegos
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Brandon W. Higgs
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Paul Morgan
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Lisa Remaley
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Tamara Fazzolare Martin
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Pamela Holzer
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Kevin Trostle
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Qingyong Xu
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - James Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, UPMC Children’s Hospital Pittsburgh, PA
| | - Kyle Soltys
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Simon Horslen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, UPMC Children’s Hospital Pittsburgh, PA
| | - Ajai Khanna
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Armando Ganoza
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| | - Rakesh Sindhi
- Department of Surgery, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh and the University of Pittsburgh, PA
| |
Collapse
|
16
|
DeGolier KR, Danis E, D'Antonio M, Cimons J, Yarnell M, Kedl RM, Kohler ME, Scott-Browne JP, Fry TJ. Antigen experience history directs distinct functional states of CD8+ CAR T cells during the anti-leukemia response. RESEARCH SQUARE 2023:rs.3.rs-3712137. [PMID: 38196657 PMCID: PMC10775394 DOI: 10.21203/rs.3.rs-3712137/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Chimeric antigen receptor T cells are an effective therapy for B-lineage malignancies. However, many patients relapse and this therapeutic has yet to show strong efficacy in other hematologic or solid tumors. One opportunity for improvement lies in the ability to generate T cells with desirable functional characteristics. Here, we dissect the biology of CD8+ CAR T cells (CAR8) by controlling whether the T cell has encountered cognate TCR antigen prior to CAR generation. We find that prior antigen experience influences multiple aspects of in vitro and in vivo CAR8 functionality, resulting in superior effector function and leukemia clearance in the setting of limiting target antigen density compared to antigen-inexperienced T cells. However, this comes at the expense of inferior proliferative capacity, susceptibility to phenotypic exhaustion and dysfunction, and inability to clear wildtype leukemia in the setting of limiting CAR+ cell dose. Epigenomic and transcriptomic comparisons of these cell populations identified overexpression of the Runx2 transcription factor as a novel strategy to enhance CAR8 function, with a differential impact depending on prior cell state. Collectively, our data demonstrate that prior antigen experience determines functional attributes of a CAR T cell, as well as amenability to functional enhancement by transcription factor modulation.
Collapse
Affiliation(s)
- Kole R DeGolier
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Etienne Danis
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Marc D'Antonio
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Jennifer Cimons
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Michael Yarnell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA
| | - Ross M Kedl
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - M Eric Kohler
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA
| | - James P Scott-Browne
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Terry J Fry
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA
| |
Collapse
|
17
|
Groß-Albenhausen E, Weier A, Velten M, Heider T, Chunder R, Kuerten S. Immune monitoring of SARS-CoV-2-specific T cell and B cell responses in patients with multiple sclerosis treated with ocrelizumab. Front Immunol 2023; 14:1254128. [PMID: 37841269 PMCID: PMC10569464 DOI: 10.3389/fimmu.2023.1254128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Since the development of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there has been significant interest in determining the effectiveness of SARS-CoV-2 vaccines in patients under immunomodulatory or immunosuppressive therapies. The aim of this study was to evaluate the impact of ocrelizumab, a monoclonal anti-CD20 antibody, on SARS-CoV-2-specific T cell and B cell responses in patients with relapsing-remitting multiple sclerosis (RRMS). Methods To this end, peripheral blood mononuclear cells (PBMCs) were isolated from n = 23 patients with RRMS. Of these patients, n = 17 were tested before (time point t0) and one month after (time point t1) their first dose of ocrelizumab. In addition, we studied n = 9 RRMS patients that got infected with SARS-CoV-2 over the course of ocrelizumab therapy (time point t2). PBMCs were also isolated from n = 19 age- and gender-matched healthy controls (HCs) after vaccination or infection with SARS-CoV-2, respectively. Interferon-γ (IFN-γ)/interleukin-2 (IL-2) and granzyme B (GzB)/perforin (PFN) double-color enzyme-linked immunospot (ELISPOT) assays or single-color ELISPOT assays were performed to measure SARS-CoV-2 antigen-specific T cell and B cell responses. Anti-viral antibody titers were quantified in the serum by chemiluminescence immunoassay. Results Our data indicate a significant difference in the SARS-CoV-2 specific IFN-γ (P = 0.0119) and PFN (P = 0.0005) secreting T cell compartment in the MS cohort at t0 compared to HCs. Following the first dose of ocrelizumab treatment, a significant decrease in the number of SARS-CoV-2 spike protein-specific B cells was observed (P = 0.0012). Infection with SARS-CoV-2 in MS patients under ocrelizumab therapy did not significantly alter their existing immune response against the virus. Kaplan-Meier survival analysis suggested that the spike S1 protein-specific immunoglobulin (Ig)G response might be a key parameter for predicting the probability of (re)infection with SARS-CoV-2. Discussion Our results call for a critical discussion regarding appropriate vaccination intervals and potential biomarkers for the prediction of (re)infection with SARS-CoV-2 in patients with MS receiving ocrelizumab. Unique identifier DRKS00029110; URL: http://apps.who.int/trialsearch/.
