1
|
Brandhorst S, Longo VD. Fasting-mimicking diet potentiates anti-tumor effects of CDK4/6 inhibitors against breast cancer by suppressing NRAS- and IGF1-mediated mTORC1 signaling. Drug Resist Updat 2025; 78:101182. [PMID: 39665873 DOI: 10.1016/j.drup.2024.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Fasting-mimicking diet (FMD) cycles, defined as 3-5 day periods of a calorie-restricted, low-protein, low-carbohydrate, and high-fat diet, have emerged as a dietary approach to delay cancer initiation and progression in both autograft and xenograft mouse models and as a safe and feasible approach to decrease risk factors for cancer and other age-related pathologies in humans. A substantial number of pre-clinical studies focused on various tumor types have shown that fasting/FMDs can potentiate the efficacy of various standard-of-care cancer therapies but also modulate the immune system to promote a T cell-dependent attack of tumor cells. Importantly, combining drug treatment with fasting/FMDs can overcome acquired drug resistance which frequently emerges and reduces long-term treatment benefits. However, the mechanisms by which the FMD reverts resistance to CDK4/6i remain poorly understood. Here, Li and colleagues provide evidence that FMD cycles act as a wild card to reduce the activity of a signaling network that includes IGF-1, RAS, AKT, and mTOR-S6K to delay cancer progression and reverse the acquisition of drug resistance. These findings expand the mechanistic understanding of the FMD-mediated increase in drug efficacy and provide further evidence to support trials combining hormone therapy, CDK4/6 inhibitors, and FMD in breast cancer treatment. These new results on FMD cycles add an optimistic outlook to extend the efficacy of standard-of-care drugs that eventually become ineffective because of acquired resistance.
Collapse
Affiliation(s)
- Sebastian Brandhorst
- Longevity Institute, Davis School of Gerontology, University of Southern California, USA
| | - Valter D Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, USA.
| |
Collapse
|
2
|
Li N, Sun YJ, Huang LY, Li RR, Zhang JS, Qiu AH, Wang J, Yang L. Fasting-mimicking diet potentiates anti-tumor effects of CDK4/6 inhibitors against breast cancer by suppressing NRAS- and IGF1-mediated mTORC1 signaling. Drug Resist Updat 2025; 78:101161. [PMID: 39499997 DOI: 10.1016/j.drup.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/13/2024] [Indexed: 12/18/2024]
Abstract
AIMS Acquired resistance to cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) frequently emerges, and CDK4/6i-containing therapies in triple-negative breast cancer (TNBC) remain to be determined. METHODS RNA-sequencing, cell viability analysis, immunoblotting, siRNA transfection et al. were used to investigate and verify the resistance mechanism. BALB/c nude mice xenograft models and spontaneous MMTV-PyMT models were used to explore in vivo efficacy. RESULTS The mTOR pathway was activated in acquired CDK4/6i-resistant cells and inhibition of mTORC1 restored the sensitivity. While fasting-mimicking diet (FMD) enhances the activity of anticancer agents by inhibiting the mTORC1 signaling, we assessed FMD and found that FMD restored the sensitivity of CDK4/6i-resistant cells to abemaciclib and potentiated the anti-tumor activity of CDK4/6i in TNBC. The anti-tumor effects of FMD and/or CDK4/6i were accompanied by the downregulation of S6 phosphorylation. FMD cooperated with CDK4/6i to suppress the levels of IGF1 and RAS. The combination of FMD and abemaciclib also led to a potent inhibition of tumor growth in spontaneous transgenic MMTV-PyMT mouse models. CONCLUSIONS Our data demonstrate that FMD overcomes resistance and potentiates the anti-tumor effect of CDK4/6i by inhibiting mTORC1 signaling via lowering the levels of IGF1 and RAS, providing the rationale for clinical investigation of a potential FMD-CDK4/6i strategy in breast cancer.
Collapse
Affiliation(s)
- Ning Li
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ya-Jie Sun
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Yun Huang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong-Rong Li
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Shantou University Medical College, Shantou University, Shantou, Guangdong 515000, China
| | - Jun-Sheng Zhang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ai-Hua Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Lu Yang
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Shantou University Medical College, Shantou University, Shantou, Guangdong 515000, China.
| |
Collapse
|
3
|
Ligorio F, Vingiani A, Torelli T, Sposetti C, Drufuca L, Iannelli F, Zanenga L, Depretto C, Folli S, Scaperrotta G, Capri G, Bianchi GV, Ferraris C, Martelli G, Maugeri I, Provenzano L, Nichetti F, Agnelli L, Lobefaro R, Fucà G, Fotia G, Mariani L, Morelli D, Ladisa V, De Santis MC, Lozza L, Trecate G, Belfiore A, Brich S, Bertolotti A, Lorenzini D, Ficchì A, Martinetti A, Sottotetti E, Arata A, Corsetto P, Sorrentino L, Rediti M, Salvadori G, Minucci S, Foiani M, Apolone G, Pagani M, Pruneri G, de Braud F, Vernieri C. Early downmodulation of tumor glycolysis predicts response to fasting-mimicking diet in triple-negative breast cancer patients. Cell Metab 2024:S1550-4131(24)00450-9. [PMID: 39694040 DOI: 10.1016/j.cmet.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
In preclinical experiments, cyclic fasting-mimicking diets (FMDs) showed broad anticancer effects in combination with chemotherapy. Among different tumor types, triple-negative breast cancer (TNBC) is exquisitely sensitive to FMD. However, the antitumor activity and efficacy of cyclic FMD in TNBC patients remain unclear. Here, we show that a severely calorie-restricted, triweekly, 5-day FMD regimen results in excellent pathologic complete response (pCR) rates (primary endpoint) and long-term clinical outcomes (secondary endpoints) when combined with preoperative chemotherapy in 30 patients with early-stage TNBC enrolled in the phase 2 trial BREAKFAST. Bulk and single-cell RNA sequencing analysis revealed that highly glycolytic cancer cells, myeloid cells, and pericytes from tumors achieving pCR undergo a significant, early downmodulation of pathways related to glycolysis and pyruvate metabolism. Our findings pave the wave for conducting larger clinical trials to investigate the efficacy of cyclic FMD in early-stage TNBC patients and to validate early changes of intratumor glycolysis as a predictor of clinical benefit from nutrient restriction. This study was registered at Clinicaltrials.gov (NCT04248998).
