1
|
Wei RM, Zhang MY, Fang SK, Liu GX, Hu F, Li XY, Zhang KX, Zhang JY, Liu XC, Zhang YM, Chen GH. Melatonin attenuates intermittent hypoxia-induced cognitive impairment in aged mice: The role of inflammation and synaptic plasticity. Psychoneuroendocrinology 2025; 171:107210. [PMID: 39378690 DOI: 10.1016/j.psyneuen.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Intermittent hypoxia (IH), a major pathophysiologic alteration in obstructive sleep apnea syndrome (OSAS), is an important contributor to cognitive impairment. Increasing research suggests that melatonin has anti-inflammatory properties and improves functions related to synaptic plasticity. However, it is unclear whether melatonin has a protective effect against OSAS-induced cognitive dysfunction in aged individuals and the involved mechanisms are also unclear. Therefore, in the study, the effects of exposure to IH alone and IH in combination with daily melatonin treatment were investigated in C57BL/6 J mice aged 18 months. Assessment of the cognitive ability of mice in a Morris water maze showed that melatonin attenuated IH-induced impairment of learning and memory in aged mice. Enzyme-linked immunosorbent assay, polymerase chain reaction, and western blotting molecular techniques showed that melatonin treatment reduced the levels of the proinflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, decreased the levels of NOD-like receptor thermal protein domain associated protein 3 and nuclear factor kappa-B, lowered the levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and increased the levels of the synaptic proteins, activity-regulated cytoskeleton-associated protein, growth-associated protein-43, postsynaptic density protein 95, and synaptophysin in IH-exposed mice. Moreover, electrophysiological results showed that melatonin ameliorated the decline in long-term potentiation induced by IH. The results suggest that melatonin can ameliorate IH-induced cognitive deficits by inhibiting neuroinflammation and improving synaptic plasticity in aged mice.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Meng-Ying Zhang
- Department of Anesthesiology, the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Shi-Kun Fang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gao-Xia Liu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Fei Hu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Yan Li
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Kai-Xuan Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Jing-Ya Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Chun Liu
- Department of Neurology, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
| | - Yue-Ming Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gui-Hai Chen
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| |
Collapse
|
2
|
Tavalin SJ. Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors. J Biol Chem 2024:108147. [PMID: 39732167 DOI: 10.1016/j.jbc.2024.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca2+ entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations. This region bears similarity to a binding motif for calcineurin (CaN), a Ca2+/calmodulin-dependent phosphatase. Interaction assays confirm that APP associates with CaN in native tissue as well as in a heterologous expression system. This capacity to bind CaN extends to APP family members amyloid precursor-like protein 1 and amyloid precursor-like protein 2 (APLP1 and APLP2, respectively). Electrophysiological analysis demonstrates that APP and its family members limit NMDAR activity, in a manner consistent with CaN-dependent regulation of NMDAR desensitization. FAD mutations, in this region of APP, impair this regulation and consequently enhance NMDAR activity. Thus, by altering the landscape for CaN regulation of NMDA receptors, FAD mutations in APP may contribute to faulty information processing by modifying the dynamic range and temporal window of a critical signal for synaptic plasticity.
Collapse
Affiliation(s)
- Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163.
| |
Collapse
|
3
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
4
|
Qi Y, Zhou Y, Li J, Zhu F, Guo G, Wang C, Yu M, Wang Y, Ma T, Feng S, Zhou L. 3'-Deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome. Neural Regen Res 2024; 19:2270-2280. [PMID: 38488561 PMCID: PMC11034599 DOI: 10.4103/1673-5374.392887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00028/figure1/v/2024-02-06T055622Z/r/image-tiff Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome. 3'-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3'-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3'-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3'-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3'-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3'-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3'-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3'-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yize Qi
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yao Zhou
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiyang Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fangyuan Zhu
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Gengni Guo
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Can Wang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Man Yu
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yijie Wang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Anesthesiology, The Second People’s Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Shanwu Feng
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Li Zhou
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Hu NW, Ondrejcak T, Klyubin I, Yang Y, Walsh DM, Livesey FJ, Rowan MJ. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun 2024; 6:fcae333. [PMID: 39391333 PMCID: PMC11465085 DOI: 10.1093/braincomms/fcae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive cognitive decline in older individuals accompanied by the deposition of two pathognomonic proteins amyloid-β and tau. It is well documented that synaptotoxic soluble amyloid-β aggregates facilitate synaptic long-term depression, a major form of synaptic weakening that correlates with cognitive status in Alzheimer's disease. Whether synaptotoxic tau, which is also associated strongly with progressive cognitive decline in patients with Alzheimer's disease and other tauopathies, also causes facilitation remains to be clarified. Young male adult and middle-aged rats were employed. Synaptotoxic tau and amyloid-β were obtained from different sources including (i) aqueous brain extracts from patients with Alzheimer's disease and Pick's disease tauopathy; (ii) the secretomes of induced pluripotent stem cell-derived neurons from individuals with trisomy of chromosome 21; and (iii) synthetic amyloid-β. In vivo electrophysiology was performed in urethane anaesthetized animals. Evoked field excitatory postsynaptic potentials were recorded from the stratum radiatum in the CA1 area of the hippocampus with electrical stimulation to the Schaffer collateral-commissural pathway. To study the enhancement of long-term depression, relatively weak low-frequency electrical stimulation was used to trigger peri-threshold long-term depression. Synaptotoxic forms of tau or amyloid-β were administered intracerebroventricularly. The ability of agents that inhibit the cytokine tumour necrosis factor-α or the integrated stress response to prevent the effects of amyloid-β or tau on long-term depression was assessed after local or systemic injection, respectively. We found that diffusible tau from Alzheimer's disease or Pick's disease patients' brain aqueous extracts or the secretomes of trisomy of chromosome 21 induced pluripotent stem cell-derived neurons, like Alzheimer's disease brain-derived amyloid-β and synthetic oligomeric amyloid-β, potently enhanced synaptic long-term depression in live rats. We further demonstrated that long-term depression facilitation by both tau and amyloid-β was age-dependent, being more potent in middle-aged compared with young animals. Finally, at the cellular level, we provide pharmacological evidence that tumour necrosis factor-α and the integrated stress response are downstream mediators of long-term depression facilitation by both synaptotoxic tau and amyloid-β. Overall, these findings reveal the promotion of an age-dependent synaptic weakening by both synaptotoxic tau and amyloid-β. Pharmacologically targeting shared mechanisms of tau and amyloid-β synaptotoxicity, such as tumour necrosis factor-α or the integrated stress response, provides an attractive strategy to treat early Alzheimer's disease.
Collapse
Affiliation(s)
- Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Yin Yang
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London WC1N 1DZ, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|
6
|
Yu L, Li Y, Lv Y, Gu B, Cai J, Liu QS, Zhao L. Treadmill Exercise Facilitates Synaptic Plasticity in APP/PS1 Mice by Regulating Hippocampal AMPAR Activity. Cells 2024; 13:1608. [PMID: 39404372 PMCID: PMC11475322 DOI: 10.3390/cells13191608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Accumulating evidence underscores exercise as a straightforward and cost-effective lifestyle intervention capable of mitigating the risk and slowing the emergence and progression of Alzheimer's disease (AD). However, the intricate cellular and molecular mechanisms mediating these exercise-induced benefits in AD remain elusive. The present study delved into the impact of treadmill exercise on memory retrieval performance, hippocampal synaptic plasticity, synaptic morphology, and the expression and activity of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors (AMPARs) in 6-month-old APP/PS1 mice. APP/PS1 mice (4-month-old males) were randomly assigned to either a treadmill exercise group or a sedentary group, with C57BL/6J mice (4-month-old males) as the control group (both exercise and sedentary). The exercise regimen spanned 8 weeks. Our findings revealed that 8-week treadmill exercise reversed memory retrieval impairment in step-down fear conditioning in 6-month-old APP/PS1 mice. Additionally, treadmill exercise enhanced basic synaptic strength, short-term potentiation (STP), and long-term potentiation (LTP) of the hippocampus in these mice. Moreover, treadmill exercise correlated with an augmentation in synapse numbers, refinement of synaptic structures, and heightened expression and activity of AMPARs. Our findings suggest that treadmill exercise improves behavioral performance and facilitates synaptic transmission by increasing structural synaptic plasticity and the activity of AMPARs in the hippocampus of 6-month-old APP/PS1 mice, which is involved in pre- and postsynaptic processes.
