1
|
Lim EW, Fallon RJ, Bates C, Ideguchi Y, Nagasaki T, Handzlik MK, Joulia E, Bonelli R, Green CR, Ansell BRE, Kitano M, Polis I, Roberts AJ, Furuya S, Allikmets R, Wallace M, Friedlander M, Metallo CM, Gantner ML. Serine and glycine physiology reversibly modulate retinal and peripheral nerve function. Cell Metab 2024; 36:2315-2328.e6. [PMID: 39191258 DOI: 10.1016/j.cmet.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/11/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Metabolic homeostasis is maintained by redundant pathways to ensure adequate nutrient supply during fasting and other stresses. These pathways are regulated locally in tissues and systemically via the liver, kidney, and circulation. Here, we characterize how serine, glycine, and one-carbon (SGOC) metabolism fluxes across the eye, liver, and kidney sustain retinal amino acid levels and function. Individuals with macular telangiectasia (MacTel), an age-related retinal disease with reduced circulating serine and glycine, carrying deleterious alleles in SGOC metabolic enzymes exhibit an exaggerated reduction in circulating serine. A Phgdh+/- mouse model of this haploinsufficiency experiences accelerated retinal defects upon dietary serine/glycine restriction, highlighting how otherwise silent haploinsufficiencies can impact retinal health. We demonstrate that serine-associated retinopathy and peripheral neuropathy are reversible, as both are restored in mice upon serine supplementation. These data provide molecular insights into the genetic and metabolic drivers of neuro-retinal dysfunction while highlighting therapeutic opportunities to ameliorate this pathogenesis.
Collapse
Affiliation(s)
- Esther W Lim
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Regis J Fallon
- Lowy Medical Research Institute, La Jolla, CA 92037, USA
| | - Caleb Bates
- Lowy Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | - Michal K Handzlik
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emeline Joulia
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Roberto Bonelli
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Courtney R Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Brendan R E Ansell
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Maki Kitano
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ilham Polis
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Kyushu University, Fukuoka 812-0053, Japan
| | | | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
2
|
Riva D, Orlando M, Rabattoni V, Pollegioni L. On the quaternary structure of human D-3-phosphoglycerate dehydrogenase. Protein Sci 2024; 33:e5089. [PMID: 39012001 PMCID: PMC11250409 DOI: 10.1002/pro.5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
D-3-phosphoglycerate dehydrogenase (PHGDH) catalyzes the NAD+-dependent conversion of D-3-phospho-glycerate to 3-phosphohydroxypyruvate, the first step in the phosphorylated pathway for L-serine (L-Ser) biosynthesis. L-Ser plays different relevant metabolic roles in eukaryotic cells: alterations in L-Ser metabolism have been linked to serious neurological disorders. The human PHGDH (hPHGDH), showing a homotetrameric state in solution, is made of four domains, among which there are two regulatory domains at the C-terminus: the aspartate kinase-chorismate mutase-tyrA prephenate dehydrogenase (ACT) and allosteric substrate-binding (ASB) domains. The structure of hPHGDH was solved only for a truncated, dimeric form harboring the N-terminal end containing the substrate and the cofactor binding domains. A model ensemble of the tetrameric hPHGDH was generated using AlphaFold coupled with molecular dynamics refinement. By analyzing the inter-subunit interactions at the tetrameric interface, the residues F418, L478, P479, R454, and Y495 were selected and their role was studied by the alanine-scanning mutagenesis approach. The F418A variant modifies the putative ASB, slightly alters the activity, the fraction of protein in the tetrameric state, and the protein stability; it seems relevant in dimers' recognition to yield the tetrameric oligomer. On the contrary, the R454A, L478A, P479A, and Y495A variants (ACT domain) determine a loss of the tetrameric assembly, resulting in low stability and misfolding, triggering the aggregation and hampering the activity. The predicted tetrameric interface seems mediated by residues at the ACT domain, and the tetramer formation seems crucial for proper folding of hPHGDH, which, in turn, is essential for both stability and functionality.