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Vingiani
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Tommaso Torelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Caterina Sposetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Lorenzo Drufuca
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Fabio Iannelli
- Haematopathogy Division, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Lucrezia Zanenga
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Catherine Depretto
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Secondo Folli
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gianfranco Scaperrotta
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giuseppe Capri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giulia V Bianchi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Cristina Ferraris
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gabriele Martelli
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Ilaria Maugeri
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Agnelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giuseppe Fotia
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luigi Mariani
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Daniele Morelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Vito Ladisa
- Hospital Pharmacy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Maria Carmen De Santis
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Laura Lozza
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giovanna Trecate
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Antonino Belfiore
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Silvia Brich
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Alessia Bertolotti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Daniele Lorenzini
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Angela Ficchì
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Antonia Martinetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Elisa Sottotetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Alessio Arata
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Paola Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Luca Sorrentino
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Mattia Rediti
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giulia Salvadori
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Saverio Minucci
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Giovanni Apolone
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Massimiliano Pagani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Giancarlo Pruneri
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
4
|
Xie Y, Ye H, Liu Z, Liang Z, Zhu J, Zhang R, Li Y. Fasting as an Adjuvant Therapy for Cancer: Mechanism of Action and Clinical Practice. Biomolecules 2024; 14:1437. [PMID: 39595613 PMCID: PMC11591922 DOI: 10.3390/biom14111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The fundamental biological characteristics of tumor cells are characterized by irregularities in signaling and metabolic pathways, which are evident through increased glucose uptake, altered mitochondrial function, and the ability to evade growth signals. Interventions such as fasting or fasting-mimicking diets represent a promising strategy that can elicit distinct responses in normal cells compared to tumor cells. These dietary strategies can alter the circulating levels of various hormones and metabolites, including blood glucose, insulin, glucagon, growth hormone, insulin-like growth factor, glucocorticoids, and epinephrine, thereby potentially exerting an anticancer effect. Additionally, elevated levels of insulin-like growth factor-binding proteins and ketone bodies may increase tumor cells' dependence on their own metabolites, ultimately leading to their apoptosis. The combination of fasting or fasting-mimicking diets with radiotherapy or chemotherapeutic agents has demonstrated enhanced anticancer efficacy. This paper aims to classify fasting, elucidate the mechanisms that underlie its effects, assess its impact on various cancer types, and discuss its clinical applications. We will underscore the differential effects of fasting on normal and cancer cells, the mechanisms responsible for these effects, and the imperative for clinical implementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| | - Yan Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| |
Collapse
|
5
|
Hatse S, Lambrechts Y, Antoranz Martinez A, De Schepper M, Geukens T, Vos H, Berben L, Messiaen J, Marcelis L, Van Herck Y, Neven P, Smeets A, Desmedt C, De Smet F, Bosisio FM, Wildiers H, Floris G. Dissecting the immune infiltrate of primary luminal B-like breast carcinomas in relation to age. J Pathol 2024; 264:344-356. [PMID: 39344093 DOI: 10.1002/path.6354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/26/2024] [Accepted: 08/24/2024] [Indexed: 10/01/2024]
Abstract
The impact of aging on the immune landscape of luminal breast cancer (Lum-BC) is poorly characterized. Understanding the age-related dynamics of immune editing in Lum-BC is anticipated to improve the therapeutic benefit of immunotherapy in older patients. To this end, here we applied the 'multiple iterative labeling by antibody neo-deposition' (MILAN) technique, a spatially resolved single-cell multiplex immunohistochemistry method. We created tissue microarrays by sampling both the tumor center and invasive front of luminal breast tumors collected from a cohort of treatment-naïve patients enrolled in the prospective monocentric IMAGE (IMmune system and AGEing) study. Patients were subdivided into three nonoverlapping age categories (35-45 = 'young', n = 12; 55-65 = 'middle', n = 15; ≥70 = 'old', n = 26). Additionally, depending on localization and amount of cytotoxic T lymphocytes, the tumor immune types 'desert' (n = 22), 'excluded' (n = 19), and 'inflamed' (n = 12) were identified. For the MILAN technique we used 58 markers comprising phenotypic and functional markers allowing in-depth characterization of T and B lymphocytes (T&B-lym). These were compared between age groups and tumor immune types using Wilcoxon's test and Pearson's correlation. Cytometric analysis revealed a decline of the immune cell compartment with aging. T&B-lym were numerically less abundant in tumors from middle-aged and old compared to young patients, regardless of the geographical tumor zone. Likewise, desert-type tumors showed the smallest immune-cell compartment and were not represented in the group of young patients. Analysis of immune checkpoint molecules revealed a heterogeneous geographical pattern of expression, indicating higher numbers of PD-L1 and OX40-positive T&B-lym in young compared to old patients. Despite the numerical decline of immune infiltration, old patients retained higher expression levels of OX40 in T helper cells located near cancer cells, compared to middle-aged and young patients. Aging is associated with important numerical and functional changes of the immune landscape in Lum-BC. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yentl Lambrechts
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Asier Antoranz Martinez
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Maxim De Schepper
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Hanne Vos
- Department of Surgical Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Lieze Berben
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Julie Messiaen
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lukas Marcelis
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Francesca Maria Bosisio
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Giuseppe Floris
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Cortellino S, D'Angelo M, Quintiliani M, Giordano A. Cancer knocks you out by fasting: Cachexia as a consequence of metabolic alterations in cancer. J Cell Physiol 2024:e31417. [PMID: 39245862 DOI: 10.1002/jcp.31417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Neoplastic transformation reprograms tumor and surrounding host cell metabolism, increasing nutrient consumption and depletion in the tumor microenvironment. Tumors uptake nutrients from neighboring normal tissues or the bloodstream to meet energy and anabolic demands. Tumor-induced chronic inflammation, a high-energy process, also consumes nutrients to sustain its dysfunctional activities. These tumor-related metabolic and physiological changes, including chronic inflammation, negatively impact systemic metabolism and physiology. Furthermore, the adverse effects of antitumor therapy and tumor obstruction impair the endocrine, neural, and gastrointestinal systems, thereby confounding the systemic status of patients. These alterations result in decreased appetite, impaired nutrient absorption, inflammation, and shift from anabolic to catabolic metabolism. Consequently, cancer patients often suffer from malnutrition, which worsens prognosis and increases susceptibility to secondary adverse events. This review explores how neoplastic transformation affects tumor and microenvironment metabolism and inflammation, leading to poor prognosis, and discusses potential strategies and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), School for Advanced Studies, Federico II University, Naples, Italy
- SHRO Italia Foundation ETS, Candiolo, Turin, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
8
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Vernieri C, Ligorio F, Tripathy D, Longo VD. Cyclic fasting-mimicking diet in cancer treatment: Preclinical and clinical evidence. Cell Metab 2024; 36:1644-1667. [PMID: 39059383 DOI: 10.1016/j.cmet.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
In preclinical tumor models, cyclic fasting and fasting-mimicking diets (FMDs) produce antitumor effects that become synergistic when combined with a wide range of standard anticancer treatments while protecting normal tissues from treatment-induced adverse events. More recently, results of phase 1/2 clinical trials showed that cyclic FMD is safe, feasible, and associated with positive metabolic and immunomodulatory effects in patients with different tumor types, thus paving the way for larger clinical trials to investigate FMD anticancer activity in different clinical contexts. Here, we review the tumor-cell-autonomous and immune-system-mediated mechanisms of fasting/FMD antitumor effects, and we critically discuss new metabolic interventions that could synergize with nutrient starvation to boost its anticancer activity and prevent or reverse tumor resistance while minimizing toxicity to patients. Finally, we highlight potential future applications of FMD approaches in combination with standard anticancer strategies as well as strategies to implement the design and conduction of clinical trials.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| | - Francesca Ligorio
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Nguyen NTA, Jiang Y, McQuade JL. Eating away cancer: the potential of diet and the microbiome for shaping immunotherapy outcome. Front Immunol 2024; 15:1409414. [PMID: 38873602 PMCID: PMC11169628 DOI: 10.3389/fimmu.2024.1409414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The gut microbiome (GMB) plays a substantial role in human health and disease. From affecting gut barrier integrity to promoting immune cell differentiation, the GMB is capable of shaping host immunity and thus oncogenesis and anti-cancer therapeutic response, particularly with immunotherapy. Dietary patterns and components are key determinants of GMB composition, supporting the investigation of the diet-microbiome-immunity axis as a potential avenue to enhance immunotherapy response in cancer patients. As such, this review will discuss the role of the GMB and diet on anti-cancer immunity. We demonstrate that diet affects anti-cancer immunity through both GMB-independent and GMB-mediated mechanisms, and that different diet patterns mold the GMB's functional and taxonomic composition in distinctive ways. Dietary modulation therefore shows promise as an intervention for improving cancer outcome; however, further and more extensive research in human cancer populations is needed.