Collapse
Affiliation(s)
- Elina Groß-Albenhausen
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Bonn, Bonn, Germany
| | - Thorsten Heider
- Clinic for Neurology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Ivanova DL, Thompson SB, Klarquist J, Harbell MG, Kilgore AM, Lasda EL, Hesselberth JR, Hunter CA, Kedl RM. Vaccine adjuvant-elicited CD8 + T cell immunity is co-dependent on T-bet and FOXO1. Cell Rep 2023; 42:112911. [PMID: 37516968 PMCID: PMC10577800 DOI: 10.1016/j.celrep.2023.112911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
T-bet and FOXO1 are transcription factors canonically associated with effector and memory T cell fates, respectively. During an infectious response, these factors direct the development of CD8+ T cell fates, where T-bet deficiency leads to ablation of only short-lived effector cells, while FOXO1 deficiency results in selective loss of memory. In contrast, following adjuvanted subunit vaccination in mice, both effector- and memory-fated T cells are compromised in the absence of either T-bet or FOXO1. Thus, unlike responses to challenge with Listeria monocytogenes, productive CD8+ T cell responses to adjuvanted vaccination require coordinated regulation of FOXO1 and T-bet transcriptional programs. Single-cell RNA sequencing analysis confirms simultaneous T-bet, FOXO1, and TCF1 transcriptional activity in vaccine-elicited, but not infection-elicited, T cells undergoing clonal expansion. Collectively, our data show that subunit vaccine adjuvants elicit T cell responses dependent on transcription factors associated with effector and memory cell fates.
Collapse
Affiliation(s)
- Daria L Ivanova
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael G Harbell
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Augustus M Kilgore
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Erika L Lasda
- Department of Biochemistry & Molecular Genetics, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry & Molecular Genetics, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
20
|
Van Meerhaeghe T, Néel A, Brouard S, Degauque N. Regulation of CD8 T cell by B-cells: A narrative review. Front Immunol 2023; 14:1125605. [PMID: 36969196 PMCID: PMC10030846 DOI: 10.3389/fimmu.2023.1125605] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Activation of CD4 T cells by B cells has been extensively studied, but B cell-regulated priming, proliferation, and survival of CD8 T cells remains controversial. B cells express high levels of MHC class I molecules and can potentially act as antigen-presenting cells (APCs) for CD8 T cells. Several in vivo studies in mice and humans demonstrate the role of B cells as modulators of CD8 T cell function in the context of viral infections, autoimmune diseases, cancer and allograft rejection. In addition, B-cell depletion therapies can lead to impaired CD8 T-cell responses. In this review, we attempt to answer 2 important questions: 1. the role of B cell antigen presentation and cytokine production in the regulation of CD8 T cell survival and cell fate determination, and 2. The role of B cells in the formation and maintenance of CD8 T cell memory.
Collapse
Affiliation(s)
- Tess Van Meerhaeghe
- Department of Nephrology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Antoine Néel
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
- Internal Medicine Department, Nantes University Hospital, Nantes, France
| | - Sophie Brouard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
- *Correspondence: Nicolas Degauque,
| |
Collapse
|
21
|
Predictors for insufficient SARS-CoV-2 vaccination response upon treatment in multiple sclerosis. EBioMedicine 2022; 87:104411. [PMID: 36535106 PMCID: PMC9758504 DOI: 10.1016/j.ebiom.2022.104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Disease-modifying therapies (DMT) for multiple sclerosis (MS) influence SARS-CoV-2 vaccination response, which might have implications for vaccination regimens in individual patients. Expanding the knowledge of predictors for an insufficient vaccination response as a surrogate for protection against severe disease courses of infection in people with MS (pwMS) under DMT is of great importance in identifying high-risk populations. METHODS Cross-sectional analysis of vaccination titre and its modifiers, in a prospective real-world cohort of 386 individuals (285 pwMS and 101 healthy controls) by two independent immunoassays between October 2021 and June 2022. FINDINGS In our cohort, no difference in vaccination antibody level was evident between healthy controls (HC) and untreated pwMS. In pwMS lymphocyte levels, times vaccinated and DMT influence SARS-CoV-2 titre following vaccination. Those treated with selective sphingosine-1-phosphate receptor modulators (S1P) showed comparable vaccination titres to untreated; higher CD8 T cell levels prior to vaccination in B cell-depleted patients resulted in increased anti-spike SARS-CoV2 antibody levels. INTERPRETATION PwMS under DMT with anti-CD20 treatment, in particular those with decreased CD8 levels before vaccination, as well as non-selective S1P but not selective S1P are at increased risk for insufficient SARS-CoV-2 vaccination response. This argues for a close monitoring of anti-spike antibodies in order to customize individual vaccination regimens within these patients. FUNDING This work was supported by the German Research Foundation (DFG, CRC-TR-128 to TU, SB, and FZ).