Collapse
Affiliation(s)
- Daniele Riva
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
| | - Marco Orlando
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- Present address:
Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | - Valentina Rabattoni
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
| | - Loredano Pollegioni
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
| |
Collapse
|
3
|
Imarisio A, Yahyavi I, Gasparri C, Hassan A, Avenali M, Di Maio A, Buongarzone G, Galandra C, Picascia M, Filosa A, Monti MC, Pacchetti C, Errico F, Rondanelli M, Usiello A, Valente EM. Serum dysregulation of serine and glycine metabolism as predictive biomarker for cognitive decline in frail elderly subjects. Transl Psychiatry 2024; 14:281. [PMID: 38982054 PMCID: PMC11233661 DOI: 10.1038/s41398-024-02991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Frailty is a common age-related clinical syndrome characterized by a decline in the function of multiple organ systems, increased vulnerability to stressors, and a huge socio-economic burden. Despite recent research efforts, the physiopathological mechanisms underlying frailty remain elusive and biomarkers able to predate its occurrence in the early stages are still lacking. Beyond its physical component, cognitive decline represents a critical domain of frailty associated with higher risk of adverse health outcomes. We measured by High-Performance Liquid Chromatography (HPLC) a pool of serum amino acids including L-glutamate, L-aspartate, glycine, and D-serine, as well as their precursors L-glutamine, L-asparagine, and L-serine in a cohort of elderly subjects encompassing the entire continuum from fitness to frailty. These amino acids are known to orchestrate excitatory and inhibitory neurotransmission, and in turn, to play a key role as intermediates of energy homeostasis and in liver, kidney, muscle, and immune system metabolism. To comprehensively assess frailty, we employed both the Edmonton Frail Scale (EFS), as a practical tool to capture the multidimensionality of frailty, and the frailty phenotype, as a measure of physical function. We found that D-serine and D-/Total serine ratio were independent predictors of EFS but not of physical frailty. Furthermore, higher levels of glycine, glycine/L-serine and D-/Total serine were associated with worse cognition and depressive symptoms in the frail group. These findings suggest that changes in peripheral glycine and serine enantiomers homeostasis may represent a novel biochemical correlate of frailty.
Collapse
Affiliation(s)
- Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Isar Yahyavi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia, Italy
| | - Amber Hassan
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gabriele Buongarzone
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Caterina Galandra
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Picascia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Asia Filosa
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
4
|
Golan Shekhtman S, Boccara E, Ravona-Springer R, Inbar Y, Zelicha H, Livny A, Bendlin BB, Lesman-Segev O, Yore I, Heymann A, Sano M, Mardor Y, Azuri J, Schnaider Beeri M. Abdominal fat depots are related to lower cognitive functioning and brain volumes in middle-aged males at high Alzheimer's risk. Obesity (Silver Spring) 2024; 32:1009-1022. [PMID: 38410053 DOI: 10.1002/oby.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/24/2023] [Accepted: 01/07/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE High BMI, which poorly represents specific fat depots, is linked to poorer cognition and higher dementia risk, with different associations between sexes. This study examined associations of abdominal fat depots with cognition and brain volumes and whether sex modifies this association. METHODS A total of 204 healthy middle-aged offspring of Alzheimer's dementia patients (mean age = 59.44, 60% females) underwent abdominal magnetic resonance imaging to quantify hepatic, pancreatic, visceral, and subcutaneous adipose tissue and to assess cognition and brain volumes. RESULTS In the whole sample, higher hepatic fat percentage was associated with lower total gray matter volume (β = -0.17, p < 0.01). Primarily in males, higher pancreatic fat percentage was associated with lower global cognition (males: β = -0.27, p = 0.03; females: β = 0.01, p = 0.93) executive function (males: β = -0.27, p = 0.03; females: β = 0.02, p = 0.87), episodic memory (males: β = -0.28, p = 0.03; females: β = 0.07, p = 0.48), and inferior frontal gyrus volume (males: β = -0.28, p = 0.02; females: β = 0.10, p = 0.33). Visceral and subcutaneous adipose tissue was inversely associated with middle frontal and superior frontal gyrus volumes in males and females. CONCLUSIONS In middle-aged males at high Alzheimer's dementia risk, but not in females, higher pancreatic fat was associated with lower cognition and brain volumes. These findings suggest a potential sex-specific link between distinct abdominal fat with brain health.
