1
|
Nuyttens L, Vandewalle J, Libert C. Sepsis-induced changes in pyruvate metabolism: insights and potential therapeutic approaches. EMBO Mol Med 2024; 16:2678-2698. [PMID: 39468303 PMCID: PMC11554794 DOI: 10.1038/s44321-024-00155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a heterogeneous syndrome resulting from a dysregulated host response to infection. It is considered as a global major health priority. Sepsis is characterized by significant metabolic perturbations, leading to increased circulating metabolites such as lactate. In mammals, pyruvate is the primary substrate for lactate production. It plays a critical role in metabolism by linking glycolysis, where it is produced, with the mitochondrial oxidative phosphorylation pathway, where it is oxidized. Here, we provide an overview of all cytosolic and mitochondrial enzymes involved in pyruvate metabolism and how their activities are disrupted in sepsis. Based on the available data, we also discuss potential therapeutic strategies targeting these pyruvate-related enzymes leading to enhanced survival.
Collapse
Affiliation(s)
- Louise Nuyttens
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Yang Y, Wang B, Dong H, Lin H, Yuen-Man Ho M, Hu K, Zhang N, Ma J, Xie R, Cheng KKY, Li X. The mitochondrial enzyme pyruvate carboxylase restricts pancreatic β-cell senescence by blocking p53 activation. Proc Natl Acad Sci U S A 2024; 121:e2401218121. [PMID: 39436667 PMCID: PMC11536080 DOI: 10.1073/pnas.2401218121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Defective glucose-stimulated insulin secretion (GSIS) and β-cell senescence are hallmarks in diabetes. The mitochondrial enzyme pyruvate carboxylase (PC) has been shown to promote GSIS and β-cell proliferation in the clonal β-cell lines, yet its physiological relevance remains unknown. Here, we provide animal and human data showing a role of PC in protecting β-cells against senescence and maintaining GSIS under different physiological and pathological conditions. β-cell-specific deletion of PC impaired GSIS and induced β-cell senescence in the mouse models under either a standard chow diet or prolonged high-fat diet feeding. Transcriptomic analysis indicated that p53-related senescence and cell cycle arrest are activated in PC-deficient islets. Overexpression of PC inhibited hyperglycemia- and aging-induced p53-related senescence in human and mouse islets as well as INS-1E β-cells, whereas knockdown of PC provoked senescence. Mechanistically, PC interacted with MDM2 to prevent its degradation via the MDM2 binding motif, which in turn restricts the p53-dependent senescent program in β-cells. On the contrary, the regulatory effects of PC on GSIS and the tricarboxylic acid (TCA) anaplerotic flux are p53-independent. We illuminate a function of PC in controlling β-cell senescence through the MDM2-p53 axis.
Collapse
Affiliation(s)
- Yumei Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Baomin Wang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Haoru Dong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200030, China
| | - Huige Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| | - Melody Yuen-Man Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ke Hu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Na Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200030, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
3
|
Kulow VA, Roegner K, Labes R, Kasim M, Mathia S, Czopek CS, Berndt N, Becker PN, Ter-Avetisyan G, Luft FC, Enghard P, Hinze C, Klocke J, Eckardt KU, Schmidt-Ott KM, Persson PB, Rosenberger C, Fähling M. Beyond hemoglobin: Critical role of 2,3-bisphosphoglycerate mutase in kidney function and injury. Acta Physiol (Oxf) 2024:e14242. [PMID: 39422260 DOI: 10.1111/apha.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
AIM 2,3-bisphosphoglycerate mutase (BPGM) is traditionally recognized for its role in modulating oxygen affinity to hemoglobin in erythrocytes. Recent transcriptomic analyses, however, have indicated a significant upregulation of BPGM in acutely injured murine and human kidneys, suggesting a potential renal function for this enzyme. Here we aim to explore the physiological role of BPGM in the kidney. METHODS A tubular-specific, doxycycline-inducible Bpgm-knockout mouse model was generated. Histological, immunofluorescence, and proteomic analyses were conducted to examine the localization of BPGM expression and the impact of its knockout on kidney structure and function. In vitro studies were performed to investigate the metabolic consequences of Bpgm knockdown under osmotic stress. RESULTS BPGM expression was localized to the distal nephron and was absent in proximal tubules. Inducible knockout of Bpgm resulted in rapid kidney injury within 4 days, characterized by proximal tubular damage and tubulointerstitial fibrosis. Proteomic analyses revealed involvement of BPGM in key metabolic pathways, including glycolysis, oxidative stress response, and inflammation. In vitro, Bpgm knockdown led to enhanced glycolysis, decreased reactive oxygen species elimination capacity under osmotic stress, and increased apoptosis. Furthermore, interactions between nephron segments and immune cells in the kidney suggested a mechanism for propagating stress signals from distal to proximal tubules. CONCLUSION BPGM fulfills critical functions beyond the erythrocyte in maintaining glucose metabolism in the distal nephron. Its absence leads to metabolic imbalances, increased oxidative stress, inflammation, and ultimately kidney injury.