Collapse
Affiliation(s)
| | | | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Pio R, Senent Y, Tavira B, Ajona D. Fasting and fasting-mimicking conditions in the cancer immunotherapy era. J Physiol Biochem 2024:10.1007/s13105-024-01020-3. [PMID: 38587595 DOI: 10.1007/s13105-024-01020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Fasting and fasting-mimicking conditions modulate tumor metabolism and remodel the tumor microenvironment (TME), which could be exploited for the treatment of tumors. A body of evidence demonstrates that fasting and fasting-mimicking conditions can kill cancer cells, or sensitize them to the antitumor activity of standard-of-care drugs while protecting normal cells against their toxic side effects. Pre- and clinical data also suggest that immune responses are involved in these therapeutic effects. Therefore, there is increasing interest in evaluating the impact of fasting-like conditions in the efficacy of antitumor therapies based on the restoration or activation of antitumor immune responses. Here, we review the recent progress in the intersection of fasting-like conditions and current cancer treatments, with an emphasis on cancer immunotherapy.
Collapse
Affiliation(s)
- Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Yaiza Senent
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Beatriz Tavira
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain.
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
12
|
Jeong M, Collins N. Nutritional modulation of antitumor immunity. Curr Opin Immunol 2024; 87:102422. [PMID: 38728931 DOI: 10.1016/j.coi.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
The composition and quantity of food we eat have a drastic impact on the development and function of immune responses. In this review, we highlight defined nutritional interventions shown to enhance antitumor immunity, including ketogenic, low-protein, high-fructose, and high-fiber diets, as well as dietary restriction. We propose that incorporating such nutritional interventions into immunotherapy protocols has the potential to increase therapeutic responsiveness and long-term tumor control in patients with cancer.
Collapse
Affiliation(s)
- Mingeum Jeong
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Nicholas Collins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
13
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Giuliani G, Longo VD. Ketone bodies in cell physiology and cancer. Am J Physiol Cell Physiol 2024; 326:C948-C963. [PMID: 38189128 DOI: 10.1152/ajpcell.00441.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Ketogenic diets (KDs), fasting, or prolonged physical activity elevate serum ketone bodies (KBs) levels, providing an alternative fuel source for the brain and other organs. However, KBs play pleiotropic roles that go beyond their role in energy production. KBs can act as signaling metabolites, influence gene expression, proteins' posttranslational modifications (PTMs), inflammation, and oxidative stress. Here, we explore the impact of KBs on mammalian cell physiology, including aging and tissue regeneration. We also concentrate on KBs and cancer, given the extensive evidence that dietary approaches inducing ketosis, including fasting-mimicking diets (FMDs) and KDs, can prevent cancer and affect tumor progression.
Collapse
Affiliation(s)
- Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
15
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
16
|
Alaluf E, Shalamov MM, Sonnenblick A. Update on current and new potential immunotherapies in breast cancer, from bench to bedside. Front Immunol 2024; 15:1287824. [PMID: 38433837 PMCID: PMC10905744 DOI: 10.3389/fimmu.2024.1287824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Impressive advances have been seen in cancer immunotherapy during the last years. Although breast cancer (BC) has been long considered as non-immunogenic, immunotherapy for the treatment of BC is now emerging as a new promising therapeutic approach with considerable potential. This is supported by a plethora of completed and ongoing preclinical and clinical studies in various types of immunotherapies. However, a significant gap between clinical oncology and basic cancer research impairs the understanding of cancer immunology and immunotherapy, hampering cancer therapy research and development. To exploit the accumulating available data in an optimal way, both fundamental mechanisms at play in BC immunotherapy and its clinical pitfalls must be integrated. Then, clinical trials must be critically designed with appropriate combinations of conventional and immunotherapeutic strategies. While there is room for major improvement, this updated review details the immunotherapeutic tools available to date, from bench to bedside, in the hope that this will lead to rethinking and optimizing standards of care for BC patients.
Collapse
Affiliation(s)
- Emmanuelle Alaluf
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Amir Sonnenblick
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
17
|
Lin X, Gao Y. A bibliometric analysis of the Fasting-Mimicking Diet. Front Nutr 2024; 11:1328450. [PMID: 38321992 PMCID: PMC10844425 DOI: 10.3389/fnut.2024.1328450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
The Fasting-Mimicking Diet (FMD) is a nutritional strategy that involves significantly reducing calorie intake for a specific period to mimic the physiological effects of fasting while still providing the body with nutrition. Our study aimed to conduct a bibliometric study to explore the latest publishing trends and areas of intense activity within the sphere of FMD. We extracted data on FMD publications from the Web of Science Core Collection (WOSCC) database. The bibliometric analysis was conducted by WOSCC Online Analysis Platform and VOSviewer 1.6.16. In total, there were 169 publications by 945 authors from 342 organizations and 25 countries/regions, and published in 111 journals. The most productive country, organization, author, and journal were the United States, the University of Southern California, Valter D. Longo, and Nutrients, respectively. The first high-cited document was published in Ageing Research Reviews and authored by Mattson et al. In this study, they discuss the various health benefits of FMD including improved metabolic health, weight management, and even potential effects on delaying aging processes and reducing the risk of chronic diseases. In conclusion, our study is the first bibliometric analysis of the FMD. The main research hotspots and frontiers were FMD for cancer, FMD for metabolic-related diseases, and FMD for cognitive improvement. FMD may have some potential benefits for multiple diseases which should be further investigated.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Ge LP, Jin X, Ma D, Wang ZY, Liu CL, Zhou CZ, Zhao S, Yu TJ, Liu XY, Di GH, Shao ZM, Jiang YZ. ZNF689 deficiency promotes intratumor heterogeneity and immunotherapy resistance in triple-negative breast cancer. Cell Res 2024; 34:58-75. [PMID: 38168642 PMCID: PMC10770380 DOI: 10.1038/s41422-023-00909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease characterized by remarkable intratumor heterogeneity (ITH), which poses therapeutic challenges. However, the clinical relevance and key determinant of ITH in TNBC are poorly understood. Here, we comprehensively characterized ITH levels using multi-omics data across our center's cohort (n = 260), The Cancer Genome Atlas cohort (n = 134), and four immunotherapy-treated cohorts (n = 109). Our results revealed that high ITH was associated with poor patient survival and immunotherapy resistance. Importantly, we identified zinc finger protein 689 (ZNF689) deficiency as a crucial determinant of ITH formation. Mechanistically, the ZNF689-TRIM28 complex was found to directly bind to the promoter of long interspersed element-1 (LINE-1), inducing H3K9me3-mediated transcriptional silencing. ZNF689 deficiency reactivated LINE-1 retrotransposition to exacerbate genomic instability, which fostered ITH. Single-cell RNA sequencing, spatially resolved transcriptomics and flow cytometry analysis confirmed that ZNF689 deficiency-induced ITH inhibited antigen presentation and T-cell activation, conferring immunotherapy resistance. Pharmacological inhibition of LINE-1 significantly reduced ITH, enhanced antitumor immunity, and eventually sensitized ZNF689-deficient tumors to immunotherapy in vivo. Consistently, ZNF689 expression positively correlated with favorable prognosis and immunotherapy response in clinical samples. Altogether, our study uncovers a previously unrecognized mechanism underlying ZNF689 deficiency-induced ITH and suggests LINE-1 inhibition combined with immunotherapy as a novel treatment strategy for TNBC.