Collapse
|
22
|
Lima K, Fontoura JC, de Souza PO, Fazolo T, Hilario G, Zorzetto R, Rodrigues Junior LC, Coimbra LD, Borin A, Bispo-dos-Santos K, Granja F, Marques RE, Zavaglia GO, Fernandes IR, Varela FH, Polese-Bonatto M, Tonini ML, Ikeda do Carmo GM, de Almeida WAF, Borges TJ, Nakaya HI, Proenca-Modena JL, Callegari-Jacques SM, Scotta MC, Stein RT, Bonorino C. SARS-CoV-2 infected children form early immune memory responses dominated by nucleocapsid-specific CD8+ T cells and antibodies. Front Immunol 2022; 13:1033364. [PMID: 36405692 PMCID: PMC9667737 DOI: 10.3389/fimmu.2022.1033364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 08/13/2023] Open
Abstract
This is the third year of the SARS-CoV-2 pandemic, and yet most children remain unvaccinated. COVID-19 in children manifests as mostly mild or asymptomatic, however high viral titers and strong cellular and humoral responses are observed upon acute infection. It is still unclear how long these responses persist, and if they can protect from re-infection and/or disease severity. Here, we analyzed immune memory responses in a cohort of children and adults with COVID-19. Important differences between children and adults are evident in kinetics and profile of memory responses. Children develop early N-specific cytotoxic T cell responses, that rapidly expand and dominate their immune memory to the virus. Children's anti-N, but not anti-S, antibody titers increase over time. Neutralization titers correlate with N-specific antibodies and CD8+T cells. However, antibodies generated by infection do not efficiently cross-neutralize variants Gamma or Delta. Our results indicate that mechanisms that protect from disease severity are possibly different from those that protect from reinfection, bringing novel insights for pediatric vaccine design. They also underline the importance of vaccination in children, who remain at risk for COVID-19 despite having been previously infected.
Collapse
Affiliation(s)
- Karina Lima
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Porto Alegre, Brazil
| | - Julia C. Fontoura
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Porto Alegre, Brazil
| | - Priscila Oliveira de Souza
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Porto Alegre, Brazil
| | - Tiago Fazolo
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Porto Alegre, Brazil
| | - Gabriel Hilario
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Porto Alegre, Brazil
| | - Renata Zorzetto
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Porto Alegre, Brazil
| | - Luiz C Rodrigues Junior
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Porto Alegre, Brazil
| | - Lais D. Coimbra
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Alexandre Borin
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Karina Bispo-dos-Santos
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
- Biodiversity Research Centre, Federal University of Roraima (UFRR), Boa Vista, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela Oliveira Zavaglia
- Social Responsibility – Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (PROADI-SUS ), Hospital Moinhos de Vento, Porto Alegre, Brazil
| | - Ingrid Rodrigues Fernandes
- Social Responsibility – Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (PROADI-SUS ), Hospital Moinhos de Vento, Porto Alegre, Brazil
| | - Fernanda Hammes Varela
- Social Responsibility – Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (PROADI-SUS ), Hospital Moinhos de Vento, Porto Alegre, Brazil
| | - Marcia Polese-Bonatto
- Social Responsibility – Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (PROADI-SUS ), Hospital Moinhos de Vento, Porto Alegre, Brazil
| | - Maiko Luís Tonini
- Coordenação-Geral de Vigilância das Doenças de Transmissão Respiratória de Condições Crônicas, Departamento de Doenças de Condições Crônicas e IST, Secretaria de Vigilância em Saúde – Ministério da Saúde (CGDR/DCCI/SVS/MS)., Brasília, Brazil
| | - Greice Madeleine Ikeda do Carmo
- Departamento de Imunizações e doenças transmissíveis, Secretaria de Vigilância em Saúde - Ministério da Saúde (DEIDT/SVS/MS), Brasília, Brazil
| | | | - Thiago J. Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Helder I. Nakaya
- Computational System Biology Laboratory (CSBL), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