Collapse
Affiliation(s)
- Vera A Kulow
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Kameliya Roegner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Robert Labes
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Mumtaz Kasim
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Susanne Mathia
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Claudia S Czopek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp N Becker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Gohar Ter-Avetisyan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Christian Hinze
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jan Klocke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Kai-Uwe Eckardt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Kai M Schmidt-Ott
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Christian Rosenberger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Michael Fähling
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| |
Collapse
|
4
|
Su J, Tian X, Cheng H, Liu D, Wang Z, Sun S, Wang HW, Sui SF. Structural insight into synergistic activation of human 3-methylcrotonyl-CoA carboxylase. Nat Struct Mol Biol 2024:10.1038/s41594-024-01379-3. [PMID: 39223421 DOI: 10.1038/s41594-024-01379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
The enzymes 3-methylcrotonyl-coenzyme A (CoA) carboxylase (MCC), pyruvate carboxylase and propionyl-CoA carboxylase belong to the biotin-dependent carboxylase family located in mitochondria. They participate in various metabolic pathways in human such as amino acid metabolism and tricarboxylic acid cycle. Many human diseases are caused by mutations in those enzymes but their structures have not been fully resolved so far. Here we report an optimized purification strategy to obtain high-resolution structures of intact human endogenous MCC, propionyl-CoA carboxylase and pyruvate carboxylase in different conformational states. We also determine the structures of MCC bound to different substrates. Analysis of MCC structures in different states reveals the mechanism of the substrate-induced, multi-element synergistic activation of MCC. These results provide important insights into the catalytic mechanism of the biotin-dependent carboxylase family and are of great value for the development of new drugs for the treatment of related diseases.
Collapse
Affiliation(s)
- Jiayue Su
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuyang Tian
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hang Cheng
- The California Institute for Quantitative Biosciences (QB3), University of California campuses at Berkeley, Berkeley, CA, USA
| | - Desheng Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ziyi Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Hong-Wei Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
5
|
Holendová B, Benáková Š, Křivonosková M, Plecitá-Hlavatá L. Redox Status as a Key Driver of Healthy Pancreatic Beta-Cells. Physiol Res 2024; 73:S139-S152. [PMID: 38647167 PMCID: PMC11412338 DOI: 10.33549/physiolres.935259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Redox status plays a multifaceted role in the intricate physiology and pathology of pancreatic beta-cells, the pivotal regulators of glucose homeostasis through insulin secretion. They are highly responsive to changes in metabolic cues where reactive oxygen species are part of it, all arising from nutritional intake. These molecules not only serve as crucial signaling intermediates for insulin secretion but also participate in the nuanced heterogeneity observed within the beta-cell population. A central aspect of beta-cell redox biology revolves around the localized production of hydrogen peroxide and the activity of NADPH oxidases which are tightly regulated and serve diverse physiological functions. Pancreatic beta-cells possess a remarkable array of antioxidant defense mechanisms although considered relatively modest compared to other cell types, are efficient in preserving redox balance within the cellular milieu. This intrinsic antioxidant machinery operates in concert with redox-sensitive signaling pathways, forming an elaborate redox relay system essential for beta-cell function and adaptation to changing metabolic demands. Perturbations in redox homeostasis can lead to oxidative stress exacerbating insulin secretion defect being a hallmark of type 2 diabetes. Understanding the interplay between redox signaling, oxidative stress, and beta-cell dysfunction is paramount for developing effective therapeutic strategies aimed at preserving beta-cell health and function in individuals with type 2 diabetes. Thus, unraveling the intricate complexities of beta-cell redox biology presents exciting avenues for advancing our understanding and treatment of metabolic disorders.
Collapse
Affiliation(s)
- B Holendová
- Laboratory of Pancreatic Islet Research, Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
6
|
Jiang J, Zheng Z, Chen S, Liu J, Jia J, Huang Y, Liu Q, Cheung CY, Sin DD, Yang T, Wang C. Hypoxia inducible factor (HIF) 3α prevents COPD by inhibiting alveolar epithelial cell ferroptosis via the HIF-3α-GPx4 axis. Theranostics 2024; 14:5512-5527. [PMID: 39310101 PMCID: PMC11413794 DOI: 10.7150/thno.99237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/10/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: COPD patients are largely asymptomatic until the late stages when prognosis is generally poor. In this study, we shifted the focus to pre-COPD and smoking stages, and found enrichment of hypoxia inducible factor (HIF)-3α is in pre-COPD samples. Smoking induced regional tissue hypoxia and emphysema have been found in COPD patients. However, the mechanisms underlying hypoxia especially HIF-3α and COPD have not been investigated. Methods: We performed bulk-RNA sequencing on 36 peripheral lung tissue specimens from non-smokers, smokers, pre-COPD and COPD patients, and using "Mfuzz" algorithm to analysis the dataset dynamically. GSE171541 and EpCAM co-localization analyses were used to explore HIF-3α localization. Further, SftpcCreert2/+R26LSL-Hif3a knock-in mice and small molecular inhibitors in vitro were used to explore the involvement of HIF-3α in the pathophysiology of COPD. Results: Reactive oxygen species (ROS) and hypoxia were enriched in pre-COPD samples, and HIF-3α was downregulated in alveolar epithelial cells in COPD. In vitro experiments using lentivirus transfection, bulk-RNA seq, and RSL3 showed that the activation of the HIF-3α-GPx4 axis inhibited alveolar epithelial cell ferroptosis when treated with cigarettes smoking extracts (CSE). Further results from SftpcCreert2/+R26LSL-Hif3a knock-in mice demonstrated overexpression of HIF-3α inhibited alveolar epithelial cells ferroptosis and prevented the decline of lung function. Conclusion: Hypoxia and oxidation-related damage begins years before the onset of COPD symptoms, suggesting the imbalance and impairment of intracellular homeostatic system. The activation of the HIF-3α-GPx4 axis is a promising treatment target. By leveraging this comprehensive analysis method, more potential targets could be found and enhancing our understanding of the pathogenesis.