Collapse
Affiliation(s)
- Laikang Yu
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China;
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China; (Y.L.); (Y.L.); (B.G.); (J.C.)
| | - Yan Li
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China; (Y.L.); (Y.L.); (B.G.); (J.C.)
| | - Yuanyuan Lv
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China; (Y.L.); (Y.L.); (B.G.); (J.C.)
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Boya Gu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China; (Y.L.); (Y.L.); (B.G.); (J.C.)
| | - Jiajia Cai
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China; (Y.L.); (Y.L.); (B.G.); (J.C.)
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Li Zhao
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China; (Y.L.); (Y.L.); (B.G.); (J.C.)
| |
Collapse
|
7
|
Prikhodko O, Freund RK, Sullivan E, Kennedy MJ, Dell'Acqua ML. Amyloid-β Causes NMDA Receptor Dysfunction and Dendritic Spine Loss through mGluR1 and AKAP150-Anchored Calcineurin Signaling. J Neurosci 2024; 44:e0675242024. [PMID: 39134419 PMCID: PMC11391497 DOI: 10.1523/jneurosci.0675-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Neuronal excitatory synapses are primarily located on small dendritic protrusions called spines. During synaptic plasticity underlying learning and memory, Ca2+ influx through postsynaptic NMDA-type glutamate receptors (NMDARs) initiates signaling pathways that coordinate changes in dendritic spine structure and synaptic function. During long-term potentiation (LTP), high levels of NMDAR Ca2+ influx promote increases in both synaptic strength and dendritic spine size through activation of Ca2+-dependent protein kinases. In contrast, during long-term depression (LTD), low levels of NMDAR Ca2+ influx promote decreased synaptic strength and spine shrinkage and elimination through activation of the Ca2+-dependent protein phosphatase calcineurin (CaN), which is anchored at synapses via the scaffold protein A-kinase anchoring protein (AKAP)150. In Alzheimer's disease (AD), the pathological agent amyloid-β (Aβ) may impair learning and memory through biasing NMDAR Ca2+ signaling pathways toward LTD and spine elimination. By employing AKAP150 knock-in mice of both sexes with a mutation that disrupts CaN anchoring to AKAP150, we revealed that local, postsynaptic AKAP-CaN-LTD signaling was required for Aβ-mediated impairment of NMDAR synaptic Ca2+ influx, inhibition of LTP, and dendritic spine loss. Additionally, we found that Aβ acutely engages AKAP-CaN signaling through activation of G-protein-coupled metabotropic glutamate receptor 1 (mGluR1) leading to dephosphorylation of NMDAR GluN2B subunits, which decreases Ca2+ influx to favor LTD over LTP, and cofilin, which promotes F-actin severing to destabilize dendritic spines. These findings reveal a novel interplay between NMDAR and mGluR1 signaling that converges on AKAP-anchored CaN to coordinate dephosphorylation of postsynaptic substrates linked to multiple aspects of Aβ-mediated synaptic dysfunction.
Collapse
Affiliation(s)
- Olga Prikhodko
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Emily Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
8
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. How calcineurin inhibitors affect cognition. Acta Physiol (Oxf) 2024; 240:e14161. [PMID: 38747643 DOI: 10.1111/apha.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
AIMS With a focus on the discrepancy between preclinical and clinical findings, this review will gather comprehensive information about the effects of calcineurin inhibitors (CNI) on cognitive function and related brain pathology from in vitro, in vivo, and clinical studies. We also summarize the potential mechanisms that underlie the pathways related to CNI-induced cognitive impairment. METHODS We systematically searched articles in PubMed using keywords 'calcineurin inhibitor*' and 'cognition' to identify related articles, which the final list pertaining to underlying mechanisms of CNI on cognition. RESULTS Several studies have reported an association between calcineurin and the neuropathology of Alzheimer's disease (AD). AD is the most common neurocognitive disorder associated with amyloid plaques and neurofibrillary tangles in the brain, leading to cognitive impairment. CNI, including tacrolimus and cyclosporin A, are commonly prescribed for patients with transplantation of solid organs such as kidney, liver, or heart, those drugs are currently being used as long-term immunosuppressive therapy. Although preclinical models emphasize the favorable effects of CNI on the restoration of brain pathology due to the impacts of calcineurin on the alleviation of amyloid-beta deposition and tau hyperphosphorylation, or rescuing synaptic and mitochondrial functions, treatment-related neurotoxicity, resulting in cognitive dysfunctions has been observed in clinical settings of patients who received CNI. CONCLUSION Inconsistent results of CNI on cognition from clinical studies have been observed due to impairment of the blood-brain barrier, neuroinflammation mediated by reactive oxygen species, and alteration in mitochondrial fission, and extended research is required to confirm its promising use in cognitive impairment.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siripron C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Yin X, Zhou H, Cao T, Yang X, Meng F, Dai X, Wang Y, Li S, Zhai W, Yang Z, Chen N, Zhou R. Rational Design of Dual-Functionalized Gd@C 82 Nanoparticles to Relieve Neuronal Cytotoxicity in Alzheimer's Disease via Inhibition of Aβ Aggregation. ACS NANO 2024; 18:15416-15431. [PMID: 38840269 DOI: 10.1021/acsnano.3c08823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The accumulation of amyloid-β (Aβ) peptides is a major hallmark of Alzheimer's disease (AD) and plays a crucial role in its pathogenesis. Particularly, the structured oligomeric species rich in β-sheet formations were implicated in neuronal organelle damage. Addressing this formidable challenge requires identifying candidates capable of inhibiting peptide aggregation or disaggregating preformed oligomers for effective antiaggregation-based AD therapy. Here, we present a dual-functional nanoinhibitor meticulously designed to target the aggregation driving force and amyloid fibril spatial structure. Leveraging the exceptional structural stability and facile tailoring capability of endohedral metallofullerene Gd@C82, we introduce desired hydrogen-binding sites and charged groups, which are abundant on its surface for specific designs. Impressively, these designs endow the resultant functionalized-Gd@C82 nanoparticles (f-Gd@C82 NPs) with high capability of redirecting peptide self-assembly toward disordered, off-pathway species, obstructing the early growth of protofibrils, and disaggregating the preformed well-ordered protofibrils or even mature Aβ fibrils. This results in considerable alleviation of Aβ peptide-induced neuronal cytotoxicity, rescuing neuronal death and synaptic loss in primary neuron models. Notably, these modifications significantly improved the dispersibility of f-Gd@C82 NPs, thus substantially enhancing its bioavailability. Moreover, f-Gd@C82 NPs demonstrate excellent cytocompatibility with various cell lines and possess the ability to penetrate the blood-brain barrier in mice. Large-scale molecular dynamics simulations illuminate the inhibition and disaggregation mechanisms. Our design successfully overcomes the limitations of other nanocandidates, which often overly rely on hydrophobic interactions or photothermal conversion properties, and offers a viable direction for developing anti-AD agents through the inhibition and even reversal of Aβ aggregation.