Collapse
Affiliation(s)
- Sapir Golan Shekhtman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Ethel Boccara
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - Ramit Ravona-Springer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Memory Clinic, Sheba Medical Center, Tel HaShomer, Israel
| | - Yael Inbar
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Hila Zelicha
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abigail Livny
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Barbara B Bendlin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Orit Lesman-Segev
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Iscka Yore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | | | - Mary Sano
- Geriatric Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yael Mardor
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Joseph Azuri
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Maccabi Healthcare Services, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Carles A, Freyssin A, Perin-Dureau F, Rubinstenn G, Maurice T. Targeting N-Methyl-d-Aspartate Receptors in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:3733. [PMID: 38612544 PMCID: PMC11011887 DOI: 10.3390/ijms25073733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| | - Aline Freyssin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
- ReST Therapeutics, 34095 Montpellier, France; (F.P.-D.); (G.R.)
| | | | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| |
Collapse
|
6
|
Do AN, Ali M, Timsina J, Wang L, Western D, Liu M, Sanford J, Rosende-Roca M, Boada M, Puerta R, Wilson T, Ruiz A, Pastor P, Wyss-Coray T, Cruchaga C, Sung YJ. CSF proteomic profiling with amyloid/tau positivity identifies distinctive sex-different alteration of multiple proteins involved in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304164. [PMID: 38559166 PMCID: PMC10980123 DOI: 10.1101/2024.03.15.24304164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In Alzheimer's disease (AD), the most common cause of dementia, females have higher prevalence and faster progression, but sex-specific molecular findings in AD are limited. Here, we comprehensively examined and validated 7,006 aptamers targeting 6,162 proteins in cerebral spinal fluid (CSF) from 2,077 amyloid/tau positive cases and controls to identify sex-specific proteomic signatures of AD. In discovery (N=1,766), we identified 330 male-specific and 121 female-specific proteomic alternations in CSF (FDR <0.05). These sex-specific proteins strongly predicted amyloid/tau positivity (AUC=0.98 in males; 0.99 in females), significantly higher than those with age, sex, and APOE-ε4 (AUC=0.85). The identified sex-specific proteins were well validated (r≥0.5) in the Stanford study (N=108) and Emory study (N=148). Biological follow-up of these proteins led to sex differences in cell-type specificity, pathways, interaction networks, and drug targets. Male-specific proteins, enriched in astrocytes and oligodendrocytes, were involved in postsynaptic and axon-genesis. The male network exhibited direct connections among 152 proteins and highlighted PTEN, NOTCH1, FYN, and MAPK8 as hubs. Drug target suggested melatonin (used for sleep-wake cycle regulation), nabumetone (used for pain), daunorubicin, and verteporfin for treating AD males. In contrast, female-specific proteins, enriched in neurons, were involved in phosphoserine residue binding including cytokine activities. The female network exhibits strong connections among 51 proteins and highlighted JUN and 14-3-3 proteins (YWHAG and YWHAZ) as hubs. Drug target suggested biperiden (for muscle control of Parkinson's disease), nimodipine (for cerebral vasospasm), quinostatin and ethaverine for treating AD females. Together, our findings provide mechanistic understanding of sex differences for AD risk and insights into clinically translatable interventions.
Collapse
Affiliation(s)
- Anh N Do
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Ali
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Western
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Matitee Rosende-Roca
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Merce Boada
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ted Wilson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Agustin Ruiz
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Imarisio A, Yahyavi I, Avenali M, Di Maio A, Buongarzone G, Galandra C, Picascia M, Filosa A, Gasparri C, Monti MC, Rondanelli M, Pacchetti C, Errico F, Valente EM, Usiello A. Blood D-serine levels correlate with aging and dopaminergic treatment in Parkinson's disease. Neurobiol Dis 2024; 192:106413. [PMID: 38253208 DOI: 10.1016/j.nbd.2024.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
We recently described increased D- and L-serine concentrations in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, the post-mortem caudate-putamen of human Parkinson's disease (PD) brains and the cerebrospinal fluid (CSF) of de novo living PD patients. However, data regarding blood D- and L-serine levels in PD are scarce. Here, we investigated whether the serum profile of D- and L-serine, as well as the other glutamate N-methyl-D-aspartate ionotropic receptor (NMDAR)-related amino acids, (i) differs between PD patients and healthy controls (HC) and (ii) correlates with clinical-demographic features and levodopa equivalent daily dose (LEDD) in PD. Eighty-three consecutive PD patients and forty-one HC were enrolled. PD cohort underwent an extensive clinical characterization. Serum levels of D- and L-serine, L-glutamate, L-glutamine, L-aspartate, L-asparagine and glycine were determined using High Performance Liquid Chromatography. In age- and sex-adjusted analyses, no differences emerged in the serum levels of D-serine, L-serine and other NMDAR-related amino acids between PD and HC. However, we found that D-serine and D-/Total serine ratio positively correlated with age in PD but not in HC, and also with PD age at onset. Moreover, we found that higher LEDD correlated with lower levels of D-serine and the other excitatory amino acids. Following these results, the addition of LEDD as covariate in the analyses disclosed a selective significant increase of D-serine in PD compared to HC (Δ ≈ 38%). Overall, these findings suggest that serum D-serine and D-/Total serine may represent a valuable biochemical signature of PD.