Collapse
Affiliation(s)
- Junchao Jiang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
| | - Zhoude Zheng
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, CN
| | - Shengsong Chen
- First Affiliated Hospital of Nanchang University, Department of Pulmonary and Critical Care Medicine, Nanchang, Jiangxi, CN
| | - Jixiang Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Ju Jia
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, CN
| | - Yuhang Huang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Qing Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, CN
| | - Chung Y Cheung
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
| | - Don D Sin
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
- The University of British Columbia, Division of Respiratory Medicine, Department of Medicine, Vancouver, BC, CA
| | - Ting Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Chen Wang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| |
Collapse
|
7
|
Wang Z, Lan H, Wang Y, Zheng Q, Li C, Wang K, Xiong T, Wu Q, Dong N. Pyruvate Carboxylase Attenuates Myocardial Ischemia-Reperfusion Injury in Heart Transplantation via Wnt/β-Catenin-Mediated Glutamine Metabolism. Biomedicines 2024; 12:1826. [PMID: 39200290 PMCID: PMC11351651 DOI: 10.3390/biomedicines12081826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The ischemia-reperfusion process of a donor heart during heart transplantation leads to severe mitochondrial dysfunction, which may be the main cause of donor heart dysfunction after heart transplantation. Pyruvate carboxylase (PC), an enzyme found in mitochondria, is said to play a role in the control of oxidative stress and the function of mitochondria. This research examined the function of PC and discovered the signaling pathways controlled by PC in myocardial IRI. We induced IRI using a murine heterotopic heart transplantation model in vivo and a hypoxia-reoxygenation cell model in vitro and evaluated inflammatory responses, oxidative stress levels, mitochondrial function, and cardiomyocyte apoptosis. In both in vivo and in vitro settings, we observed a significant decrease in PC expression during myocardial IRI. PC knockdown aggravated IRI by increasing MDA content, LDH activity, TUNEL-positive cells, serum cTnI level, Bax protein expression, and the level of inflammatory cytokines and decreasing SOD activity, GPX activity, and Bcl-2 protein expression. PC overexpression yielded the opposite findings. Additional research indicated that reducing PC levels could block the Wnt/β-catenin pathway and glutamine metabolism by hindering the movement of β-catenin to the nucleus and reducing the activity of complex I and complex II, as well as ATP levels, while elevating the ratios of NADP+/NADPH and GSSG/GSH. Overall, the findings indicated that PC therapy can shield the heart from IRI during heart transplantation by regulating glutamine metabolism through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Hongwen Lan
- Department of Thoracic Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Chenghao Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Kan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Tixiusi Xiong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; (Z.W.)
| |
Collapse
|
8
|
Grubelnik V, Zmazek J, Gosak M, Marhl M. The role of anaplerotic metabolism of glucose and glutamine in insulin secretion: A model approach. Biophys Chem 2024; 311:107270. [PMID: 38833963 DOI: 10.1016/j.bpc.2024.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
We propose a detailed computational beta cell model that emphasizes the role of anaplerotic metabolism under glucose and glucose-glutamine stimulation. This model goes beyond the traditional focus on mitochondrial oxidative phosphorylation and ATP-sensitive K+ channels, highlighting the predominant generation of ATP from phosphoenolpyruvate in the vicinity of KATP channels. It also underlines the modulatory role of H2O2 as a signaling molecule in the first phase of glucose-stimulated insulin secretion. In the second phase, the model emphasizes the critical role of anaplerotic pathways, activated by glucose stimulation via pyruvate carboxylase and by glutamine via glutamate dehydrogenase. It particularly focuses on the production of NADPH and glutamate as key enhancers of insulin secretion. The predictions of the model are consistent with empirical data, highlighting the complex interplay of metabolic pathways and emphasizing the primary role of glucose and the facilitating role of glutamine in insulin secretion. By delineating these crucial metabolic pathways, the model provides valuable insights into potential therapeutic targets for diabetes.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| | - Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Alma Mater Europaea ECM, Slovenska ulica 17, 2000 Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.
| |
Collapse
|
9
|
MacDonald T, Ryback B, da Silva Pereira JA, Wei S, Mendez B, Cai E, Ishikawa Y, Weir G, Bonner-Weir S, Kissler S, Yi P. Renalase inhibition regulates β cell metabolism to defend against acute and chronic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598322. [PMID: 38915698 PMCID: PMC11195134 DOI: 10.1101/2024.06.11.598322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Renalase (Rnls), annotated as an oxidase enzyme, is a GWAS gene associated with Type 1 Diabetes (T1D) risk. We previously discovered that Rnls inhibition delays diabetes onset in mouse models of T1D in vivo , and protects pancreatic β cells against autoimmune killing, ER and oxidative stress in vitro . The molecular biochemistry and functions of Rnls are entirely uncharted. Here we find that Rnls inhibition defends against loss of β cell mass and islet dysfunction in chronically stressed Akita mice in vivo . We used RNA sequencing, untargeted and targeted metabolomics and metabolic function experiments in mouse and human β cells and discovered a robust and conserved metabolic shift towards glycolysis, amino acid abundance and GSH synthesis to counter protein misfolding stress, in vitro . Our work illustrates a function for Rnls in mammalian cells, and suggests an axis by which manipulating intrinsic properties of β cells can rewire metabolism to protect against diabetogenic stress.
Collapse
|
10
|
Xu W, Xie B, Wei D, Song X. Dissecting hair breakage in alopecia areata: the central role of dysregulated cysteine homeostasis. Amino Acids 2024; 56:36. [PMID: 38772922 PMCID: PMC11108903 DOI: 10.1007/s00726-024-03395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024]
Abstract
In the initial stages of Alopecia Areata (AA), the predominance of hair breakage or exclamation mark hairs serves as vital indicators of disease activity. These signs are non-invasive and are commonly employed in dermatoscopic examinations. Despite their clinical salience, the underlying etiology precipitating this hair breakage remains largely uncharted territory. Our exhaustive review of the existing literature points to a pivotal role for cysteine-a key amino acid central to hair growth-in these mechanisms. This review will probe and deliberate upon the implications of aberrant cysteine metabolism in the pathogenesis of AA. It will examine the potential intersections of cysteine metabolism with autophagy, ferroptosis, immunity, and psychiatric manifestations associated with AA. Such exploration could illuminate new facets of the disease's pathophysiology, potentially paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Dongfan Wei
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
11
|
Liang QH, Li QR, Chen Z, Lv LJ, Lin Y, Jiang HL, Wang KX, Xiao MY, Kang NX, Tu PF, Ji SL, Deng KJ, Gao HW, Zhang L, Li K, Ge F, Xu GQ, Yang SL, Liu YL, Xu QM. Anemoside B4, a new pyruvate carboxylase inhibitor, alleviates colitis by reprogramming macrophage function. Inflamm Res 2024; 73:345-362. [PMID: 38157008 DOI: 10.1007/s00011-023-01840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.