Collapse
Affiliation(s)
- Li-Ping Ge
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-Yu Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao-Zheng Zhou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Tang Y, Chen S, Wang S, Xu K, Zhang K, Wang D, Feng N. Decanoylcarnitine Inhibits Triple-Negative Breast Cancer Progression via Mmp9 in an Intermittent Fasting Obesity Mouse. Technol Cancer Res Treat 2024; 23:15330338241233443. [PMID: 38409962 PMCID: PMC10898300 DOI: 10.1177/15330338241233443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Purpose: Treatment of triple-negative breast cancer (TNBC) remains challenging. Intermittent fasting (IF) has emerged as a promising approach to improve metabolic health of various metabolic disorders. Clinical studies indicate IF is essential for TNBC progression. However, the molecular mechanisms underlying metabolic remodeling in regulating IF and TNBC progression are still unclear. Methods: In this study, we utilized a robust mouse model of TNBC and exposed subjects to a high-fat diet (HFD) with IF to explore its impact on the metabolic reprogramming linked to cancer progression. To identify crucial serum metabolites and signaling events, we utilized targeted metabolomics and RNA sequencing (RNA-seq). Furthermore, we conducted immunoblotting, real-time quantitative polymerase chain reaction (RT-qPCR), cell migration assays, lentivirus-mediated Mmp9 overexpression, and Mmp9 inhibitor experiments to elucidate the role of decanoylcarnitine/Mmp9 in TNBC cell migration. Results: Our observations indicate that IF exerts notable inhibitory effects on both the proliferation and cancer metastasis. Utilizing targeted metabolomics and RNA-seq, we initially identified pivotal serum metabolites and signaling events in the progression of TNBC. Among the 349 serum metabolites identified, decanoylcarnitine was picked out to inhibit TNBC cell proliferation and migration. RNA-seq analysis of TNBC cells treated with decanoylcarnitine revealed its suppressive effects on extracellular matrix-related protein components, with a notable reduction observed in Mmp9. Further investigations confirmed that decanoylcarnitine could inhibit Mmp9 expression in TNBC cells, primary tumors, lung, and liver metastasis tissues. Mmp9 overexpression abolished the inhibitory effect of decanoylcarnitine on cell migration. Conclusion: This study pioneers the exploration of IF intervention and the role of decanoylcarnitine/Mmp9 in the progression of TNBC in obese mice, enhancing our comprehension of the potential roles of various dietary patterns in the process of cancer treatment.
Collapse
Affiliation(s)
- Yifan Tang
- Department of Urology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Shuai Chen
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Saijun Wang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ke Xu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Zhang
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dongmei Wang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Ligorio F, Lobefaro R, Fucà G, Provenzano L, Zanenga L, Nasca V, Sposetti C, Salvadori G, Ficchì A, Franza A, Martinetti A, Sottotetti E, Formisano B, Depretto C, Scaperrotta G, Belfiore A, Vingiani A, Ferraris C, Pruneri G, de Braud F, Vernieri C. Adding fasting-mimicking diet to first-line carboplatin-based chemotherapy is associated with better overall survival in advanced triple-negative breast cancer patients: A subanalysis of the NCT03340935 trial. Int J Cancer 2024; 154:114-123. [PMID: 37615485 DOI: 10.1002/ijc.34701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
Severe calorie restriction, in the form of cyclic fasting or fasting-mimicking diets (FMDs), boosts the antitumor activity of cytotoxic chemotherapy in mouse models of triple-negative breast cancer (TNBC). This effect is mostly mediated by fasting/FMD-induced reduction of plasma glucose concentration and by a boost in antitumor immunity. However, clinical evidence that cyclic FMD may impact on the outcomes of advanced TNBC (aTNBC) patients is lacking. We compared the overall survival (OS) of 14 aTNBC patients receiving first-line carboplatin-gemcitabine plus cyclic FMD in the context of the NCT03340935 trial with the OS of 76 consecutive aTNBC patients treated with carboplatin-based chemotherapy alone at Fondazione IRCCS Istituto Nazionale dei Tumori. Multivariable Cox regression models were used to adjust the prognostic impact of FMD for other prognostic variables. Patients undergoing cyclic FMD in combination with carboplatin-gemcitabine had better OS when compared to patients receiving chemotherapy alone (median OS 30.3 months, 95% CI 18-NR, vs 17.2 months, 95% CI 15.3-25.1, log-rank P value .041). Multivariable analysis confirmed an association between FMD use and better OS (HR: 0.40; 95% CI: 0.19-0.86; P = .019) also after propensity score-based matching according to patient ECOG PS and the presence of de novo metastatic disease (HR: 0.41; 95% CI: 0.21-0.83; P = .013). Cyclic FMD in combination with first-line chemotherapy may improve clinical outcomes in aTNBC patients. Our study paves the way for conducting phase II trials to investigate if cyclic FMD can increase the antitumor activity/efficacy of chemotherapy or chemoimmunotherapy in patients with early-stage TNBC or aTNBC.
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
| | - Lucrezia Zanenga
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Nasca
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
| | - Caterina Sposetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
| | - Giulia Salvadori
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Angela Ficchì
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Franza
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
| | - Antonia Martinetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisa Sottotetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Formisano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Catherine Depretto
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Antonino Belfiore
- Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
- Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Ferraris
- Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
- Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
21
|
Hine C, Patel AK, Ponti AK. Diet-Modifiable Redox Alterations in Ageing and Cancer. Subcell Biochem 2024; 107:129-172. [PMID: 39693023 DOI: 10.1007/978-3-031-66768-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With ageing comes some of life's best and worst moments. Those lucky enough to live out into the seventh, eighth, and nineth decades and perhaps beyond have more opportunities to experience the wonders and joys of the world. As the world's population shifts towards more and more of these individuals, this is something to be celebrated. However, it is not without negative consequences. Advanced age also ushers in health decline and the burden of non-communicable diseases such as cancer, heart disease, stroke, and organ function decay. Thus, alleviating or at least dampening the severity of ageing as a whole, as well as these individual age-related disorders will enable the improvement in lifespan and healthspan. In the following chapter, we delve into hypothesised causes of ageing and experimental interventions that can be taken to slow their progression. We also highlight cellular and subcellular mechanisms of ageing with a focus on protein thiol oxidation and posttranslational modifications that impact cellular homeostasis and the advent and progression of ageing-related cancers. By having a better understanding of the mechanisms of ageing, we can hopefully develop effective, safe, and efficient therapeutic modalities that can be used prophylactically and/or concurrent to the onset of ageing.