Collapse
Affiliation(s)
- Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Isar Yahyavi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gabriele Buongarzone
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Caterina Galandra
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Marta Picascia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Asia Filosa
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, 27100 Pavia, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy.
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
8
|
Zhang J, Zhang Y, Zhang Y, Yao J. The Association of Brain Insulin Resistance with Anesthesia/Surgery-Induced Cognitive Deterioration Is Female-Specific in 5XFAD Transgenic Mice. J Alzheimers Dis 2024; 101:183-195. [PMID: 39213082 DOI: 10.3233/jad-231444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Our previous studies indicated that anesthesia/surgery could aggravate cognitive impairment and tau pathology in female 5XFAD transgenic (Tg) mice. However, it is unknown whether there are sex differences in the susceptibility of developing postoperative cognitive dysfunction in 5XFAD Tg mice. Objective In this study, we aim to determine whether anesthesia/surgery can have different effects on female and male 5XFAD Tg mice, and to explore the underpinning mechanisms. Methods The mice received abdominal surgery under isoflurane anesthesia. Morris water maze was used to assess the cognitive function. Hippocampal levels of p-tau (AT8), p-IRS1 (Ser612), IRS1, p-GSK3β (Tyr216), and p-GSK3β (Ser9) at postoperative day 1 were evaluated by western blot assays. Results Anesthesia/surgery exaggerated cognitive impairment and tau pathology in female, but not male 5XFAD Tg mice. The anesthesia/surgery led to elevated hippocampus protein levels of p-IRS1 (Ser612)/IRS1 ratio and p-GSK3β (Tyr216) and reduced hippocampus protein levels of p-GSK3β (Ser9) in female, but not male 5XFAD Tg mice. Conclusions This study demonstrated that female 5XFAD Tg mice were more susceptible to anesthesia/surgery-induced cognitive deterioration and tau pathology aggravation, potentially due to female-specific brain insulin resistance.
Collapse
Affiliation(s)
- Junyao Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinglin Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingying Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Souza INDO, Roychaudhuri R, de Belleroche J, Mothet JP. d-Amino acids: new clinical pathways for brain diseases. Trends Mol Med 2023; 29:1014-1028. [PMID: 37770379 DOI: 10.1016/j.molmed.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Free d-amino acids (d-AAs) are emerging as a novel and important class of signaling molecules in many organs, including the brain and endocrine systems. There has been considerable progress in our understanding of the fundamental roles of these atypical messengers, with increasingly recognized implications in a wide range of neuropathologies, including schizophrenia (SCZ), epilepsy, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), substance abuse, and chronic pain, among others. Research has enabled the discovery that d-serine, d-aspartate and more recently d-cysteine are essential for the healthy development and function of the central nervous system (CNS). We discuss recent progress that has profoundly transformed our vision of numerous physiological processes but has also shown how d-AAs are now offering therapeutic promise in clinical settings for several human diseases.