Collapse
Affiliation(s)
- Xiuhua Yin
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Hong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Tiantian Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Suzhou Institute of Trade and Commerce, Suzhou 215009, China
| | - Xiner Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Fei Meng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Yifan Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Sijie Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Wangsong Zhai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Barbour AJ, Gourmaud S, Lancaster E, Li X, Stewart DA, Hoag KF, Irwin DJ, Talos DM, Jensen FE. Seizures exacerbate excitatory: inhibitory imbalance in Alzheimer's disease and 5XFAD mice. Brain 2024; 147:2169-2184. [PMID: 38662500 PMCID: PMC11146435 DOI: 10.1093/brain/awae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 05/14/2024] Open
Abstract
Approximately 22% of Alzheimer's disease (AD) patients suffer from seizures, and the co-occurrence of seizures and epileptiform activity exacerbates AD pathology and related cognitive deficits, suggesting that seizures may be a targetable component of AD progression. Given that alterations in neuronal excitatory:inhibitory (E:I) balance occur in epilepsy, we hypothesized that decreased markers of inhibition relative to those of excitation would be present in AD patients. We similarly hypothesized that in 5XFAD mice, the E:I imbalance would progress from an early stage (prodromal) to later symptomatic stages and be further exacerbated by pentylenetetrazol (PTZ) kindling. Post-mortem AD temporal cortical tissues from patients with or without seizure history were examined for changes in several markers of E:I balance, including levels of the inhibitory GABAA receptor, the sodium potassium chloride cotransporter 1 (NKCC1) and potassium chloride cotransporter 2 (KCC2) and the excitatory NMDA and AMPA type glutamate receptors. We performed patch-clamp electrophysiological recordings from CA1 neurons in hippocampal slices and examined the same markers of E:I balance in prodromal 5XFAD mice. We next examined 5XFAD mice at chronic stages, after PTZ or control protocols, and in response to chronic mTORC1 inhibitor rapamycin, administered following kindled seizures, for markers of E:I balance. We found that AD patients with comorbid seizures had worsened cognitive and functional scores and decreased GABAA receptor subunit expression, as well as increased NKCC1/KCC2 ratios, indicative of depolarizing GABA responses. Patch clamp recordings of prodromal 5XFAD CA1 neurons showed increased intrinsic excitability, along with decreased GABAergic inhibitory transmission and altered glutamatergic neurotransmission, indicating that E:I imbalance may occur in early disease stages. Furthermore, seizure induction in prodromal 5XFAD mice led to later dysregulation of NKCC1/KCC2 and a reduction in GluA2 AMPA glutamate receptor subunit expression, indicative of depolarizing GABA receptors and calcium permeable AMPA receptors. Finally, we found that chronic treatment with the mTORC1 inhibitor, rapamycin, at doses we have previously shown to attenuate seizure-induced amyloid-β pathology and cognitive deficits, could also reverse elevations of the NKCC1/KCC2 ratio in these mice. Our data demonstrate novel mechanisms of interaction between AD and epilepsy and indicate that targeting E:I balance, potentially with US Food and Drug Administration-approved mTOR inhibitors, hold therapeutic promise for AD patients with a seizure history.
Collapse
Affiliation(s)
- Aaron J Barbour
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Gourmaud
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eunjoo Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Stewart
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Duke University School of Medicine, Durham, NC 27708, USA
| | - Keegan F Hoag
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Martinez TP, Larsen ME, Sullivan E, Woolfrey KM, Dell’Acqua ML. Amyloid-β-induced dendritic spine elimination requires Ca 2+-permeable AMPA receptors, AKAP-Calcineurin-NFAT signaling, and the NFAT target gene Mdm2. eNeuro 2024; 11:ENEURO.0175-23.2024. [PMID: 38331575 PMCID: PMC10925900 DOI: 10.1523/eneuro.0175-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Alzheimer's Disease (AD) is associated with brain accumulation of synaptotoxic amyloid-β (Aβ) peptides produced by the proteolytic processing of amyloid precursor protein (APP). Cognitive impairments associated with AD correlate with dendritic spine and excitatory synapse loss, particularly within the hippocampus. In rodents, soluble Aβ oligomers impair hippocampus-dependent learning and memory, promote dendritic spine loss, inhibit NMDA-type glutamate receptor (NMDAR)-dependent long-term potentiation (LTP), and promote synaptic depression (LTD), at least in part through activation of the Ca2+-CaM-dependent phosphatase calcineurin (CaN). Yet, questions remain regarding Aβ-dependent postsynaptic CaN signaling specifically at the synapse to mediate its synaptotoxicity. Here, we use pharmacologic and genetic approaches to demonstrate a role for postsynaptic signaling via A kinase-anchoring protein 150 (AKAP150)-scaffolded CaN in mediating Aβ-induced dendritic spine loss in hippocampal neurons from rats and mice of both sexes. In particular, we found that Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs), which were previously shown to signal through AKAP-anchored CaN to promote both LTD and Aβ-dependent inhibition of LTP, are also required upstream of AKAP-CaN signaling to mediate spine loss via overexpression of APP containing multiple mutations linked to familial, early-onset AD and increased Aβ production. In addition, we found that the CaN-dependent nuclear factor of activated T-cells (NFAT) transcription factors are required downstream to promote Aβ-mediated dendritic spine loss. Finally, we identified the E3-ubiquitin ligase Mdm2, which was previously linked to LTD and developmental synapse elimination, as a downstream NFAT target gene upregulated by Aβ whose enzymatic activity is required for Aβ-mediated spine loss.Significance Statement Impaired hippocampal function and synapse loss are hallmarks of AD linked to Aβ oligomers. Aβ exposure acutely blocks hippocampal LTP and enhances LTD and chronically leads to dendritic spine synapse loss. In particular, Aβ hijacks normal plasticity mechanisms, biasing them toward synapse weakening/elimination, with previous studies broadly linking CaN phosphatase signaling to this synaptic dysfunction. However, we do not understand how Aβ engages signaling specifically at synapses. Here we elucidate a synapse-to-nucleus signaling pathway coordinated by the postsynaptic scaffold protein AKAP150 that is activated by Ca2+ influx through CP-AMPARs and transduced to nucleus by CaN-NFAT signaling to transcriptionally upregulate the E3-ubiquitin ligase Mdm2 that is required for Aβ-mediated spine loss. These findings identify Mdm2 as potential therapeutic target for AD.