Collapse
Affiliation(s)
- Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | - Anand Kumar Patel
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Cardiovascular Genetics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - András K Ponti
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
22
|
Rogers S, Charles A, Thomas RM. The Prospect of Harnessing the Microbiome to Improve Immunotherapeutic Response in Pancreatic Cancer. Cancers (Basel) 2023; 15:5708. [PMID: 38136254 PMCID: PMC10741649 DOI: 10.3390/cancers15245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%. Immunotherapy has been successful in improving outcomes in the past decade for a variety of malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically "cold" tumor, one with an immunosuppressive environment and with restricted entry of immune cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate community of microorganisms present on and within humans, has been shown to contribute to many cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy has generated much interest. Herein, the current state of the interaction of the microbiome and immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the immune system to combat pancreatic cancer.
Collapse
Affiliation(s)
- Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32603, USA
| |
Collapse
|
23
|
Hughes BR, Shanaz S, Ismail-Sutton S, Wreglesworth NI, Subbe CP, Innominato PF. Circadian lifestyle determinants of immune checkpoint inhibitor efficacy. Front Oncol 2023; 13:1284089. [PMID: 38111535 PMCID: PMC10727689 DOI: 10.3389/fonc.2023.1284089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Immune Checkpoint Inhibitors (ICI) have revolutionised cancer care in recent years. Despite a global improvement in the efficacy and tolerability of systemic anticancer treatments, a sizeable proportion of patients still do not benefit maximally from ICI. Extensive research has been undertaken to reveal the immune- and cancer-related mechanisms underlying resistance and response to ICI, yet more limited investigations have explored potentially modifiable lifestyle host factors and their impact on ICI efficacy and tolerability. Moreover, multiple trials have reported a marked and coherent effect of time-of-day ICI administration and patients' outcomes. The biological circadian clock indeed temporally controls multiple aspects of the immune system, both directly and through mediation of timing of lifestyle actions, including food intake, physical exercise, exposure to bright light and sleep. These factors potentially modulate the immune response also through the microbiome, emerging as an important mediator of a patient's immune system. Thus, this review will look at critically amalgamating the existing clinical and experimental evidence to postulate how modifiable lifestyle factors could be used to improve the outcomes of cancer patients on immunotherapy through appropriate and individualised entrainment of the circadian timing system and temporal orchestration of the immune system functions.
Collapse
Affiliation(s)
- Bethan R. Hughes
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Sadiq Shanaz
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Seline Ismail-Sutton
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
| | - Nicholas I. Wreglesworth
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
| | - Christian P. Subbe
- School of Medical Sciences, Bangor University, Bangor, United Kingdom
- Department of Acute Medicine, Ysbyty Gwynedd, Bangor, United Kingdom
| | - Pasquale F. Innominato
- Oncology Department, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Cancer Chronotherapy Team, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Research Unit ‘Chronotherapy, Cancers and Transplantation’, Faculty of Medicine, Paris-Saclay University, Villejuif, France
| |
Collapse
|
24
|
Swaby A, Atallah A, Varol O, Cristea A, Quail DF. Lifestyle and host determinants of antitumor immunity and cancer health disparities. Trends Cancer 2023; 9:1019-1040. [PMID: 37718223 DOI: 10.1016/j.trecan.2023.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
Lifestyle factors exert profound effects on host physiology and immunology. Disparities in cancer outcomes persist as a complex and multifaceted challenge, necessitating a comprehensive understanding of the interplay between host environment and antitumor immune responses. Determinants of health - such as obesity, diet, exercise, stress, or sleep disruption - have the potential for modification, yet some exert long-lasting effects and may challenge the notion of complete reversibility. Herein we review intersectional considerations of lifestyle immunity and the impact on tumor immunology and disparities in cancer outcomes, with a focus on obesity.
Collapse
Affiliation(s)
- Anikka Swaby
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Aline Atallah
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ozgun Varol
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Alyssa Cristea
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Daniela F Quail
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
25
|
Ligorio F, Provenzano L, Vernieri C. Fasting-mimicking diet: a metabolic approach for the treatment of breast cancer. Curr Opin Oncol 2023; 35:491-499. [PMID: 37621169 DOI: 10.1097/cco.0000000000000986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW Metabolic reprogramming is a new and potentially targetable hallmark of cancer. In recent years, fasting and fasting-mimicking diets (FMDs) have been tested as anticancer strategies both in preclinical experiments and in clinical trials. In this review, we aim at summarizing the available evidence about the antitumour activity of these approaches in preclinical breast cancer models, as well as results from clinical trials investigating fasting/FMD in breast cancer patients. RECENT FINDINGS Preclinical evidence demonstrated that nutrient deprivation boosts the antitumor activity of chemotherapy, immunotherapy or targeted therapies in triple-negative breast cancer (TNBC) and HR+/HER2 models through both cell-autonomous antitumour effects in cancer cells and favourable modifications in intratumor immune cells. Several clinical experiences demonstrated that fasting/FMD is feasible and well tolerated in combination with standard treatments in BC patients, and that it could reduce chemotherapy-related toxicities. Finally, despite the absence of randomized trials demonstrating the antitumor activity of fasting/FMD in breast cancer patients, preliminary clinical reports suggest that this experimental nutritional strategy may enhance chemotherapy activity. Randomized clinical trials are ongoing to validate these results at a larger scale. SUMMARY Fasting/FMD is a promising therapeutic approach in patients with breast cancer; ongoing and future trials will confirm their role in improving breast cancer care.
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori
- Oncology and Hemato-Oncology Department, University of Milan
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori
- Oncology and Hemato-Oncology Department, University of Milan
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
26
|
Morelli D, Cantarutti A, Valsecchi C, Sabia F, Rolli L, Leuzzi G, Bogani G, Pastorino U. Routine perioperative blood tests predict survival of resectable lung cancer. Sci Rep 2023; 13:17072. [PMID: 37816885 PMCID: PMC10564956 DOI: 10.1038/s41598-023-44308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
There is growing evidence that inflammatory, immunologic, and metabolic status is associated with cancer patients survival. Here, we built a simple algorithm to predict lung cancer outcome. Perioperative routine blood tests (RBT) of a cohort of patients with resectable primary lung cancer (LC) were analysed. Inflammatory, immunologic, and metabolic profiles were used to create a single algorithm (RBT index) predicting LC survival. A concurrent cohort of patients with resectable lung metastases (LM) was used to validate the RBT index. Charts of 2088 consecutive LC and 1129 LM patients undergoing lung resection were evaluated. Among RBT parameters, C-reactive protein (CRP), lymphocytes, neutrophils, hemoglobin, albumin and glycemia independently correlated with survival, and were used to build the RBT index. Patients with a high RBT index had a higher 5-year mortality than low RBT patients (adjusted HR 1.93, 95% CI 1.62-2.31). High RBT patients also showed a fourfold higher risk of 30-day postoperative mortality (2.3% vs. 0.5%, p 0.0019). The LM analysis validated the results of the LC cohort. We developed a simple and easily available multifunctional tool predicting short-term and long-term survival of curatively resected LC and LM. Prospective external validation of RBT index is warranted.