Collapse
Affiliation(s)
- Isis Nem de Oliveira Souza
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France; Molecular Pharmacology Laboratory, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robin Roychaudhuri
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacqueline de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jean-Pierre Mothet
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Zhu S, Shi J, Jin Q, Zhang Y, Zhang R, Chen X, Wang C, Shi T, Li L. Mitochondrial dysfunction following repeated administration of alprazolam causes attenuation of hippocampus-dependent memory consolidation in mice. Aging (Albany NY) 2023; 15:10428-10452. [PMID: 37801512 PMCID: PMC10599724 DOI: 10.18632/aging.205087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
The frequently repeated administration of alprazolam (Alp), a highly effective benzodiazepine sedative-hypnotic agent, in anxiety, insomnia, and other diseases is closely related to many negative adverse reactions that are mainly manifested as memory impairment. However, the exact molecular mechanisms underlying these events are poorly understood. Therefore, we conducted a proteomic analysis on the hippocampus in mice that received repeated administration of Alp for 24 days. A total of 439 significantly differentially expressed proteins (DEPs) were identified in mice with repeated administration of Alp compared to the control group, and the GO and KEGG analysis revealed the enrichment of terms related to mitochondrial function, cycle, mitophagy and cognition. In vitro experiments have shown that Alp may affect the cell cycle, reduce the mitochondrial membrane potential (MMP) to induce apoptosis in HT22 cells, and affect the progress of mitochondrial energy metabolism and morphology in the hippocampal neurons. Furthermore, in vivo behavioral experiments including IntelliCage System (ICS) and nover object recognition (NOR), hippocampal neuronal pathological changes with HE staining, and the expression levels of brain-deprived neuron factor (BDNF) with immunohistochemistry showed a significant decrease in memory consolidation in mice with repeated administration of Alp, which could be rescued by the co-administration of the mitochondrial protector NSI-189. To the best of our knowledge, this is the first study to identify a link between repeated administration of Alp and mitochondrial dysfunction and that mitochondrial impairment directly causes the attenuation of memory consolidation in mice.
Collapse
Affiliation(s)
- Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| |
Collapse
|
11
|
Tripodi F, Motta Z, Murtas G, Rabattoni V, Nonnis S, Grassi Scalvini F, Rinaldi AM, Rizzi R, Bearzi C, Badone B, Sacchi S, Tedeschi G, Maffioli E, Coccetti P, Pollegioni L. Serine metabolism during differentiation of human iPSC-derived astrocytes. FEBS J 2023; 290:4440-4464. [PMID: 37166453 DOI: 10.1111/febs.16816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/05/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Astrocytes are essential players in development and functions, being particularly relevant as regulators of brain energy metabolism, ionic homeostasis and synaptic transmission. They are also the major source of l-serine in the brain, which is synthesized from the glycolytic intermediate 3-phosphoglycerate through the phosphorylated pathway. l-Serine is the precursor of the two main co-agonists of the N-methyl-d-aspartate receptor, glycine and d-serine. Strikingly, dysfunctions in both l- and d-serine metabolism are associated with neurological and psychiatric disorders. Here, we exploited a differentiation protocol, based on the generation of human mature astrocytes from neural stem cells, and investigated the modification of the proteomic and metabolomic profile during the differentiation process. We show that differentiated astrocytes are more similar to mature rather than to reactive ones, and that axogenesis and pyrimidine metabolism increase up to 30 days along with the folate cycle and sphingolipid metabolism. Consistent with the proliferation and cellular maturation processes that are taking place, also the intracellular levels of l-serine, glycine, threonine, l- and d-aspartate (which level is unexpectedly higher than that of d-serine) show the same biosynthetic time course. A significant utilization of l-serine from the medium is apparent while glycine is first consumed and then released with a peak at 30 days, parallel to its intracellular level. These results underline how metabolism changes during astrocyte differentiation, highlight that d-serine synthesis is restricted in differentiated astrocytes and provide a valuable model for developing potential novel therapeutic approaches to address brain diseases, especially the ones related to serine metabolism alterations.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Simona Nonnis
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, Italy
| | | | | | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy
- Department of Medical-Surgical Science and Biotechnologies, University of Rome La Sapienza, Italy
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy
- Institute for Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Beatrice Badone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gabriella Tedeschi
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, Italy
- CIMAINA, University of Milano, Italy
| | - Elisa Maffioli
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Abstract
Amino acid dysregulation has emerged as an important driver of disease progression in various contexts. l-Serine lies at a central node of metabolism, linking carbohydrate metabolism, transamination, glycine, and folate-mediated one-carbon metabolism to protein synthesis and various downstream bioenergetic and biosynthetic pathways. l-Serine is produced locally in the brain but is sourced predominantly from glycine and one-carbon metabolism in peripheral tissues via liver and kidney metabolism. Compromised regulation or activity of l-serine synthesis and disposal occurs in the context of genetic diseases as well as chronic disease states, leading to low circulating l-serine levels and pathogenesis in the nervous system, retina, heart, and aging muscle. Dietary interventions in preclinical models modulate sensory neuropathy, retinopathy, tumor growth, and muscle regeneration. A serine tolerance test may provide a quantitative readout of l-serine homeostasis that identifies patients who may be susceptible to neuropathy or responsive to therapy.