Collapse
Affiliation(s)
- Tyler P. Martinez
- Pharmacology PhD Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Matthew E. Larsen
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience PhD Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Emily Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kevin M. Woolfrey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
12
|
Zhang T, Dolga AM, Eisel ULM, Schmidt M. Novel crosstalk mechanisms between GluA3 and Epac2 in synaptic plasticity and memory in Alzheimer's disease. Neurobiol Dis 2024; 191:106389. [PMID: 38142840 DOI: 10.1016/j.nbd.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which accounts for the most cases of dementia worldwide. Impaired memory, including acquisition, consolidation, and retrieval, is one of the hallmarks in AD. At the cellular level, dysregulated synaptic plasticity partly due to reduced long-term potentiation (LTP) and enhanced long-term depression (LTD) underlies the memory deficits in AD. GluA3 containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are one of key receptors involved in rapid neurotransmission and synaptic plasticity. Recent studies revealed a novel form of GluA3 involved in neuronal plasticity that is dependent on cyclic adenosine monophosphate (cAMP), rather than N-methyl-d-aspartate (NMDA). However, this cAMP-dependent GluA3 pathway is specifically and significantly impaired by amyloid beta (Aβ), a pathological marker of AD. cAMP is a key second messenger that plays an important role in modulating memory and synaptic plasticity. We previously reported that exchange protein directly activated by cAMP 2 (Epac2), acting as a main cAMP effector, plays a specific and time-limited role in memory retrieval. From electrophysiological perspective, Epac2 facilities the maintenance of LTP, a cellular event closely associated with memory retrieval. Additionally, Epac2 was found to be involved in the GluA3-mediated plasticity. In this review, we comprehensively summarize current knowledge regarding the specific roles of GluA3 and Epac2 in synaptic plasticity and memory, and their potential association with AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Català-Solsona J, Lutzu S, Lituma PJ, Fábregas-Ordoñez C, Siedlecki D, Giménez-Llort L, Miñano-Molina AJ, Saura CA, Castillo PE, Rodriguez-Álvarez J. Nr4a2 blocks oAβ-mediated synaptic plasticity dysfunction and ameliorates spatial memory deficits in the APP Sw,Ind mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577010. [PMID: 38328087 PMCID: PMC10849715 DOI: 10.1101/2024.01.24.577010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease AD is associated with disruptions in neuronal communication, especially in brain regions crucial for learning and memory, such as the hippocampus. The amyloid hypothesis suggests that the accumulation of amyloid-beta oligomers (oAβ) contributes to synaptic dysfunction by internalisation of synaptic AMPA receptors. Recently, it has been reported that Nr4a2, a member of the Nr4a family of orphan nuclear receptors, plays a role in hippocampal synaptic plasticity by regulating BDNF and synaptic AMPA receptors. Here, we demonstrate that oAβ inhibits activity-dependent Nr4a2 activation in hippocampal neurons, indicating a potential link between oAβ and Nr4a2 down-regulation. Furthermore, we have observed a reduction in Nr4a2 protein levels in postmortem hippocampal tissue samples from early AD stages. Pharmacological activation of Nr4a2 proves effective in preventing oAβ-mediated synaptic depression in the hippocampus. Notably, Nr4a2 overexpression in the hippocampus of AD mouse models ameliorates spatial learning and memory deficits. In conclusion, the findings suggest that oAβ may contribute to early cognitive impairment in AD by blocking Nr4a2 activation, leading to synaptic dysfunction. Thus, our results further support that Nr4a2 activation is a potential therapeutic target to mitigate oAβ-induced synaptic and cognitive impairments in the early stages of Alzheimer's disease.
Collapse
|
14
|
Cao YY, Wu LL, Li XN, Yuan YL, Zhao WW, Qi JX, Zhao XY, Ward N, Wang J. Molecular Mechanisms of AMPA Receptor Trafficking in the Nervous System. Int J Mol Sci 2023; 25:111. [PMID: 38203282 PMCID: PMC10779435 DOI: 10.3390/ijms25010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Synaptic plasticity enhances or reduces connections between neurons, affecting learning and memory. Postsynaptic AMPARs mediate greater than 90% of the rapid excitatory synaptic transmission in glutamatergic neurons. The number and subunit composition of AMPARs are fundamental to synaptic plasticity and the formation of entire neural networks. Accordingly, the insertion and functionalization of AMPARs at the postsynaptic membrane have become a core issue related to neural circuit formation and information processing in the central nervous system. In this review, we summarize current knowledge regarding the related mechanisms of AMPAR expression and trafficking. The proteins related to AMPAR trafficking are discussed in detail, including vesicle-related proteins, cytoskeletal proteins, synaptic proteins, and protein kinases. Furthermore, significant emphasis was placed on the pivotal role of the actin cytoskeleton, which spans throughout the entire transport process in AMPAR transport, indicating that the actin cytoskeleton may serve as a fundamental basis for AMPAR trafficking. Additionally, we summarize the proteases involved in AMPAR post-translational modifications. Moreover, we provide an overview of AMPAR transport and localization to the postsynaptic membrane. Understanding the assembly, trafficking, and dynamic synaptic expression mechanisms of AMPAR may provide valuable insights into the cognitive decline associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Ling-Ling Wu
- School of Medicine, Shanghai University, Shanghai 200444, China;
| | - Xiao-Nan Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Yu-Lian Yuan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Wan-Wei Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Jing-Xuan Qi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Xu-Yu Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Natalie Ward
- Medical Laboratory, Exceptional Community Hospital, 19060 N John Wayne Pkwy, Maricopa, AZ 85139, USA;
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| |
Collapse
|
15
|
Bai X, Zhang K, Ou C, Mu Y, Chi D, Zhang J, Huang J, Li X, Zhang Y, Huang W, Ouyang H. AKAP150 from nucleus accumbens dopamine D1 and D2 receptor-expressing medium spiny neurons regulates morphine withdrawal. iScience 2023; 26:108227. [PMID: 37953959 PMCID: PMC10637943 DOI: 10.1016/j.isci.2023.108227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Dopamine D1 receptor-expressing medium spiny neurons (D1R-MSNs) and dopamine D2 receptor-expressing MSNs (D2R-MSNs) in nucleus accumbens (NAc) have been demonstrated to show different effects on reward and memory of abstinence. A-kinase anchoring protein 150 (AKAP150) expression in NAc is significantly upregulated and contributes to the morphine withdrawal behavior. However, the underlying mechanism of AKAP150 under opioid withdrawal remains unclear. In this study, AKAP150 expression in NAc is upregulated in naloxone-precipitated morphine withdrawal model, and knockdown of AKAP150 alleviates morphine withdrawal somatic signs and improves the performance of conditioned place aversion (CPA) test. AKAP150 in NAc D1R-MSNs is related to modulation of the performance of morphine withdrawal CPA test, while AKAP150 in NAc D2R-MSNs is relevant to the severity of somatic responses. Our results suggest that AKAP150 from D1R-MSNs or D2R-MSNs in NAc contributes to the developmental process of morphine withdrawal but plays different roles in aspects of behavior or psychology.
Collapse
Affiliation(s)
- Xiaohui Bai
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Chaopeng Ou
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yanyu Mu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Dongmei Chi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jianxing Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jingxiu Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xile Li
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yingjun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
16
|
Li MD, Wang L, Zheng YQ, Huang DH, Xia ZX, Liu JM, Tian D, OuYang H, Wang ZH, Huang Z, Lin XS, Zhu XQ, Wang SY, Chen WK, Yang SW, Zhao YL, Liu JA, Shen ZC. DHHC2 regulates fear memory formation, LTP, and AKAP150 signaling in the hippocampus. iScience 2023; 26:107561. [PMID: 37664599 PMCID: PMC10469764 DOI: 10.1016/j.isci.2023.107561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Palmitoyl acyltransferases (PATs) have been suggested to be involved in learning and memory. However, the underlying mechanisms have not yet been fully elucidated. Here, we found that the activity of DHHC2 was upregulated in the hippocampus after fear conditioning, and DHHC2 knockdown impaired fear induced memory and long-term potentiation (LTP). Additionally, the activity of DHHC2 and its synaptic expression were increased after high frequency stimulation (HFS) or glycine treatment. Importantly, fear learning selectively augmented the palmitoylation level of AKAP150, not PSD-95, and this effect was abolished by DHHC2 knockdown. Furthermore, 2-bromopalmitic acid (2-BP), a palmitoylation inhibitor, attenuated the increased palmitoylation level of AKAP150 and the interaction between AKAP150 and PSD-95 induced by HFS. Lastly, DHHC2 knockdown reduced the phosphorylation level of GluA1 at Ser845, and also induced an impairment of LTP in the hippocampus. Our results suggest that DHHC2 plays a critical role in regulating fear memory via AKAP150 signaling.