Collapse
Affiliation(s)
- Daniele Morelli
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Cantarutti
- Division of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Camilla Valsecchi
- Division of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Federica Sabia
- Division of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Luigi Rolli
- Division of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Giovanni Leuzzi
- Division of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Giorgio Bogani
- Department of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ugo Pastorino
- Division of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
27
|
Santoni M, Massari F, Myint ZW, Iacovelli R, Pichler M, Basso U, Kopecky J, Kucharz J, Buti S, Salfi A, Büttner T, De Giorgi U, Kanesvaran R, Fiala O, Grande E, Zucali PA, Fornarini G, Bourlon MT, Scagliarini S, Molina-Cerrillo J, Aurilio G, Matrana MR, Pichler R, Cattrini C, Büchler T, Seront E, Calabrò F, Pinto A, Berardi R, Zgura A, Mammone G, Ansari J, Atzori F, Chiari R, Zakopoulou R, Caffo O, Procopio G, Bassanelli M, Zampiva I, Messina C, Küronya Z, Mosca A, Bhuva D, Vau N, Incorvaia L, Rebuzzi SE, Roviello G, Zabalza IO, Rizzo A, Mollica V, Catalini I, Monteiro FSM, Montironi R, Battelli N, Rizzo M, Porta C. Clinico-Pathological Features Influencing the Prognostic Role of Body Mass Index in Patients With Advanced Renal Cell Carcinoma Treated by Immuno-Oncology Combinations (ARON-1). Clin Genitourin Cancer 2023; 21:e309-e319.e1. [PMID: 37062658 DOI: 10.1016/j.clgc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Obesity has been associated with improved response to immunotherapy in cancer patients. We investigated the role of body mass index (BMI) in patients from the ARON-1 study (NCT05287464) treated by dual immuno-oncology agents (IO+IO) or a combination of immuno-oncology drug and a tyrosine kinase inhibitors (TKI) as first-line therapy for metastatic renal cell carcinoma (mRCC). PATIENTS AND METHODS Medical records of patients with documented mRCC treated by immuno-oncology combinations were reviewed at 47 institutions from 16 countries. Patients were assessed for overall survival (OS), progression-free survival (OS), and overall clinical benefit (OCB), defined as the sum of the rate of partial/complete responses and stable disease. Univariate and multivariate analyses were used to explore the association of variables of interest with survival. RESULTS A total of 675 patients were included; BMI was >25 kg/m2 in 345 patients (51%) and was associated with improved OS (55.7 vs. 28.4 months, P < .001). The OCB of patients with BMI >25 kg/m2 versus those with BMI ≤25 kg/m2 was significantly higher only in patients with nonclear cell histology (81% vs. 65%, P = .011), and patients with liver metastases (76% vs. 58%, P = .007), Neutrophil to lymphocyte ratio >4 (77% vs 62%, P = .022) or treated by nivolumab plus ipilimumab (77% vs. 64%, P = .044). In the BMI ≤25 kg/m2 subgroup, significant differences were found between patients with NLR >4 versus ≤4 (62% vs. 82%, P = .002) and patients treated by IO+IO versus IO+TKIs combinations (64% vs. 83%, P = .002). CONCLUSION Our study suggests that the prognostic significance and the association of BMI with treatment outcome varies across clinico-pathological mRCC subgroups.
Collapse
Affiliation(s)
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia.
| | - Zin W Myint
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Roberto Iacovelli
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Umberto Basso
- Oncology 3 Unit, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Jindrich Kopecky
- Department of Clinical Oncology and Radiotherapy, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jakub Kucharz
- Department of Uro-oncology, Maria Sklodowska-Curie National Research Institute of Oncology Warsaw, Warsaw, Poland
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma - Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessia Salfi
- Oncology Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Thomas Büttner
- Department of Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Ondřej Fiala
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Enrique Grande
- Department of Medical Oncology, MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Paolo Andrea Zucali
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Oncology, IRCCS Humanitas Research Hospital, Rozzano - Milan, Italy
| | | | - Maria T Bourlon
- Hematology and Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sarah Scagliarini
- UOC di Oncologia, Azienda Ospedaliera di Rilievo Nazionale Cardarelli di Napoli, Naples, Italy
| | | | - Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marc R Matrana
- Department of Internal Medicine, Hematology/Oncology, Ochsner Medical Center, New Orleans, LA
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Carlo Cattrini
- Department of Medical Oncology, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Tomas Büchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Emmanuel Seront
- Department of Medical Oncology, Centre Hospitalier de Jolimont, Belgium
| | - Fabio Calabrò
- Department of Oncology, San Camillo Forlanini Hospital, Rome, Italy
| | - Alvaro Pinto
- Medical Oncology Department, La Paz University Hospital, Madrid, Spain
| | - Rossana Berardi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Anca Zgura
- Department of Oncology-Radiotherapy, Prof. Dr. Alexandru Trestioreanu Institute of Oncology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Giulia Mammone
- Department of Radiological, Oncological and Anatomo-Pathological Science, "Sapienza" University of Rome, Rome, Italy
| | - Jawaher Ansari
- Medical Oncology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Francesco Atzori
- Unità di Oncologia Medica, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Rita Chiari
- UOC Oncologia, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Italy
| | - Roubini Zakopoulou
- 2nd Propaedeutic Dept of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Orazio Caffo
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - Giuseppe Procopio
- Dipartimento di Oncologia Medica, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Oncologia Medica, Ospedale Maggiore di Cremona, Italy
| | - Maria Bassanelli
- Medical Oncology 1-IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ilaria Zampiva
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | | | - Zsófia Küronya
- Department of Genitourinary Medical Oncology and Clinical Pharmacology, National Institute of Oncology, Budapest, Hungary
| | | | - Dipen Bhuva
- Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India
| | - Nuno Vau
- Urologic Oncology, Champalimaud Clinical Center, Lisbon, Portugal
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Sara Elena Rebuzzi
- Ospedale San Paolo, Medical Oncology, Savona, Italy; Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Genoa, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | | | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | | | - Fernando Sabino M Monteiro
- Latin American Cooperative Oncology Group - LACOG; Oncology and Hematology Department, Hospital Santa Lucia, Brasília, Federal District, Brazil
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Polytechnic University of the Marche Region, Ancona, Italy
| | | | - Mimma Rizzo
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Camillo Porta
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy; Chair of Oncology, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
28
|
Cortellino S, Quagliariello V, Delfanti G, Blaževitš O, Chiodoni C, Maurea N, Di Mauro A, Tatangelo F, Pisati F, Shmahala A, Lazzeri S, Spagnolo V, Visco E, Tripodo C, Casorati G, Dellabona P, Longo VD. Fasting mimicking diet in mice delays cancer growth and reduces immunotherapy-associated cardiovascular and systemic side effects. Nat Commun 2023; 14:5529. [PMID: 37684243 PMCID: PMC10491752 DOI: 10.1038/s41467-023-41066-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Immune checkpoint inhibitors cause side effects ranging from autoimmune endocrine disorders to severe cardiotoxicity. Periodic Fasting mimicking diet (FMD) cycles are emerging as promising enhancers of a wide range of cancer therapies including immunotherapy. Here, either FMD cycles alone or in combination with anti-OX40/anti-PD-L1 are much more effective than immune checkpoint inhibitors alone in delaying melanoma growth in mice. FMD cycles in combination with anti-OX40/anti-PD-L1 also show a trend for increased effects against a lung cancer model. As importantly, the cardiac fibrosis, necrosis and hypertrophy caused by immune checkpoint inhibitors are prevented/reversed by FMD treatment in both cancer models whereas immune infiltration of CD3+ and CD8+ cells in myocardial tissues and systemic and myocardial markers of oxidative stress and inflammation are reduced. These results indicate that FMD cycles in combination with immunotherapy can delay cancer growth while reducing side effects including cardiotoxicity.