Collapse
Affiliation(s)
- Michal K Handzlik
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| |
Collapse
|
13
|
Marchesani F, Michielon A, Viale E, Bianchera A, Cavazzini D, Pollegioni L, Murtas G, Mozzarelli A, Bettati S, Peracchi A, Campanini B, Bruno S. Phosphoserine Aminotransferase Pathogenetic Variants in Serine Deficiency Disorders: A Functional Characterization. Biomolecules 2023; 13:1219. [PMID: 37627284 PMCID: PMC10452355 DOI: 10.3390/biom13081219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In humans, the phosphorylated pathway (PP) converts the glycolytic intermediate D-3-phosphoglycerate (3-PG) into L-serine through the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase (PSAT) and phosphoserine phosphatase. From the pathogenic point of view, the PP in the brain is particularly relevant, as genetic defects of any of the three enzymes are associated with a group of neurometabolic disorders known as serine deficiency disorders (SDDs). We recombinantly expressed and characterized eight variants of PSAT associated with SDDs and two non-SDD associated variants. We show that the pathogenetic mechanisms in SDDs are extremely diverse, including low affinity of the cofactor pyridoxal 5'-phosphate and thermal instability for S179L and G79W PSAT, loss of activity of the holo form for R342W PSAT, aggregation for D100A PSAT, increased Km for one of the substrates with invariant kcats for S43R PSAT, and a combination of increased Km and decreased kcat for C245R PSAT. Finally, we show that the flux through the in vitro reconstructed PP at physiological concentrations of substrates and enzymes is extremely sensitive to alterations of the functional properties of PSAT variants, confirming PSAT dysfunctions as a cause of SSDs.
Collapse
Affiliation(s)
| | | | | | | | - Davide Cavazzini
- Department of Chemistry/Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Loredano Pollegioni
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Giulia Murtas
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | | | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
- Institute of Biophysics, CNR, 56124 Pisa, Italy
| | - Alessio Peracchi
- Department of Chemistry/Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
| |
Collapse
|
14
|
Serra M, Di Maio A, Bassareo V, Nuzzo T, Errico F, Servillo F, Capasso M, Parekh P, Li Q, Thiolat ML, Bezard E, Calabresi P, Sulzer D, Carta M, Morelli M, Usiello A. Perturbation of serine enantiomers homeostasis in the striatum of MPTP-lesioned monkeys and mice reflects the extent of dopaminergic midbrain degeneration. Neurobiol Dis 2023; 184:106226. [PMID: 37451474 DOI: 10.1016/j.nbd.2023.106226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Loss of dopaminergic midbrain neurons perturbs l-serine and d-serine homeostasis in the post-mortem caudate putamen (CPu) of Parkinson's disease (PD) patients. However, it is unclear whether the severity of dopaminergic nigrostriatal degeneration plays a role in deregulating serine enantiomers' metabolism. Here, through high-performance liquid chromatography (HPLC), we measured the levels of these amino acids in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and MPTP-plus-probenecid (MPTPp)-treated mice to determine whether and how dopaminergic midbrain degeneration affects the levels of serine enantiomers in various basal ganglia subregions. In addition, in the same brain regions, we measured the levels of key neuroactive amino acids modulating glutamatergic neurotransmission, including l-glutamate, glycine, l-aspartate, d-aspartate, and their precursors l-glutamine, l-asparagine. In monkeys, MPTP treatment produced severe denervation of nigrostriatal dopaminergic fibers (⁓75%) and increased the levels of serine enantiomers in the rostral putamen (rPut), but not in the subthalamic nucleus, and the lateral and medial portion of the globus pallidus. Moreover, this neurotoxin significantly reduced the protein expression of the astrocytic serine transporter ASCT1 and the glycolytic enzyme GAPDH in the rPut of monkeys. Conversely, concentrations of d-serine and l-serine, as well as ASCT1 and GAPDH expression were unaffected in the striatum of MPTPp-treated mice, which showed only mild dopaminergic degeneration (⁓30%). These findings unveil a link between the severity of dopaminergic nigrostriatal degeneration and striatal serine enantiomers concentration, ASCT1 and GAPDH expression. We hypothesize that the up-regulation of d-serine and l-serine levels occurs as a secondary response within a homeostatic loop to support the metabolic and neurotransmission demands imposed by the degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Anna Di Maio
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università Degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università Degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Errico
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
| | - Federica Servillo
- Department of Neuroscience, Cattolica Sacro Cuore University, Rome, Italy
| | - Mario Capasso
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini, 5, Napoli 80131, Italy
| | - Pathik Parekh