Collapse
Affiliation(s)
- Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lu Wang
- Department of Nephrology, Fuzhou Children’s Hospital of Fujian Province, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yu-Qi Zheng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan-Hong Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430000, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hui OuYang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zi-Hao Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Shan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Qian Zhu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jia-An Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
17
|
Wang N, Yang X, Zhao Z, Liu D, Wang X, Tang H, Zhong C, Chen X, Chen W, Meng Q. Cooperation between neurovascular dysfunction and Aβ in Alzheimer's disease. Front Mol Neurosci 2023; 16:1227493. [PMID: 37654789 PMCID: PMC10466809 DOI: 10.3389/fnmol.2023.1227493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
The amyloid-β (Aβ) hypothesis was once believed to represent the pathogenic process of Alzheimer's disease (AD). However, with the failure of clinical drug development and the increasing understanding of the disease, the Aβ hypothesis has been challenged. Numerous recent investigations have demonstrated that the vascular system plays a significant role in the course of AD, with vascular damage occurring prior to the deposition of Aβ and neurofibrillary tangles (NFTs). The question of how Aβ relates to neurovascular function and which is the trigger for AD has recently come into sharp focus. In this review, we outline the various vascular dysfunctions associated with AD, including changes in vascular hemodynamics, vascular cell function, vascular coverage, and blood-brain barrier (BBB) permeability. We reviewed the most recent findings about the complicated Aβ-neurovascular unit (NVU) interaction and highlighted its vital importance to understanding disease pathophysiology. Vascular defects may lead to Aβ deposition, neurotoxicity, glial cell activation, and metabolic dysfunction; In contrast, Aβ and oxidative stress can aggravate vascular damage, forming a vicious cycle loop.
Collapse
Affiliation(s)
- Niya Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiang Yang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Zhao
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Liu
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hao Tang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chuyu Zhong
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xinzhang Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wenli Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiang Meng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
18
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
19
|
Zhang T, Musheshe N, van der Veen CHJTM, Kessels HW, Dolga A, De Deyn P, Eisel U, Schmidt M. The Expression of Epac2 and GluA3 in an Alzheimer's Disease Experimental Model and Postmortem Patient Samples. Biomedicines 2023; 11:2096. [PMID: 37626593 PMCID: PMC10452319 DOI: 10.3390/biomedicines11082096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by amyloid beta (Aβ) and hyperphosphorylated tau accumulation in the brain. Recent studies indicated that memory retrieval, rather than memory formation, was impaired in the early stage of AD. Our previous study reported that pharmacological activation of hippocampal Epac2 promoted memory retrieval in C57BL/6J mice. A recent study suggested that pharmacological inhibition of Epac2 prevented synaptic potentiation mediated by GluA3-containing AMPARs. In this study, we aimed to investigate proteins associated with Epac2-mediated memory in hippocampal postmortem samples of AD patients and healthy controls compared with the experimental AD model J20 and wild-type mice. Epac2 and phospho-Akt were downregulated in AD patients and J20 mice, while Epac1 and phospho-ERK1/2 were not altered. GluA3 was reduced in J20 mice and tended to decrease in AD patients. PSD95 tended to decrease in AD patients and J20. Interestingly, AKAP5 was increased in AD patients but not in J20 mice, implicating its role in tau phosphorylation. Our study points to the downregulation of hippocampal expression of proteins associated with Epac2 in AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
| | - Christina H. J. T. M. van der Veen
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
| | - Helmut W. Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
- Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter De Deyn
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ulrich Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
- Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
20
|
Zhang H, Zhou H, Guo X, Zhang G, Xiao M, Wu S, Jin C, Yang J, Lu X. Cigarette smoke triggers calcium overload in mouse hippocampal neurons via the ΔFOSB-CACNA2D1 axis to impair cognitive performance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114996. [PMID: 37167740 DOI: 10.1016/j.ecoenv.2023.114996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/24/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
A growing body of evidence shows that cigarette smoking impairs cognitive performance. The 'Calcium Hypothesis' theory of neuronopathies reveals a critical role of aberrant calcium signaling in compromised cognitive functions. However, the underlying implications of abnormalities in calcium signaling in the neurotoxicity induced by cigarette smoke (CS) have not yet been identified. CACNA2D1, an important auxiliary subunit involved in the composition of voltage-gated calcium channels (VGCCs), was reported to affect the calcium signaling in neurons by facilitating VGCCs-mediated Ca2+ influx. ΔFOSB, an alternatively-spliced product of the Fosb gene, is an activity-dependent transcription factor induced robustly in the brain in response to environmental stimuli such as CS. Interestingly, our preliminary bioinformatics analysis revealed a significant co-expression between ΔFOSB and CACNA2D1 in brain tissues of patients with neurodegenerative diseases characterized by progressive cognitive decline. Therefore, we hypothesized that the activation of the ΔFOSB-CACNA2D1 axis in response to CS exposure might cause dysregulation of calcium homeostasis in hippocampal neurons via VGCCs-mediated Ca2+ influx, thereby contributing to cognitive deficits. To this end, the present study established a CS-induced mouse model of hippocampus-dependent cognitive impairment, in which the activation of the ΔFOSB-CACNA2D1 axis accompanied by severe calcium overload was observed in the mouse hippocampal tissues. More importantly, ΔFOSB knockdown-/overexpression-mediated inactivation/activation of the ΔFOSB-CACNA2D1 axis interdicted/mimicked CS-induced dysregulation of calcium homeostasis followed by severe cellular damage in HT22 mouse hippocampal neurons. Mechanistically speaking, a further ChIP-qPCR assay confirmed the physical interaction between transcription factor ΔFOSB and the Cacna2d1 gene promoter, suggesting a direct transcriptional regulation of the Cacna2d1 gene by ΔFOSB. Overall, our current work aims to deliver a unique insight into the neurotoxic mechanisms induced by CS to explore potential targets for intervention.
Collapse
Affiliation(s)
- Hongchao Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Huabin Zhou
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Xianhe Guo
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Guopei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingyang Xiao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
21
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
22
|
Valdivia G, Ardiles AO, Idowu A, Salazar C, Lee HK, Gallagher M, Palacios AG, Kirkwood A. mGluR-dependent plasticity in rodent models of Alzheimer's disease. Front Synaptic Neurosci 2023; 15:1123294. [PMID: 36937569 PMCID: PMC10017879 DOI: 10.3389/fnsyn.2023.1123294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Long-term potentiation (LTP) and depression (LTD) are currently the most comprehensive models of synaptic plasticity models to subserve learning and memory. In the CA1 region of the hippocampus LTP and LTD can be induced by the activation of either NMDA receptors or mGluR5 metabotropic glutamate receptors. Alterations in either form of synaptic plasticity, NMDAR-dependent or mGluR-dependent, are attractive candidates to contribute to learning deficits in conditions like Alzheimer's disease (AD) and aging. Research, however, has focused predominantly on NMDAR-dependent forms of LTP and LTD. Here we studied age-associated changes in mGluR-dependent LTP and LTD in the APP/PS1 mouse model of AD and in Octodon degu, a rodent model of aging that exhibits features of AD. At 2 months of age, APP/PS1 mouse exhibited robust mGluR-dependent LTP and LTD that was completely lost by the 8th month of age. The expression of mGluR protein in the hippocampus of APP/PS1 mice was not affected, consistent with previous findings indicating the uncoupling of the plasticity cascade from mGluR5 activation. In O. degu, the average mGluR-LTD magnitude is reduced by half by the 3 rd year of age. In aged O. degu individuals, the reduced mGluR-LTD correlated with reduced performance in a radial arm maze task. Altogether these findings support the idea that the preservation of mGluR-dependent synaptic plasticity is essential for the preservation of learning capacity during aging.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alvaro O. Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Abimbola Idowu
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| | - Claudia Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Hey-Kyoung Lee
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alfredo Kirkwood
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
23
|
Non-competitive AMPA glutamate receptors antagonism by perampanel as a strategy to counteract hippocampal hyper-excitability and cognitive deficits in cerebral amyloidosis. Neuropharmacology 2023; 225:109373. [PMID: 36502868 DOI: 10.1016/j.neuropharm.2022.109373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological accumulation of Aβ oligomers has been linked to neuronal networks hyperexcitability, potentially underpinned by glutamatergic AMPA receptors (AMPARs) dysfunction. We aimed to investigate whether the non-competitive block of AMPARs was able to counteract the alteration of hippocampal epileptic threshold, and of synaptic plasticity linked to Aβ oligomers accumulation, being this glutamate receptor a valuable specific therapeutic target. In this work, we showed that the non-competitive AMPARs antagonist perampanel (PER) which, per se, did not affect physiological synaptic transmission, was able to counteract Aβ-induced hyperexcitability. Moreover, AMPAR antagonism was able to counteract Aβ-induced hippocampal LTP impairment and hippocampal-based cognitive deficits in Aβ oligomers-injected mice, while retaining antiseizure efficacy. Beside this, AMPAR antagonism was also able to reduce the increased expression of proinflammatory cytokines in this mice model, also suggesting the presence of an anti-inflammatory activity. Thus, targeting AMPARs might be a valuable strategy to reduce both hippocampal networks hyperexcitability and synaptic plasticity deficits induced by Aβ oligomers accumulation.