Collapse
Affiliation(s)
- S Cortellino
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - V Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - G Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - O Blaževitš
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - C Chiodoni
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - N Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A Di Mauro
- Pathology and Cytopathology Unit, Department of Support to Cancer Pathways Diagnostics Area, Istituto Nazionale Tumori-IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - F Tatangelo
- Pathology and Cytopathology Unit, Department of Support to Cancer Pathways Diagnostics Area, Istituto Nazionale Tumori-IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - F Pisati
- Histopathology Unit, Cogentech Società Benefit srl, 20139, Milan, Italy
| | - A Shmahala
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - S Lazzeri
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - V Spagnolo
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - E Visco
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - C Tripodo
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- University of Palermo School of Medicine, Palermo, Italy
| | - G Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - V D Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
29
|
Huang W, Li X, Song H, Yin Y, Wang H. Verification of fasting-mimicking diet to assist monotherapy of human cancer-bearing models. Biochem Pharmacol 2023; 215:115699. [PMID: 37482198 DOI: 10.1016/j.bcp.2023.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The efficacy of a single clinical nanodrug for cancer treatment is still unsatisfactory, especially for drug-resistant cancer. Herein, we applied a fasting-mimicking diet (FMD) approach via dietary intervention to assist single clinical nanodrug for breast or ovarian cancer treatments instead of using multi-drug therapies which might cause adverse side effects. Specifically, we adopted Doxil or Abraxane to treat human breast tumor-bearing nude mice and Doxil to treat the human ovarian tumor and drug-resistant ovarian tumor-bearing nude mice under FMD conditions, respectively. According to the results, the FMD condition can promote the cellular uptake and cytotoxicity of a single nanodrug, reduce the ATP level in drug-resistant tumor cells to hinder drug efflux, normalize tumor blood vessels, relieve tumor hypoxia, and increase the accumulation of nanodrugs at tumor sites, thereby enhancing the therapeutic effects on these types of human cancers. Collectively, these results demonstrate that the FMD strategy of significance can become a practical, alternative, and promising assistant for single nanodrug for enhancing cancer therapy and clinical translation.
Collapse
Affiliation(s)
- Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haohao Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Mise-Omata S, Ando M, Srirat T, Nakagawara K, Hayakawa T, Iizuka-Koga M, Nishimasu H, Nureki O, Ito M, Yoshimura A. SOCS3 deletion in effector T cells confers an anti-tumorigenic role of IL-6 to the pro-tumorigenic cytokine. Cell Rep 2023; 42:112940. [PMID: 37582370 DOI: 10.1016/j.celrep.2023.112940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Interleukin (IL)-6 is abundantly expressed in the tumor microenvironment and is associated with poor patient outcomes. Here, we demonstrate that the deletion of the suppressor of cytokine signaling 3 (SOCS3) in T cells potentiates anti-tumor immune responses by conferring the anti-tumorigenic function of IL-6 in mouse and human models. In Socs3-deficient CD8+ T cells, IL-6 upregulates the expression of type I interferon (IFN)-regulated genes and enhances the anti-tumor effector function of T cells, while also modifying mitochondrial fitness to increase mitochondrial membrane potential and reactive oxygen species (ROS) levels and to promote metabolic glycolysis in the energy state. Furthermore, Socs3 deficiency reduces regulatory T cells and increases T helper 1 (Th1) cells. SOCS3 knockdown in human chimeric antigen receptor T (CAR-T) cells exhibits a strong anti-tumor response in humanized mice. Thus, genetic disruption of SOCS3 offers an avenue to improve the therapeutic efficacy of adoptive T cell therapy.
Collapse
Affiliation(s)
- Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Taeko Hayakawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Mana Iizuka-Koga
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
31
|
Cortellino S, Longo VD. Metabolites and Immune Response in Tumor Microenvironments. Cancers (Basel) 2023; 15:3898. [PMID: 37568713 PMCID: PMC10417674 DOI: 10.3390/cancers15153898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The remodeled cancer cell metabolism affects the tumor microenvironment and promotes an immunosuppressive state by changing the levels of macro- and micronutrients and by releasing hormones and cytokines that recruit immunosuppressive immune cells. Novel dietary interventions such as amino acid restriction and periodic fasting mimicking diets can prevent or dampen the formation of an immunosuppressive microenvironment by acting systemically on the release of hormones and growth factors, inhibiting the release of proinflammatory cytokines, and remodeling the tumor vasculature and extracellular matrix. Here, we discuss the latest research on the effects of these therapeutic interventions on immunometabolism and tumor immune response and future scenarios pertaining to how dietary interventions could contribute to cancer therapy.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Valter D. Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
32
|
Li K, Wei X, Li K, Zhang Q, Zhang J, Wang D, Yang J. Dietary restriction to optimize T cell immunity is an ancient survival strategy conserved in vertebrate evolution. Cell Mol Life Sci 2023; 80:219. [PMID: 37470873 PMCID: PMC11071854 DOI: 10.1007/s00018-023-04865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Recent advances highlight a key role of transient fasting in optimizing immunity of human and mouse. However, it remains unknown whether this strategy is independently acquired by mammals during evolution or instead represents gradually evolved functions common to vertebrates. Using a tilapia model, we report that T cells are the main executors of the response of the immune system to fasting and that dietary restriction bidirectionally modulates T cell immunity. Long-term fasting impaired T cell immunity by inducing intense autophagy, apoptosis, and aberrant inflammation. However, transient dietary restriction triggered moderate autophagy to optimize T cell response by maintaining homeostasis, alleviating inflammation and tissue damage, as well as enhancing T cell activation, proliferation and function. Furthermore, AMPK is the central hub linking fasting and autophagy-controlled T cell immunity in tilapia. Our findings demonstrate that dietary restriction to optimize immunity is an ancient strategy conserved in vertebrate evolution, providing novel perspectives for understanding the adaptive evolution of T cell response.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
33
|
Cadenas-De Miguel S, Lucianer G, Elia I. The metabolic cross-talk between cancer and T cells. Trends Biochem Sci 2023; 48:597-609. [PMID: 37080875 DOI: 10.1016/j.tibs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
The metabolic cross-talk between cancer cells and T cells dictates cancer formation and progression. These cells possess metabolic plasticity. Thus, they adapt their metabolic profile to meet their phenotypic requirements. However, the nutrient microenvironment of a tumor is a very hostile niche in which these cells are forced to compete for the available nutrients. The hyperactive metabolism of tumor cells often outcompetes the antitumorigenic CD8+ T cells while promoting the protumorigenic exhausted CD8+ T cells and T regulatory (Treg) cells. Thus, cancer cells elude the immune response and spread in an uncontrolled manner. Identifying the metabolic pathways necessary to shift the balance from a protumorigenic to an antitumorigenic immune phenotype is essential to potentiate antitumor immunity.