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Qin Li
- Motac Neuroscience, UKM15 6WE, Manchester, United Kingdom; Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Marie-Laure Thiolat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Motac Neuroscience, UKM15 6WE, Manchester, United Kingdom; Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China; Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Paolo Calabresi
- Department of Neuroscience, Cattolica Sacro Cuore University, Rome, Italy; Neurologia, Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy; National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate Francesco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università Degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
15
|
Ni X, Inoue R, Wu Y, Yoshida T, Yaku K, Nakagawa T, Saito T, Saido TC, Takao K, Mori H. Regional contributions of D-serine to Alzheimer's disease pathology in male AppNL-G-F/NL-G-F mice. Front Aging Neurosci 2023; 15:1211067. [PMID: 37455930 PMCID: PMC10339350 DOI: 10.3389/fnagi.2023.1211067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background Neurodegenerative processes in Alzheimer's disease (AD) are associated with excitotoxicity mediated by the N-methyl-D-aspartate receptor (NMDAR). D-Serine is an endogenous co-agonist necessary for NMDAR-mediated excitotoxicity. In the mammalian brain, it is produced by serine racemase (SRR) from L-serine, suggesting that dysregulation of L-serine, D-serine, or SRR may contribute to AD pathogenesis. Objective and methods We examined the contributions of D-serine to AD pathology in the AppNL-G-F/NL-G-F gene knock-in (APPKI) mouse model of AD. We first examined brain SRR expression levels and neuropathology in APPKI mice and then assessed the effects of long-term D-serine supplementation in drinking water on neurodegeneration. To further confirm the involvement of endogenous D-serine in AD progression, we generated Srr gene-deleted APPKI (APPKI-SRRKO) mice. Finally, to examine the levels of brain amino acids, we conducted liquid chromatography-tandem mass spectrometry. Results Expression of SRR was markedly reduced in the retrosplenial cortex (RSC) of APPKI mice at 12 months of age compared with age-matched wild-type mice. Neuronal density was decreased in the hippocampal CA1 region but not altered significantly in the RSC. D-Serine supplementation exacerbated neuronal loss in the hippocampal CA1 of APPKI mice, while APPKI-SRRKO mice exhibited attenuated astrogliosis and reduced neuronal death in the hippocampal CA1 compared with APPKI mice. Furthermore, APPKI mice demonstrated marked abnormalities in the cortical amino acid levels that were partially reversed in APPKI-SRRKO mice. Conclusion These findings suggest that D-serine participates in the regional neurodegenerative process in the hippocampal CA1 during the amyloid pathology of AD and that reducing brain D-serine can partially attenuate neuronal loss and reactive astrogliosis. Therefore, regulating SRR could be an effective strategy to mitigate NMDAR-dependent neurodegeneration during AD progression.
Collapse
Affiliation(s)
- Xiance Ni
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yi Wu
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
16
|
Di Maio A, Nuzzo T, Gilio L, Serra M, Buttari F, Errico F, De Rosa A, Bassi MS, Morelli M, Sasabe J, Sulzer D, Carta M, Centonze D, Usiello A. Homeostasis of serine enantiomers is disrupted in the post-mortem caudate putamen and cerebrospinal fluid of living Parkinson's disease patients. Neurobiol Dis 2023:106203. [PMID: 37336364 DOI: 10.1016/j.nbd.2023.106203] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
L-serine generated in astrocytes plays a pivotal role in modulating essential neurometabolic processes, while its enantiomer, D-serine, specifically regulates NMDA receptor (NMDAR) signalling. Despite their physiological relevance in modulating cerebral activity, serine enantiomers metabolism in Parkinson's disease (PD) remains elusive. Using High-Performance Liquid Chromatography (HPLC), we measured D- and L-serine levels along with other amino acids known to modulate NMDAR function, such as L-glutamate, L-aspartate, D-aspartate, and glycine, in the post-mortem caudate putamen (CPu) and superior frontal gyrus (SFG) of PD patients. Moreover, we examined these amino acids in the cerebrospinal fluid (CSF) of de novo living PD, Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) patients versus subjects with other neurological disorders (OND), used as control. We found higher D-serine and L-serine levels in the CPu of PD patients but not in the SFG, a cerebral region that, in contrast to the CPu, is not innervated by nigral dopaminergic terminals. We also highlighted a significant elevation of both serine enantiomers in the CSF samples from PD but not in those of AD and ALS patients, compared with control subjects. By contrast, none or only minor changes were found in the amount of other neuroactive amino acids mentioned above. Our findings identify D-serine and L-serine level upregulation as a biochemical signature associated with nigrostriatal dopaminergic degeneration in PD.