Collapse
|
24
|
Sokolov RA, Jappy D, Podgorny OV, Mukhina IV. Nitric Oxide Synthase Blockade Impairs Spontaneous Calcium Activity in Mouse Primary Hippocampal Culture Cells. Int J Mol Sci 2023; 24:ijms24032608. [PMID: 36768926 PMCID: PMC9917029 DOI: 10.3390/ijms24032608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Oscillation of intracellular calcium concentration is a stable phenomenon that affects cellular function throughout the lifetime of both electrically excitable and non-excitable cells. Nitric oxide, a gaseous secondary messenger and the product of nitric oxide synthase (NOS), affects intracellular calcium dynamics. Using mouse hippocampal primary cultures, we recorded the effect of NOS blockade on neuronal spontaneous calcium activity. There was a correlation between the amplitude of spontaneous calcium events and the number of action potentials (APs) (Spearman R = 0.94). There was a linear rise of DAF-FM fluorescent emission showing an increase in NO concentration with time in neurons (11.9 ± 1.0%). There is correlation between the integral of the signal from DAF-FM and the integral of the spontaneous calcium event signal from Oregon Green 488 (Spearman R = 0.58). Blockade of NOS affected the parameters of the spontaneous calcium events studied (amplitude, frequency, integral, rise slope and decay slope). NOS blockade by Nw-Nitro-L-arginine suppressed the amplitude and frequency of spontaneous calcium events. The NOS blocker 3-Bromo-7-Nitroindazole reduced the frequency but not the amplitude of spontaneous calcium activity. Blockade of the well-known regulator of NOS, calcineurin with cyclosporine A reduced the integral of calcium activity in neurons. The differences and similarities in the effects on the parameters of spontaneous calcium effects caused by different blockades of NO production help to improve understanding of how NO synthesis affects calcium dynamics in neurons.
Collapse
Affiliation(s)
- Rostislav A. Sokolov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Correspondence:
| | - David Jappy
- Institute of Fundamental Neurology, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Institute of Fundamental Neurology, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina V. Mukhina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Central Research Laboratory, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| |
Collapse
|
25
|
Li JB, Hu XY, Chen MW, Xiong CH, Zhao N, Ge YH, Wang H, Gao XL, Xu NJ, Zhao LX, Yu ZH, Chen HZ, Qiu Y. p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer's disease. Transl Neurodegener 2023; 12:1. [PMID: 36624510 PMCID: PMC9827685 DOI: 10.1186/s40035-022-00334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Ribosomal protein S6 kinase 1 (S6K1) is a serine-threonine kinase that has two main isoforms: p70S6K (70-kDa isoform) and p85S6K (85-kDa isoform). p70S6K, with its upstream mammalian target of rapamycin (mTOR), has been shown to be involved in learning and memory and participate in the pathophysiology of Alzheimer's disease (AD). However, the function of p85S6K has long been neglected due to its high similarity to p70S6k. The role of p85S6K in learning and memory is still largely unknown. METHODS We fractionated the postsynaptic densities to illustrate the differential distribution of p85S6K and p70S6K. Coimmunoprecipitation was performed to unveil interactions between p85S6K and the GluA1 subunit of AMPA receptor. The roles of p85S6K in synaptic targeting of GluA1 and learning and memory were evaluated by specific knockdown or overexpression of p85S6K followed by a broad range of methodologies including immunofluorescence, Western blot, in situ proximity ligation assay, morphological staining and behavioral examination. Further, the expression level of p85S6K was measured in brains from AD patients and AD model mice. RESULTS p85S6K, but not p70S6K, was enriched in the postsynaptic densities. Moreover, knockdown of p85S6K resulted in defective spatial and recognition memory. In addition, p85S6K could interact with the GluA1 subunit of AMPA receptor through synapse-associated protein 97 and A-kinase anchoring protein 79/150. Mechanistic studies demonstrated that p85S6K could directly phosphorylate GluA1 at Ser845 and increase the amount of GluA1 in synapses, thus sustaining synaptic function and spine densities. Moreover, p85S6K was found to be specifically decreased in the synaptosomal compartment in the brains of AD patients and AD mice. Overexpression of p85S6K ameliorated the synaptic deficits and cognitive impairment in transgenic AD model mice. CONCLUSIONS These results strongly imply a significant role for p85S6K in maintaining synaptic and cognitive function by interacting with GluA1. The findings provide an insight into the rational targeting of p85S6K as a therapeutic potential for AD.
Collapse
Affiliation(s)
- Jia-Bing Li
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Yu Hu
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Mu-Wen Chen
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Cai-Hong Xiong
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Na Zhao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yan-Hui Ge
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hao Wang
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Ling Gao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Nan-Jie Xu
- grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Lan-Xue Zhao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhi-Hua Yu
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
26
|
Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119366. [PMID: 36191737 PMCID: PMC9948804 DOI: 10.1016/j.bbamcr.2022.119366] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.
Collapse
Affiliation(s)
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
27
|
Sanderson JL, Freund RK, Castano AM, Benke TA, Dell'Acqua ML. The Ca V1.2 G406R mutation decreases synaptic inhibition and alters L-type Ca 2+ channel-dependent LTP at hippocampal synapses in a mouse model of Timothy Syndrome. Neuropharmacology 2022; 220:109271. [PMID: 36162529 PMCID: PMC9644825 DOI: 10.1016/j.neuropharm.2022.109271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Genetic alterations in autism spectrum disorders (ASD) frequently disrupt balance between synaptic excitation and inhibition and alter plasticity in the hippocampal CA1 region. Individuals with Timothy Syndrome (TS), a genetic disorder caused by CaV1.2 L-type Ca2+ channel (LTCC) gain-of function mutations, such as G406R, exhibit social deficits, repetitive behaviors, and cognitive impairments characteristic of ASD that are phenocopied in TS2-neo mice expressing G406R. Here, we characterized hippocampal CA1 synaptic function in male TS2-neo mice and found basal excitatory transmission was slightly increased and inhibitory transmission strongly decreased. We also found distinct impacts on two LTCC-dependent forms of long-term potentiation (LTP) synaptic plasticity that were not readily consistent with LTCC gain-of-function. LTP induced by high-frequency stimulation (HFS) was strongly impaired in TS2-neo mice, suggesting decreased LTCC function. Yet, CaV1.2 expression, basal phosphorylation, and current density were similar for WT and TS2-neo. However, this HFS-LTP also required GABAA receptor activity, and thus may be impaired in TS2-neo due to decreased inhibitory transmission. In contrast, LTP induced in WT mice by prolonged theta-train (PTT) stimulation in the presence of a β-adrenergic receptor agonist to increase CaV1.2 phosphorylation was partially induced in TS2-neo mice by PTT stimulation alone, consistent with increased LTCC function. Overall, our findings provide insights regarding how altered CaV1.2 channel function disrupts basal transmission and plasticity that could be relevant for neurobehavioral alterations in ASD.