- Hub of Global Health (HGH), University of Campinas (Unicamp), Campinas, Brazil
| | | | - Marcelo Comerlato Scotta
- Social Responsibility – Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (PROADI-SUS ), Hospital Moinhos de Vento, Porto Alegre, Brazil
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, Brazil
| | - Renato T. Stein
- Social Responsibility – Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (PROADI-SUS ), Hospital Moinhos de Vento, Porto Alegre, Brazil
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, Brazil
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre – UFCSPA, Porto Alegre, Brazil
- Department of Surgery, University of California at San Diego – UCSD, La Jolla, CA, United States
| |
Collapse
|
23
|
Zhong S, Li Q, Wen C, Li Y, Zhou Y, Jin Z, Ye G, Zhao Y, Hou J, Li Y, Tang L. Interferon α facilitates anti-HBV cellular immune response in a B cell-dependent manner. Antiviral Res 2022; 207:105420. [PMID: 36165866 DOI: 10.1016/j.antiviral.2022.105420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Dissecting the underlying mechanism of T cells remodeling mediated by interferon α (IFN-α) is indispensable for achieving an optimum therapeutic response in chronic hepatitis B (CHB) patients. However, little is known about B cells in this process. This study aims to elucidate the roles of B cells in IFN-α-mediated anti-hepatitis B virus (HBV) cellular immunity. METHOD The effects of B cells on IFN-α-mediated T cell response were investigated in B cell-deficient mouse model with HBV and IFN-α plasmid hydrodynamic injection. Single-cell RNA sequencing was performed to dissect the crosstalk among B cell and T cell subsets and the underlying molecule and pathway signatures on longitudinal blood samples from IFN-α-treated CHB patients. RESULTS B cell depletion impaired the functional T cell subsets, including HBV-specific CD8+ T cells, and engendered a delayed HBV clearance. IFN-α treatment boosted the response of HBV-specific CD8+ T cells, whereas such effects disappeared in B cell-deficient mice. The underlying mechanisms were associated with IFN-α-reinforced connections of B cells toward T cells as mediated by the antigen presentation and costimulatory functions in B cells. CONCLUSION IFN-α orchestrates protective HBV-specific cellular immunity in a B cell-dependent manner.
Collapse
Affiliation(s)
- Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifan Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Jin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanda Zhao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Luque Paz D, Sesques P, Wallet F, Bachy E, Ader F. The burden of SARS-CoV-2 in patients receiving chimeric antigen receptor T cell immunotherapy: everything to lose. Expert Rev Anti Infect Ther 2022; 20:1155-1162. [PMID: 35838042 DOI: 10.1080/14787210.2022.2101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Chimeric antigen receptor T (CAR-T) cell immunotherapy has revolutionized the prognosis of refractory or relapsed B-cell malignancies. CAR-T cell recipients have immunosuppression generated by B-cell aplasia leading to a higher susceptibility to respiratory virus infections and poor response to vaccination. AREAS COVERED This review focuses on the challenge posed by B-cell targeted immunotherapies: managing long-lasting B-cell impairment during the successive surges of a deadly viral pandemic. We restricted this report to data regarding vaccine efficacy in CAR-T cell recipients, outcomes after developing COVID-19 and specificities of treatment management. We searched in MEDLINE database to identify relevant studies until March 31st 2022. EXPERT OPINION Among available observational studies, the pooled mortality rate reached 40% in CAR-T cell recipients infected by SARS-CoV-2. Additionally, vaccines responses seem to be widely impaired in recipients (seroconversion 20%, T-cell response 50%). In this setting of B-cell depletion, passive immunotherapy is the backbone of treatment. Convalescent plasma therapy has proven to be a highly effective curative treatment with rare adverse events. Neutralizing monoclonal antibodies could be used as pre-exposure prophylaxis or early treatment but their neutralizing activity is constantly challenged by new variants. In order to reduce viral replication, direct-acting antiviral drugs should be considered.