Collapse
Affiliation(s)
- Qing-Hua Liang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qiu-Rong Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Li-Juan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yu Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong-Lv Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ke-Xin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ming-Yue Xiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nai-Xin Kang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Shi-Liang Ji
- Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, 215163, Jiangsu, China
| | - Ke-Jun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hong-Wei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, Guangxi, China
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kun Li
- Hai'an Traditional Chinese Medicine Hospital, Nantong, 226600, Jiangsu, China
| | - Fei Ge
- Hai'an Traditional Chinese Medicine Hospital, Nantong, 226600, Jiangsu, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shi-Lin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, Guangxi, China
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China
| | - Yan-Li Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qiong-Ming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China.
| |
Collapse
|
12
|
Rivera Nieves AM, Wauford BM, Fu A. Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes. Front Mol Biosci 2024; 11:1354199. [PMID: 38404962 PMCID: PMC10884328 DOI: 10.3389/fmolb.2024.1354199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In Type 1 and Type 2 diabetes, pancreatic β-cell survival and function are impaired. Additional etiologies of diabetes include dysfunction in insulin-sensing hepatic, muscle, and adipose tissues as well as immune cells. An important determinant of metabolic health across these various tissues is mitochondria function and structure. This review focuses on the role of mitochondria in diabetes pathogenesis, with a specific emphasis on pancreatic β-cells. These dynamic organelles are obligate for β-cell survival, function, replication, insulin production, and control over insulin release. Therefore, it is not surprising that mitochondria are severely defective in diabetic contexts. Mitochondrial dysfunction poses challenges to assess in cause-effect studies, prompting us to assemble and deliberate the evidence for mitochondria dysfunction as a cause or consequence of diabetes. Understanding the precise molecular mechanisms underlying mitochondrial dysfunction in diabetes and identifying therapeutic strategies to restore mitochondrial homeostasis and enhance β-cell function are active and expanding areas of research. In summary, this review examines the multidimensional role of mitochondria in diabetes, focusing on pancreatic β-cells and highlighting the significance of mitochondrial metabolism, bioenergetics, calcium, dynamics, and mitophagy in the pathophysiology of diabetes. We describe the effects of diabetes-related gluco/lipotoxic, oxidative and inflammation stress on β-cell mitochondria, as well as the role played by mitochondria on the pathologic outcomes of these stress paradigms. By examining these aspects, we provide updated insights and highlight areas where further research is required for a deeper molecular understanding of the role of mitochondria in β-cells and diabetes.
Collapse
Affiliation(s)
- Alejandra María Rivera Nieves
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Brian Michael Wauford
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
13
|
Bischoff ME, Shamsaei B, Yang J, Secic D, Vemuri B, Reisz JA, D'Alessandro A, Bartolacci C, Adamczak R, Schmidt L, Wang J, Martines A, Biesiada J, Vest KE, Scaglioni PP, Plas DR, Patra KC, Gulati S, Figueroa JAL, Meller J, Cunningham JT, Czyzyk-Krzeska MF. Copper drives remodeling of metabolic state and progression of clear cell renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575895. [PMID: 38293110 PMCID: PMC10827129 DOI: 10.1101/2024.01.16.575895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Copper (Cu) is an essential trace element required for mitochondrial respiration. Late-stage clear cell renal cell carcinoma (ccRCC) accumulates Cu and allocates it to mitochondrial cytochrome c oxidase. We show that Cu drives coordinated metabolic remodeling of bioenergy, biosynthesis and redox homeostasis, promoting tumor growth and progression of ccRCC. Specifically, Cu induces TCA cycle-dependent oxidation of glucose and its utilization for glutathione biosynthesis to protect against H 2 O 2 generated during mitochondrial respiration, therefore coordinating bioenergy production with redox protection. scRNA-seq determined that ccRCC progression involves increased expression of subunits of respiratory complexes, genes in glutathione and Cu metabolism, and NRF2 targets, alongside a decrease in HIF activity, a hallmark of ccRCC. Spatial transcriptomics identified that proliferating cancer cells are embedded in clusters of cells with oxidative metabolism supporting effects of metabolic states on ccRCC progression. Our work establishes novel vulnerabilities with potential for therapeutic interventions in ccRCC. Accumulation of copper is associated with progression and relapse of ccRCC and drives tumor growth.Cu accumulation and allocation to cytochrome c oxidase (CuCOX) remodels metabolism coupling energy production and nucleotide biosynthesis with maintenance of redox homeostasis.Cu induces oxidative phosphorylation via alterations in the mitochondrial proteome and lipidome necessary for the formation of the respiratory supercomplexes. Cu stimulates glutathione biosynthesis and glutathione derived specifically from glucose is necessary for survival of Cu Hi cells. Biosynthesis of glucose-derived glutathione requires activity of glutamyl pyruvate transaminase 2, entry of glucose-derived pyruvate to mitochondria via alanine, and the glutamate exporter, SLC25A22. Glutathione derived from glucose maintains redox homeostasis in Cu-treated cells, reducing Cu-H 2 O 2 Fenton-like reaction mediated cell death. Progression of human ccRCC is associated with gene expression signature characterized by induction of ETC/OxPhos/GSH/Cu-related genes and decrease in HIF/glycolytic genes in subpopulations of cancer cells. Enhanced, concordant expression of genes related to ETC/OxPhos, GSH, and Cu characterizes metabolically active subpopulations of ccRCC cells in regions adjacent to proliferative subpopulations of ccRCC cells, implicating oxidative metabolism in supporting tumor growth.