Collapse
Affiliation(s)
- Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Anna M Castano
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Timothy A Benke
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA; Departments of Pediatrics, Neurology, and Otolaryngology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA.
| |
Collapse
|
28
|
Modulation of L-type calcium channels in Alzheimer's disease: A potential therapeutic target. Comput Struct Biotechnol J 2022; 21:11-20. [PMID: 36514335 PMCID: PMC9719069 DOI: 10.1016/j.csbj.2022.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022] Open
Abstract
Calcium plays a fundamental role in various signaling pathways and cellular processes in the human organism. In the nervous system, voltage-gated calcium channels such as L-type calcium channels (LTCCs) are critical elements in mediating neurotransmitter release, synaptic integration and plasticity. Dysfunction of LTCCs has been implicated in both aging and Alzheimer's Disease (AD), constituting a key component of calcium hypothesis of AD. As such, LTCCs are a promising drug target in AD. However, due to their structural and functional complexity, the mechanisms by which LTCCs contribute to AD are still unclear. In this review, we briefly summarize the structure, function, and modulation of LTCCs that are the backbone for understanding pathological processes involving LTCCs. We suggest targeting molecular pathways up-regulating LTCCs in AD may be a more promising approach, given the diverse physiological functions of LTCCs and the ineffectiveness of LTCC blockers in clinical studies.
Collapse
Key Words
- AC, adenylyl cyclase
- AD, Alzheimer’s Disease
- AHP, afterhyperpolarization
- AR, adrenoceptor
- Aging
- Alzheimer’s disease
- Aβ, β-amyloid
- BIN1, bridging integrator 1
- BTZs, benzothiazepines
- CDF, calcium-dependent facilitation
- CDI, calcium-dependent inactivation
- CaMKII, calmodulin-dependent protein kinase II
- DHP, dihydropyridine
- L-type calcium channel
- LTCC, L-type calcium channels
- LTD, long-term depression
- LTP, long-term potentiation
- NFT, neurofibrillary tangles
- NMDAR, N-methyl-D-aspartate receptor
- PAA, phenylalkylamines
- PKA, protein kinase A
- PKC, protein kinase C
- PKG, protein kinase G
- SFK, Src family kinase
- Tau
- VSD, voltage sensing domain
- β-Amyloid
Collapse
|
29
|
Chen X, Crosby KC, Feng A, Purkey AM, Aronova MA, Winters CA, Crocker VT, Leapman RD, Reese TS, Dell’Acqua ML. Palmitoylation of A-kinase anchoring protein 79/150 modulates its nanoscale organization, trafficking, and mobility in postsynaptic spines. Front Synaptic Neurosci 2022; 14:1004154. [PMID: 36186623 PMCID: PMC9521714 DOI: 10.3389/fnsyn.2022.1004154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
A-kinase anchoring protein 79-human/150-rodent (AKAP79/150) organizes signaling proteins to control synaptic plasticity. AKAP79/150 associates with the plasma membrane and endosomes through its N-terminal domain that contains three polybasic regions and two Cys residues that are reversibly palmitoylated. Mutations abolishing palmitoylation (AKAP79/150 CS) reduce its endosomal localization and association with the postsynaptic density (PSD). Here we combined advanced light and electron microscopy (EM) to characterize the effects of AKAP79/150 palmitoylation on its postsynaptic nanoscale organization, trafficking, and mobility in hippocampal neurons. Immunogold EM revealed prominent extrasynaptic membrane AKAP150 labeling with less labeling at the PSD. The label was at greater distances from the spine membrane for AKAP150 CS than WT in the PSD but not in extra-synaptic locations. Immunogold EM of GFP-tagged AKAP79 WT showed that AKAP79 adopts a vertical, extended conformation at the PSD with its N-terminus at the membrane, in contrast to extrasynaptic locations where it adopts a compact or open configurations of its N- and C-termini with parallel orientation to the membrane. In contrast, GFP-tagged AKAP79 CS was displaced from the PSD coincident with disruption of its vertical orientation, while proximity and orientation with respect to the extra-synaptic membrane was less impacted. Single-molecule localization microscopy (SMLM) revealed a heterogeneous distribution of AKAP150 with distinct high-density, nano-scale regions (HDRs) overlapping the PSD but more prominently located in the extrasynaptic membrane for WT and the CS mutant. Thick section scanning transmission electron microscopy (STEM) tomography revealed AKAP150 immunogold clusters similar in size to HDRs seen by SMLM and more AKAP150 labeled endosomes in spines for WT than for CS, consistent with the requirement for AKAP palmitoylation in endosomal trafficking. Hidden Markov modeling of single molecule tracking data revealed a bound/immobile fraction and two mobile fractions for AKAP79 in spines, with the CS mutant having shorter dwell times and faster transition rates between states than WT, suggesting that palmitoylation stabilizes individual AKAP molecules in various spine subpopulations. These data demonstrate that palmitoylation fine tunes the nanoscale localization, mobility, and trafficking of AKAP79/150 in dendritic spines, which might have profound effects on its regulation of synaptic plasticity.
Collapse
Affiliation(s)
- Xiaobing Chen
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Xiaobing Chen,
| | - Kevin C. Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Austin Feng
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alicia M. Purkey
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Maria A. Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Christine A. Winters
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Virginia T. Crocker
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Richard D. Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
- Mark L. Dell’Acqua,
| |
Collapse
|
30
|
PRG-1 prevents neonatal stimuli-induced persistent hyperalgesia and memory dysfunction via NSF/Glu/GluR2 signaling. iScience 2022; 25:104989. [PMID: 36093041 PMCID: PMC9460187 DOI: 10.1016/j.isci.2022.104989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/02/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Neonatal repetitive noxious stimuli (RNS) has been shown to cause long-term harmful effects on nociceptive processing, learning, and memory which persist until adulthood. Plasticity-related gene 1 (PRG-1) regulates synaptic plasticity and functional reorganization in the brain during neuronal development. In this study, neonatal RNS rats were established by repetitive needle pricks to neonatal rats on all four feet to model repetitive pain exposure in infants. Neonatal RNS caused thermal hyperalgesia, mechanical allodynia, learning, and memory impairments which manifested in young rats and persisted until adulthood. Hippocampal PRG-1/N-ethylmaleimide sensitive fusion protein (NSF) interaction was determined to be responsible for the RNS-induced impairment via enhanced extracellular glutamate release and AMPAR GluR2 trafficking deficiency in a cell-autonomous manner. These pathways likely act synergistically to cause changes in dendritic spine density. Our findings suggest that PRG-1 prevents the RNS-induced hyperalgesia, learning, and memory impairment by regulating synaptic plasticity via NSF/Glu/GluR2 signaling. Neonatal RNS induced hyperalgesia, learning, and memory impairment until adulthood. PRG-1 attenuated RNS-induced impairments by dendritic spine regulation. PRG-1 prevents RNS-induced impairments via NSF/Glu/GluR2 signaling.
Collapse
|
31
|
Lee A, Kondapalli C, Virga DM, Lewis TL, Koo SY, Ashok A, Mairet-Coello G, Herzig S, Foretz M, Viollet B, Shaw R, Sproul A, Polleux F. Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun 2022; 13:4444. [PMID: 35915085 PMCID: PMC9343354 DOI: 10.1038/s41467-022-32130-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-β 1-42 oligomers (Aβ42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aβ42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aβ42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.