Collapse
Affiliation(s)
- David Luque Paz
- Université Rennes-I, Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, Rennes, France.,Département des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, France
| | - Pierre Sesques
- Service d'Hématologie clinique, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Florent Wallet
- Service d'Anesthésie, médecine intensive, réanimation, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Emmanuel Bachy
- Service d'Hématologie clinique, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Florence Ader
- Département des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Lyon, Infectious diseases, Hôpital de la Croix-Rousse, Lyon, France
| |
Collapse
|
25
|
Shimizu T, Kawaguchi Y, Ando H, Ishima Y, Ishida T. Development of an Antigen Delivery System for a B Cell-Targeted Vaccine as an Alternative to Dendritic Cell-Targeted Vaccines. Chem Pharm Bull (Tokyo) 2022; 70:341-350. [DOI: 10.1248/cpb.c22-00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yoshino Kawaguchi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
26
|
Spracklen TF, Mendelsohn SC, Butters C, Facey-Thomas H, Stander R, Abrahams D, Erasmus M, Baguma R, Day J, Scott C, Zühlke LJ, Kassiotis G, Scriba TJ, Webb K. IL27 gene expression distinguishes multisystem inflammatory syndrome in children from febrile illness in a South African cohort. Front Immunol 2022; 13:992022. [PMID: 36148243 PMCID: PMC9486543 DOI: 10.3389/fimmu.2022.992022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Multisystem inflammatory syndrome in children (MIS-C) is a severe acute inflammatory reaction to SARS-CoV-2 infection in children. There is a lack of data describing differential expression of immune genes in MIS-C compared to healthy children or those with other inflammatory conditions and how expression changes over time. In this study, we investigated expression of immune-related genes in South African MIS-C patients and controls. Methods The cohort included 30 pre-treatment MIS-C cases and 54 healthy non-inflammatory paediatric controls. Other controls included 34 patients with juvenile systemic lupus erythematosus, Kawasaki disease or other inflammatory conditions. Longitudinal post-treatment MIS-C specimens were available at various timepoints. Expression of 80 immune-related genes was determined by real-time quantitative PCR. Results A total of 29 differentially expressed genes were identified in pre-treatment MIS-C compared to healthy controls. Up-regulated genes were found to be overrepresented in innate immune pathways including interleukin-1 processing and pyroptosis. Post-treatment follow-up data were available for up to 1,200 hours after first treatment. All down-regulated genes and 17/18 up-regulated genes resolved to normal levels in the timeframe, and all patients clinically recovered. When comparing MIS-C to other febrile conditions, only IL27 expression could differentiate these two groups with high sensitivity and specificity. Conclusions These data indicate a unique 29-gene signature of MIS-C in South African children. The up-regulation of interleukin-1 and pyroptosis pathway genes highlights the role of the innate immune system in MIS-C. IL-27 is a potent anti-inflammatory and antiviral cytokine that may distinguish MIS-C from other conditions in our setting.
Collapse
Affiliation(s)
- Timothy F Spracklen
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Claire Butters
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Raphaella Stander
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Debbie Abrahams
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Baguma
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Day
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Christiaan Scott
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Liesl J Zühlke
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,South African Medical Research Council, Cape Town, South Africa
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Infectious Disease, St Mary's Hospital, Imperial College, London, United Kingdom
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Webb
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,Crick African Network, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
27
|
Gu S, Qian L, Zhang Y, Chen K, Li Y, Wang J, Wang P. Significance of intratumoral infiltration of B cells in cancer immunotherapy: From a single cell perspective. Biochim Biophys Acta Rev Cancer 2021; 1876:188632. [PMID: 34626740 DOI: 10.1016/j.bbcan.2021.188632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy for cancer has provided new treatment approaches for malignant tumors, but there are low rates of response and high rates of resistance. The most recent sequencing method which is called single-cell RNA sequencing(scRNA-seq) determines the transcriptome at the single cell level, which allows high-resolution dynamic monitoring of the tumor microenvironment (TME) during immunotherapy. As an important part of humoral immunity, tumor-infiltrated B cells have been reported to have distinct functions in anti-tumor immunity, which are characterized by their RNA transcriptome, membrane surface receptors, and immunoglobulin secretion, suggesting great immunotherapeutic effects. On the basis of the important roles of B cells in immunotherapy reported in recent publications, we discuss the tumor-infiltrated B cells' subpopulations, differentiation trajectory, and interactions with other cells in the TME in this review, hoping to illustrate its significance in potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sijia Gu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|