Collapse
|
14
|
Lin H, Suzuki K, Smith N, Li X, Nalbach L, Fuentes S, Spigelman AF, Dai XQ, Bautista A, Ferdaoussi M, Aggarwal S, Pepper AR, Roma LP, Ampofo E, Li WH, MacDonald PE. A role and mechanism for redox sensing by SENP1 in β-cell responses to high fat feeding. Nat Commun 2024; 15:334. [PMID: 38184650 PMCID: PMC10771529 DOI: 10.1038/s41467-023-44589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Pancreatic β-cells respond to metabolic stress by upregulating insulin secretion, however the underlying mechanisms remain unclear. Here we show, in β-cells from overweight humans without diabetes and mice fed a high-fat diet for 2 days, insulin exocytosis and secretion are enhanced without increased Ca2+ influx. RNA-seq of sorted β-cells suggests altered metabolic pathways early following high fat diet, where we find increased basal oxygen consumption and proton leak, but a more reduced cytosolic redox state. Increased β-cell exocytosis after 2-day high fat diet is dependent on this reduced intracellular redox state and requires the sentrin-specific SUMO-protease-1. Mice with either pancreas- or β-cell-specific deletion of this fail to up-regulate exocytosis and become rapidly glucose intolerant after 2-day high fat diet. Mechanistically, redox-sensing by the SUMO-protease requires a thiol group at C535 which together with Zn+-binding suppresses basal protease activity and unrestrained β-cell exocytosis, and increases enzyme sensitivity to regulation by redox signals.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xi Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Sonia Fuentes
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mourad Ferdaoussi
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Saloni Aggarwal
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
15
|
Li M, Li L, Cheng X, Li L, Tu K. Hypoxia promotes the growth and metastasis of ovarian cancer cells by suppressing ferroptosis via upregulating SLC2A12. Exp Cell Res 2023; 433:113851. [PMID: 37940066 DOI: 10.1016/j.yexcr.2023.113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Ovarian cancer has been a worldwide health burden for women and its progression is highly hypoxia-independent. Here, we investigated the exact mechanisms by which hypoxia contributes to the malignant progression of ovarian cancer. METHOD MTT, transwell, colony formation, and scratch wound healing assays were carried out for cellular functions. The underlying mechanism by which hypoxia functions was explored by RNA-seq, enrichment analysis, western blotting, qRT-PCR, flow cytometry, ChIP, luciferase reporter, and ELISA. Finally, animal experiments including the xenograft model and tumor metastasis model were constructed to validate the role of SLC2A12 in vivo. RESULTS Hypoxia treatment promoted the cell proliferation, mobility, and colony growth abilities of the two ovarian cancer cell lines HO-8910 and A2780. RNA-seq and enrichment analysis showed that SLC2A12 was hyper-expressed under hypoxia condition and it may be related to glutathione and lipid metabolism. Besides, the expression of SLC2A12 was negatively correlated with overall survival. Hypoxia suppressed ferroptosis by SLC2A12 because silencing SLC2A12 declined the cell viability of HO-8910 and A2780 cells under hypoxia conditions, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) breached that result and upregulated the expression of glutathione peroxidase 4 (GPX4). Moreover, hypoxia increased the expression of hypoxia inducible factor 1 A (HIF-1A), and the accumulated HIF-1A binds to hypoxia inducible factor 1 B (HIF1B) to form HIF-1 complex, then promoted the binding of hypoxic response elements (HRE) to SLC2A12 promoter by HIF-1/HRE signal. Subsequently, SLC2A12 regulated glutathione metabolism and in turn inhibited ferroptosis. The animal experiments indicated that silencing SLC2A12 could significantly inhibit tumor growth and metastasis in vivo. CONCLUSION Hypoxia promoted ovarian cancer progression by upregulating SLC2A12 and then regulating glutathione metabolism to inhibit ferroptosis.
Collapse
Affiliation(s)
- Mingmei Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China
| | - Li Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China
| | - Xiaoxiao Cheng
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China
| | - Longyu Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China.
| | - Kaijia Tu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China.
| |
Collapse
|
16
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
17
|
Vived C, Lee-Papastavros A, Aparecida da Silva Pereira J, Yi P, MacDonald TL. β Cell Stress and Endocrine Function During T1D: What Is Next to Discover? Endocrinology 2023; 165:bqad162. [PMID: 37947352 DOI: 10.1210/endocr/bqad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Canonically, type 1 diabetes (T1D) is a disease characterized by autoreactive T cells as perpetrators of endocrine dysfunction and β cell death in the spiral toward loss of β cell mass, hyperglycemia, and insulin dependence. β Cells have mostly been considered as bystanders in a flurry of autoimmune processes. More recently, our framework for understanding and investigating T1D has evolved. It appears increasingly likely that intracellular β cell stress is an important component of T1D etiology/pathology that perpetuates autoimmunity during the progression to T1D. Here we discuss the emerging and complex role of β cell stress in initiating, provoking, and catalyzing T1D. We outline the bridges between hyperglycemia, endoplasmic reticulum stress, oxidative stress, and autoimmunity from the viewpoint of intrinsic β cell (dys)function, and we extend this discussion to the potential role for a therapeutic β cell stress-metabolism axis in T1D. Lastly, we mention research angles that may be pursued to improve β cell endocrine function during T1D. Biology gleaned from studying T1D will certainly overlap to innovate therapeutic strategies for T2D, and also enhance the pursuit of creating optimized stem cell-derived β cells as endocrine therapy.