Collapse
Affiliation(s)
- Annie Lee
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- The Integrated Graduate Program in Cellular, Molecular, and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Chandana Kondapalli
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Daniel M Virga
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Tommy L Lewis
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Archana Ashok
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | | | - Sebastien Herzig
- Molecular & Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marc Foretz
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Reuben Shaw
- Molecular & Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
32
|
Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Mol Psychiatry 2022; 27:3182-3191. [PMID: 35484241 DOI: 10.1038/s41380-022-01589-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
Abstract
The accumulation of amyloid-β protein (Aβ) plays an early role in the pathogenesis of Alzheimer's disease (AD). The precise mechanism of how Aβ accumulation leads to synaptic dysfunction and cognitive impairment remains unclear but is likely due to small soluble oligomers of Aβ (oAβ). Most studies have used chemical synthetic or cell-secreted Aβ oligomers to study their pathogenic mechanisms, but the Aβ derived from human AD brain tissue is less well characterized. Here we review updated knowledge on the extraction and characterization of bioactive human AD brain oAβ and the mechanisms by which they cause hippocampal synaptic dysfunction. Human AD brain-derived oAβ can impair hippocampal long-term potentiation (LTP) and enhance long-term depression (LTD). Many studies suggest that oAβ may directly disrupt neuronal NMDA receptors, AMPA receptors and metabotropic glutamate receptors (mGluRs). oAβ also impairs astrocytic synaptic functions, including glutamate uptake, D-serine release, and NMDA receptor function. We also discuss oAβ-induced neuronal hyperexcitation. These results may suggest a multi-target approach for the treatment of AD, including both oAβ neutralization and reversal of glutamate-mediated excitotoxicity.
Collapse
|
33
|
Leo D, Targa G, Espinoza S, Villers A, Gainetdinov RR, Ris L. Trace Amine Associate Receptor 1 (TAAR1) as a New Target for the Treatment of Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23147811. [PMID: 35887159 PMCID: PMC9318502 DOI: 10.3390/ijms23147811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Worldwide, approximately 27 million people are affected by Alzheimer’s disease (AD). AD pathophysiology is believed to be caused by the deposition of the β-amyloid peptide (Aβ). Aβ can reduce long-term potentiation (LTP), a form of synaptic plasticity that is closely associated with learning and memory and involves postsynaptic glutamate receptor phosphorylation and trafficking. Moreover, Aβ seems to be able to reduce glutamatergic transmission by increasing the endocytosis of NMDA receptors. Trace amines (TAs) are biogenic amines that are structurally similar to monoamine neurotransmitters. TAs bind to G protein-coupled receptors, called TAARs (trace amine-associated receptors); the best-studied member of this family, TAAR1, is distributed in the cortical and limbic structures of the CNS. It has been shown that the activation of TAAR1 can rescue glutamatergic hypofunction and that TAAR1 can modulate glutamate NMDA receptor-related functions in the frontal cortex. Several lines of evidence also suggest the pro-cognitive action of TAAR1 agonists in various behavioural experimental protocols. Thus, we studied, in vitro, the role of the TAAR1 agonist RO5256390 on basal cortical glutamatergic transmission and tested its effect on Aβ-induced dysfunction. Furthermore, we investigated, in vivo, the role of TAAR1 in cognitive dysfunction induced by Aβ infusion in Aβ-treated mice. In vitro data showed that Aβ 1–42 significantly decreased NMDA cell surface expression while the TAAR1 agonist RO5256390 promoted their membrane insertion in cortical cells. In vivo, RO5256390 showed a mild pro-cognitive effect, as demonstrated by the better performance in the Y maze test in mice treated with Aβ. Further studies are needed to better understand the interplay between TAAR1/Aβ and glutamatergic signalling, in order to evaluate the eventual beneficial effect in different experimental paradigms and animal models. Taken together, our data indicate that TAAR1 agonism may provide a novel therapeutic approach in the treatments of disorders involving Aβ-induced cognitive impairments, such as AD.
Collapse
Affiliation(s)
- Damiana Leo
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy;
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy;
| | - Agnès Villers
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
- Correspondence: ; Tel.: +32-6537-3570
| |
Collapse
|
34
|
Gao F, Yang S, Wang J, Zhu G. cAMP-PKA cascade: An outdated topic for depression? Biomed Pharmacother 2022; 150:113030. [PMID: 35486973 DOI: 10.1016/j.biopha.2022.113030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Depression is a common neuropsychiatric disorder characterized by persistent depressed mood and causes serious socioeconomic burden worldwide. Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, deficiency of monoamine transmitters, neuroinflammation and abnormalities of the gut flora are strongly associated with the onset of depression. The cyclic AMP (cAMP)/protein kinase A (PKA) cascade, a major cross-species cellular signaling pathway, is supposed as important player and regulator of depression onset by controlling synaptic plasticity, cytokinesis, transcriptional regulation and HPA axis. In the central nervous system, the cAMP-PKA cascade can dynamically shape neural circuits by enhancing synaptic plasticity, and affect K+ channels by phosphorylating Kir4.1, thereby regulating neuronal excitation. The reduction of cAMP-PKA cascade affects neuronal excitation as well as synaptic plasticity, ultimately leading to pathological outcome of depression, while activation of cAMP-PKA cascade would provide a rapid antidepressant effect. In this review, we proposed to reconsider the function of cAMP-PKA cascade, especially in the rapid antidepressant effect. Local activation or indirect activation of PKA through adjusting anchor proteins would provide new idea for acute treatment of depression.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
35
|
Azarnia Tehran D, Kochlamazashvili G, Pampaloni NP, Sposini S, Shergill JK, Lehmann M, Pashkova N, Schmidt C, Löwe D, Napieczynska H, Heuser A, Plested AJR, Perrais D, Piper RC, Haucke V, Maritzen T. Selective endocytosis of Ca 2+-permeable AMPARs by the Alzheimer's disease risk factor CALM bidirectionally controls synaptic plasticity. SCIENCE ADVANCES 2022; 8:eabl5032. [PMID: 35613266 PMCID: PMC9132451 DOI: 10.1126/sciadv.abl5032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission, and the plastic modulation of their surface levels determines synaptic strength. AMPARs of different subunit compositions fulfill distinct roles in synaptic long-term potentiation (LTP) and depression (LTD) to enable learning. Largely unknown endocytic mechanisms mediate the subunit-selective regulation of the surface levels of GluA1-homomeric Ca2+-permeable (CP) versus heteromeric Ca2+-impermeable (CI) AMPARs. Here, we report that the Alzheimer's disease risk factor CALM controls the surface levels of CP-AMPARs and thereby reciprocally regulates LTP and LTD in vivo to modulate learning. We show that CALM selectively facilitates the endocytosis of ubiquitinated CP-AMPARs via a mechanism that depends on ubiquitin recognition by its ANTH domain but is independent of clathrin. Our data identify CALM and related ANTH domain-containing proteins as the core endocytic machinery that determines the surface levels of CP-AMPARs to bidirectionally control synaptic plasticity and modulate learning in the mammalian brain.
Collapse
Affiliation(s)
- Domenico Azarnia Tehran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Gaga Kochlamazashvili
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Niccolò P. Pampaloni
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Silvia Sposini
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Jasmeet Kaur Shergill
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Department of Nanophysiology, Technische Universität Kaiserslautern, Paul-Ehrlich-Strasse 23, 67663 Kaiserslautern, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Claudia Schmidt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Delia Löwe
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Hanna Napieczynska
- Animal Phenotyping, Max Delbrück Center for Molecular Medicine, Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Arnd Heuser
- Animal Phenotyping, Max Delbrück Center for Molecular Medicine, Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Andrew J. R. Plested
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - David Perrais
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Department of Nanophysiology, Technische Universität Kaiserslautern, Paul-Ehrlich-Strasse 23, 67663 Kaiserslautern, Germany
| |
Collapse
|