Collapse
Affiliation(s)
| | - Giulia Lucianer
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ilaria Elia
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
34
|
Kalam F, James DL, Li YR, Coleman MF, Kiesel VA, Cespedes Feliciano EM, Hursting SD, Sears DD, Kleckner AS. Intermittent fasting interventions to leverage metabolic and circadian mechanisms for cancer treatment and supportive care outcomes. J Natl Cancer Inst Monogr 2023; 2023:84-103. [PMID: 37139971 PMCID: PMC10157769 DOI: 10.1093/jncimonographs/lgad008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 05/05/2023] Open
Abstract
Intermittent fasting entails restricting food intake during specific times of day, days of the week, religious practice, or surrounding clinically important events. Herein, the metabolic and circadian rhythm mechanisms underlying the proposed benefits of intermittent fasting for the cancer population are described. We summarize epidemiological, preclinical, and clinical studies in cancer published between January 2020 and August 2022 and propose avenues for future research. An outstanding concern regarding the use of intermittent fasting among cancer patients is that fasting often results in caloric restriction, which can put patients already prone to malnutrition, cachexia, or sarcopenia at risk. Although clinical trials do not yet provide sufficient data to support the general use of intermittent fasting in clinical practice, this summary may be useful for patients, caregivers, and clinicians who are exploring intermittent fasting as part of their cancer journey for clinical outcomes and symptom management.
Collapse
Affiliation(s)
- Faiza Kalam
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University. Chicago, IL, USA
| | - Dara L James
- College of Nursing, University of South Alabama, Mobile, AL, USA
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics and Epigenetics, City of Hope, Duarte, CA, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Violet A Kiesel
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | | | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Amber S Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
- Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
35
|
Blaževitš O, Di Tano M, Longo VD. Fasting and fasting mimicking diets in cancer prevention and therapy. Trends Cancer 2023; 9:212-222. [PMID: 36646607 DOI: 10.1016/j.trecan.2022.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
Fasting mimicking diets (FMDs) are emerging as effective dietary interventions with the potential to improve healthspan and decrease the incidence of cancer and other age-related diseases. Unlike chronic dietary restrictions or water-only fasting, FMDs represent safer and less challenging options for cancer patients. FMD cycles increase protection in healthy cells while sensitizing cancer cells to various therapies, partly by generating complex environments that promote differential stress resistance (DSR) and differential stress sensitization (DSS), respectively. More recent data indicate that FMD cycles enhance the efficacy of a range of drugs targeting different cancers in mice by stimulating antitumor immunity. Here, we report on the effects of FMD cycles on cancer prevention and treatment and the mechanisms implicated in these effects.
Collapse
Affiliation(s)
- Olga Blaževitš
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Maira Di Tano
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
36
|
Santoni M, Molina-Cerrillo J, Santoni G, Lam ET, Massari F, Mollica V, Mazzaschi G, Rapoport BL, Grande E, Buti S. Role of Clock Genes and Circadian Rhythm in Renal Cell Carcinoma: Recent Evidence and Therapeutic Consequences. Cancers (Basel) 2023; 15:cancers15020408. [PMID: 36672355 PMCID: PMC9856936 DOI: 10.3390/cancers15020408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Circadian rhythm regulates cellular differentiation and physiology and shapes the immune response. Altered expression of clock genes might lead to the onset of common malignant cancers, including Renal Cell Carcinoma (RCC). Data from Cancer Genome Atlas (TCGA) indicate that clock genes PER1-3, CRY2, CLOCK, NR1D2 and RORα are overexpressed in RCC tissues and correlate with patients' prognosis. The expression of clock genes could finely tune transcription factor activity in RCC and is associated with the extent of immune cell infiltration. The clock system interacts with hypoxia-induced factor-1α (HIF-1α) and regulates the circadian oscillation of mammalian target of rapamycin (mTOR) activity thereby conditioning the antitumor effect of mTOR inhibitors. The stimulation of natural killer (NK) cell activity exerted by the administration of interferon-α, a cornerstone of the first era of immunotherapy for RCC, relevantly varies according to circadian dosing time. Recent evidence demonstrated that time-of-day infusion directly affects the efficacy of immune checkpoint inhibitors in cancer patients. Compounds targeting the circadian clock have been identified and their role in the era of immunotherapy deserves to be further investigated. In this review, we aimed at addressing the impact of clock genes on the natural history of kidney cancer and their potential therapeutic implications.
Collapse
Affiliation(s)
- Matteo Santoni
- Oncology Unit, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | | | - Giorgio Santoni
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, 62032 Camerino, Italy
| | - Elaine T. Lam
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy
| | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Bernardo L. Rapoport
- The Medical Oncology Centre of Rosebank, 129 Oxford Road, Saxonwold, Johannesburg 2196, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Corner Doctor Savage Road and Bophelo Road, Pretoria 0002, South Africa
| | - Enrique Grande
- Department of Medical Oncology, MD Anderson Cancer Center Madrid, 28033 Madrid, Spain
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Correspondence: or ; Tel.: +39-0521-702314; Fax: +39-0521-995448
| |
Collapse
|
37
|
Kikomeko J, Schutte T, van Velzen MJ, Seefat R, van Laarhoven HW. Short-term fasting and fasting mimicking diets combined with chemotherapy: a narrative review. Ther Adv Med Oncol 2023; 15:17588359231161418. [PMID: 36970110 PMCID: PMC10037739 DOI: 10.1177/17588359231161418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Many patients with cancer search for and use alternative and complementary treatments, aiming to improve the effectiveness of their anticancer treatment and a reduction in treatment-associated side effects. Short-term fasting (STF) and fasting mimicking diets (FMDs) are among the most commonly used dietary interventions. In recent years, different trials have reported the promising results of dietary interventions in combination with chemotherapy, in terms of slowing down tumor growth and reduction in chemotherapy-related side effects. In this narrative review, we identify and describe the current evidence about feasibility and effects of STF and FMDs in cancer patients receiving chemotherapy. The studies that examined the effects of STF when combined with chemotherapy suggest potential benefits regarding reduction in side effects and improved quality of life. We also conclude with a list of well-designed studies that are still recruiting patients, examining the long-term effects of STF.
Collapse
Affiliation(s)
| | - Tim Schutte
- Department of Oncology, Amsterdam UMC location
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Treatment and
Quality of Life, Amsterdam, the Netherlands
| | - Merel J.M. van Velzen
- Department of Oncology, Amsterdam UMC location
University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Treatment and
Quality of Life, Amsterdam, the Netherlands
| | - Rianne Seefat
- Division of Molecular Pathology, The
Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Oncology, Amsterdam UMC location
University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Treatment and
Quality of Life, Amsterdam, the Netherlands
| |
Collapse
|