Collapse
Affiliation(s)
- Celia Vived
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jéssica Aparecida da Silva Pereira
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Yi
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Tara L MacDonald
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Barsby T, Vähäkangas E, Ustinov J, Montaser H, Ibrahim H, Lithovius V, Kuuluvainen E, Chandra V, Saarimäki-Vire J, Katajisto P, Hietakangas V, Otonkoski T. Aberrant metabolite trafficking and fuel sensitivity in human pluripotent stem cell-derived islets. Cell Rep 2023; 42:112970. [PMID: 37556323 DOI: 10.1016/j.celrep.2023.112970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/09/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Pancreatic islets regulate blood glucose homeostasis through the controlled release of insulin; however, current metabolic models of glucose-sensitive insulin secretion are incomplete. A comprehensive understanding of islet metabolism is integral to studies of endocrine cell development as well as diabetic islet dysfunction. Human pluripotent stem cell-derived islets (SC-islets) are a developmentally relevant model of human islet function that have great potential in providing a cure for type 1 diabetes. Using multiple 13C-labeled metabolic fuels, we demonstrate that SC-islets show numerous divergent patterns of metabolite trafficking in proposed insulin release pathways compared with primary human islets but are still reliant on mitochondrial aerobic metabolism to derive function. Furthermore, reductive tricarboxylic acid cycle activity and glycolytic metabolite cycling occur in SC-islets, suggesting that non-canonical coupling factors are also present. In aggregate, we show that many facets of SC-islet metabolism overlap with those of primary islets, albeit with a retained immature signature.
Collapse
Affiliation(s)
- Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Eliisa Vähäkangas
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emilia Kuuluvainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
19
|
Cheng Q, Mou L, Su W, Chen X, Zhang T, Xie Y, Xue J, Lee PY, Wu H, Du Y. Ferroptosis of CD163 + tissue-infiltrating macrophages and CD10 + PC + epithelial cells in lupus nephritis. Front Immunol 2023; 14:1171318. [PMID: 37583695 PMCID: PMC10423811 DOI: 10.3389/fimmu.2023.1171318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Background Dysregulation of cell death and defective clearance of dying cells are closely related to the pathogenesis of lupus nephritis (LN). However, the contribution of a recently discovered form of programmed cell death (PCD) called ferroptosis to LN has not been explored in detail. The purpose of this study was to investigate the role of ferroptosis and its associated metabolic pathways in the pathogenesis of LN. Methods The composite gene expression scores were calculated by averaging the z-scored transformed log2 expressed genes within each form of PCD and pathway. Immunohistochemistry and immunofluorescence assays were used to verify the bioinformatics results. Results We determined that ferroptosis is prominently and specifically elevated in the glomerular compartment of LN patients compared to other forms of PCD and kidney disease. This finding was then verified by immunohistochemical staining of 4-HNE (a key indicator for ferroptosis) expression in our own cohort (P < 0.0001). Intercorrelation networks were observed between 4-HNE and blood urea nitrogen, SLE disease activity index, serum creatinine, and complement 4, and negatively correlated with glomerular filtration rate in our own LN cohort (P < 0.05). Furthermore, enhanced iron metabolism and reduced fatty acid synthesis may be the most important factors for ferroptosis within the glomerulus. Through analysis of a single cell sequencing dataset and verification of immunohistochemical and immunofluorescence staining, aberrantly activated lipid peroxidation in CD163+ macrophages and CD10+ PC+ (pyruvate carboxylase) epithelial cells indicated that they may be undergoing ferroptosis in the glomerular compartment. Conclusions Two dysregulated genes, CD163 and PC, were identified and verified that were significantly associated with lipid peroxidation. Targeting ferroptosis in CD163+ macrophages and CD10+ PC+ epithelial cells may provide novel therapeutic approaches in LN.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Mou
- Department of Nephrology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Su
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xin Chen
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Jin ES, Malloy CR, Sharma G, Finn E, Fuller KNZ, Reyes YG, Lovell MA, Derderian SC, Schoen JA, Inge TH, Cree MG. Glycerol as a precursor for hepatic de novo glutathione synthesis in human liver. Redox Biol 2023; 63:102749. [PMID: 37224695 PMCID: PMC10225920 DOI: 10.1016/j.redox.2023.102749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Glycerol is a substrate for gluconeogenesis and fatty acid esterification in the liver, processes which are upregulated in obesity and may contribute to excess fat accumulation. Glycine and glutamate, in addition to cysteine, are components of glutathione, the major antioxidant in the liver. In principle, glycerol could be incorporated into glutathione via the TCA cycle or 3-phosphoglycerate, but it is unknown whether glycerol contributes to hepatic de novo glutathione biosynthesis. METHODS Glycerol metabolism to hepatic metabolic products including glutathione was examined in the liver from adolescents undergoing bariatric surgery. Participants received oral [U-13C3]glycerol (50 mg/kg) prior to surgery and liver tissue (0.2-0.7g) was obtained during surgery. Glutathione, amino acids, and other water-soluble metabolites were extracted from the liver tissue and isotopomers were quantified with nuclear magnetic resonance spectroscopy. RESULTS Data were collected from 8 participants (2 male, 6 female; age 17.1 years [range 14-19]; BMI 47.4 kg/m2 [range 41.3-63.3]). The concentrations of free glutamate, cysteine, and glycine were similar among participants, and so were the fractions of 13C-labeled glutamate and glycine derived from [U-13C3]glycerol. The signals from all component amino acids of glutathione - glutamate, cysteine and glycine - were strong and analyzed to obtain the relative concentrations of the antioxidant in the liver. The signals from glutathione containing [13C2]glycine or [13C2]glutamate derived from the [U-13C3]glycerol drink were readily detected, and 13C-labelling patterns in the moieties were consistent with the patterns in corresponding free amino acids from the de novo glutathione synthesis pathway. The newly synthesized glutathione with [U-13C3]glycerol trended to be lower in obese adolescents with liver pathology. CONCLUSIONS This is the first report of glycerol incorporation into glutathione through glycine or glutamate metabolism in human liver. This could represent a compensatory mechanism to increase glutathione in the setting of excess glycerol delivery to the liver.
Collapse
Affiliation(s)
- Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; VA North Texas Health Care System, Dallas, TX, 75216, USA
| | - Gaurav Sharma
- Department of Cardiovascular & Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; VA North Texas Health Care System, Dallas, TX, 75216, USA
| | - Erin Finn
- Department of Pediatrics, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA; Children's Hospital of Colorado, Aurora, CO, 80045, USA
| | - Kelly N Z Fuller
- Department of Pediatrics, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA; Children's Hospital of Colorado, Aurora, CO, 80045, USA
| | - Yesenia Garcia Reyes
- Department of Pediatrics, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA; Children's Hospital of Colorado, Aurora, CO, 80045, USA
| | - Mark A Lovell
- Children's Hospital of Colorado, Aurora, CO, 80045, USA; Department of Pathology, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sarkis C Derderian
- Children's Hospital of Colorado, Aurora, CO, 80045, USA; Department of Surgery, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jonathan A Schoen
- Children's Hospital of Colorado, Aurora, CO, 80045, USA; Department of Surgery, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Thomas H Inge
- Children's Hospital of Colorado, Aurora, CO, 80045, USA; Department of Surgery, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA; Ann and Robert Lurie Children's Hospital of Chicago, USA
| | - Melanie G Cree
- Department of Pediatrics, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA; Children's Hospital of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
21
|
Davidson EA, Chen Y, Singh S, Orlicky DJ, Thompson B, Wang Y, Charkoftaki G, Furnary TA, Cardone RL, Kibbey RG, Shearn CT, Nebert DW, Thompson DC, Vasiliou V. Endocrine pancreas-specific Gclc gene deletion causes a severe diabetes phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544855. [PMID: 37398356 PMCID: PMC10312708 DOI: 10.1101/2023.06.13.544855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Reduced glutathione (GSH) is an abundant antioxidant that regulates intracellular redox homeostasis by scavenging reactive oxygen species (ROS). Glutamate-cysteine ligase catalytic (GCLC) subunit is the rate-limiting step in GSH biosynthesis. Using the Pax6-Cre driver mouse line, we deleted expression of the Gclc gene in all pancreatic endocrine progenitor cells. Intriguingly, Gclc knockout (KO) mice, following weaning, exhibited an age-related, progressive diabetes phenotype, manifested as strikingly increased blood glucose and decreased plasma insulin levels. This severe diabetes trait is preceded by pathologic changes in islet of weanling mice. Gclc KO weanlings showed progressive abnormalities in pancreatic morphology including: islet-specific cellular vacuolization, decreased islet-cell mass, and alterations in islet hormone expression. Islets from newly-weaned mice displayed impaired glucose-stimulated insulin secretion, decreased insulin hormone gene expression, oxidative stress, and increased markers of cellular senescence. Our results suggest that GSH biosynthesis is essential for normal development of the mouse pancreatic islet, and that protection from oxidative stress-induced cellular senescence might prevent abnormal islet-cell damage during embryogenesis.
Collapse
|
22
|
Abnousian A, Vasquez J, Sasaninia K, Kelley M, Venketaraman V. Glutathione Modulates Efficacious Changes in the Immune Response against Tuberculosis. Biomedicines 2023; 11:biomedicines11051340. [PMID: 37239011 DOI: 10.3390/biomedicines11051340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) is an antioxidant in human cells that is utilized to prevent damage occurred by reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. Due to its immunological role in tuberculosis (TB), GSH is hypothesized to play an important part in the immune response against M. tb infection. In fact, one of the hallmark structures of TB is granuloma formation, which involves many types of immune cells. T cells, specifically, are a major component and are involved in the release of cytokines and activation of macrophages. GSH also serves an important function in macrophages, natural killer cells, and T cells in modulating their activation, their metabolism, proper cytokine release, proper redox activity, and free radical levels. For patients with increased susceptibility, such as those with HIV and type 2 diabetes, the demand for higher GSH levels is increased. GSH acts as an important immunomodulatory antioxidant by stabilizing redox activity, shifting of cytokine profile toward Th1 type response, and enhancing T lymphocytes. This review compiles reports showing the benefits of GSH in improving the immune responses against M. tb infection and the use of GSH as an adjunctive therapy for TB.
Collapse
Affiliation(s)
- Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Joshua Vasquez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Melissa Kelley
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91768, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
23
|
Chen C, Zhou B, Lin J, Gong Q, Xu F, Li Z, Huang Y. Liver Transcriptome Analysis Reveals Energy Regulation and Functional Impairment of Onychostoma sima During Starvation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:247-258. [PMID: 36790593 DOI: 10.1007/s10126-023-10201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 05/06/2023]
Abstract
Releasing juvenile fish into resource-depleted waters is regarded as an effective way to restore fishery resources. However, during this stage, released fish are most vulnerable to long-term food deprivation due to environmental changes and low adaptability. Therefore, research regarding the energy regulation of fish under starvation stress is crucial to the optimization of release strategies. In this study, we performed a transcriptome analysis of the liver of Onychostoma sima subjected to starvation for 14 days. The results showed that, under long-term starvation, the liver regulated glucose homeostasis by activating the gluconeogenesis pathway. Meanwhile, the fatty acid metabolism pathway was activated to supply acetyl-coA to the TCA cycle, thus increasing mitochondrial ATP production and maintaining the balance of energy metabolism. Nevertheless, the activation of energy metabolism could not completely compensate for the role of exogenous nutrients, as evidenced by the downregulation of many genes involved in antioxidant defenses (e.g., cat, gpx3, mgst1, and mgst2) and immune response (e.g., c3, cd22, trnfrsf14, and a2ml). In summary, our data reveal the effects of long-term starvation on the energy metabolism and defensive regulation of starved juvenile fish, and these findings will provide important reference for the optimization of artificial release.
Collapse
Affiliation(s)
- Chunna Chen
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Bo Zhou
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Jue Lin
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Quan Gong
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Fei Xu
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Zhengyi Li
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China
| | - Yingying Huang
- Fishery Institute of the Sichuan Academy of Agricultural Sciences, Sichuan, Chengdu, 611731, China.
| |
Collapse
|
24
|
Chai P, Lan P, Li S, Yao D, Chang C, Cao M, Shen Y, Ge S, Wu J, Lei M, Fan X. Mechanistic insight into allosteric activation of human pyruvate carboxylase by acetyl-CoA. Mol Cell 2022; 82:4116-4130.e6. [DOI: 10.1016/j.molcel.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
25
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
26
|
Contribution of dicarboxylic acids to pyrene biodegradation and transcriptomic responses of Enterobacter sp. PRd5. Appl Microbiol Biotechnol 2022; 106:7949-7961. [PMID: 36227340 DOI: 10.1007/s00253-022-12217-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
The colonization of degrading endophytic bacteria is an effective means to reduce the residues of polycyclic aromatic hydrocarbons (PAHs) in crops. Dicarboxylic acids, as the main active components in crops, can affect the physiological activities of endophytic bacteria and alter the biodegradation process of PAHs in crops. In this study, malonic acid and succinic acid were selected as the representatives to investigate the contribution of dicarboxylic acids to pyrene biodegradation by endophytic Enterobacter sp. PRd5 in vitro. The results showed that dicarboxylic acids improved the biodegradation of pyrene and altered the expression of the functional gene of strain PRd5. Malonic acid and succinic acid reduced the half-life of pyrene by 20.0% and 27.8%, respectively. The degrading enzyme activities were significantly stimulated by dicarboxylic acids. There were 386 genes up-regulated and 430 genes down-regulated in strain PRd5 with malonic acid, while 293 genes up-regulated and 340 genes down-regulated with succinic acid. Those up-regulated genes were distributed in the functional classification of signal transduction, membrane transport, energy metabolism, carbohydrate metabolism, and amino acid metabolism. Malonic acid mainly enhanced the central carbon metabolism, cell proliferation, and cell activity. Succinic acid mainly improved the expression of degrading gene. Overall, the findings of this study provide new insights into the regulation and control of PAH stress by crops. KEY POINTS: • Dicarboxylic acids improved the biodegradation of pyrene by Enterobacter sp. PRd5. • The degrading enzyme activities were stimulated by dicarboxylic acids. • There are different facilitation mechanisms between malonic acid and succinic acid.
Collapse
|
27
|
Lin Y, Yang J, Luo L, Zhang X, Deng S, Chen X, Li Y, Bekhit AEDA, Xu B, Huang R. Ferroptosis Related Immunomodulatory Effect of a Novel Extracellular Polysaccharides from Marine Fungus Aureobasidium melanogenum. Mar Drugs 2022; 20:md20050332. [PMID: 35621983 PMCID: PMC9144548 DOI: 10.3390/md20050332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Marine fungi represent an important and sustainable resource, from which the search for novel biological substances for application in the pharmacy or food industry offers great potential. In our research, novel polysaccharide (AUM-1) was obtained from marine Aureobasidium melanogenum SCAU-266 were obtained and the molecular weight of AUM-1 was determined to be 8000 Da with 97.30% of glucose, 1.9% of mannose, and 0.08% galactose, owing to a potential backbone of α-D-Glcp-(1→2)-α-D-Manp-(1→4)-α-D-Glcp-(1→6)-(SO3−)-4-α-D-Glcp-(1→6)-1-β-D-Glcp-1→2)-α-D-Glcp-(1→6)-β-D-Glcp-1→6)-α-D-Glcp-1→4)-α-D-Glcp-6→1)-[α-D-Glcp-4]26→1)-α-D-Glcp and two side chains that consisted of α-D-Glcp-1 and α-D-Glcp-(1→6)-α-D-Glcp residues. The immunomodulatory effect of AUM-1 was identified. Then, the potential molecular mechanism by which AUM-1 may be connected to ferroptosis was indicated by metabonomics, and the expression of COX2, SLC7A11, GPX4, ACSL4, FTH1, and ROS were further verified. Thus, we first speculated that AUM-1 has a potential effect on the ferroptosis-related immunomodulatory property in RAW 264.7 cells by adjusting the expression of GPX4, regulated glutathione (oxidative), directly causing lipid peroxidation owing to the higher ROS level through the glutamate metabolism and TCA cycle. Thus, the ferroptosis related immunomodulatory effect of AUM-1 was obtained.
Collapse
Affiliation(s)
- Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.L.)
| | - Shengyu Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Yiyang Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.L.)
| | - Alaa El-Din A. Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University−Hong Kong Baptist University−United International College, Zhuhai 519087, China;
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
- Correspondence:
| |
Collapse
|