Collapse
Affiliation(s)
- Anna Di Maio
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Tommaso Nuzzo
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy; Faculty of Psychology, Uninettuno Telematic International University, Rome, Italy; Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Errico
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Arianna De Rosa
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy; National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Alessandro Usiello
- Laboratory of Translational Neuroscience, Ceinge Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
17
|
Yin C, Harms AC, Hankemeier T, Kindt A, de Lange ECM. Status of Metabolomic Measurement for Insights in Alzheimer's Disease Progression-What Is Missing? Int J Mol Sci 2023; 24:ijms24054960. [PMID: 36902391 PMCID: PMC10003384 DOI: 10.3390/ijms24054960] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease, leading to the progressive loss of memory and other cognitive functions. As there is still no cure for AD, the growth in the number of susceptible individuals represents a major emerging threat to public health. Currently, the pathogenesis and etiology of AD remain poorly understood, while no efficient treatments are available to slow down the degenerative effects of AD. Metabolomics allows the study of biochemical alterations in pathological processes which may be involved in AD progression and to discover new therapeutic targets. In this review, we summarized and analyzed the results from studies on metabolomics analysis performed in biological samples of AD subjects and AD animal models. Then this information was analyzed by using MetaboAnalyst to find the disturbed pathways among different sample types in human and animal models at different disease stages. We discuss the underlying biochemical mechanisms involved, and the extent to which they could impact the specific hallmarks of AD. Then we identify gaps and challenges and provide recommendations for future metabolomics approaches to better understand AD pathogenesis.
Collapse
Affiliation(s)
- Chunyuan Yin
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Elizabeth C. M. de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
18
|
Loss of brain energy metabolism control as a driver for memory impairment upon insulin resistance. Biochem Soc Trans 2023; 51:287-301. [PMID: 36606696 DOI: 10.1042/bst20220789] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
The pathophysiological mechanisms intersecting metabolic and neurodegenerative disorders include insulin resistance, which has a strong involvement of environmental factors. Besides central regulation of whole-body homeostasis, insulin in the central nervous system controls molecular signalling that is critical for cognitive performance, namely signalling through pathways that modulate synaptic transmission and plasticity, and metabolism in neurons and astrocytes. This review provides an overview on how insulin signalling in the brain might regulate brain energy metabolism, and further identified molecular mechanisms by which brain insulin resistance might impair synaptic fuelling, and lead to cognitive deterioration.
Collapse
|
19
|
Wang X, Sun X, Jin Y, Cheng S, Han Y, Zhang M, Zhang L, Li XL, Xu CY, Min JZ. Development and evaluation of a novel fluorescent chiral derivatization reagent DBD-S-M-Pro: first observation of four chiral amino acids in human hair. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:884-895. [PMID: 36723074 DOI: 10.1039/d2ay02111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study reports a novel fluorescent chiral derivatization reagent, 4-(N,N-dmethylaminosulfonyl)-2,1,3-benzoxadiazole-(2-succinimidoxy)-trans-2-methyl-L-proline (DBD-S-M-Pro), with a benzoxadiazole structure containing an N-hydroxysuccinimide activation group. DBD-S-M-Pro targets chiral amino-functional compounds under alkaline conditions without a condensation agent. Gradient elution was performed on a BEH C18 (100 × 2.1 mm, 1.7 μm) column with a mobile phase of 0.05% formic acid (FA) in 10 mM ammonium acetate (CH3COONH4) and 0.1% FA in acetonitrile or methanol. The efficiency of the chiral resolution was evaluated under excitation and emission wavelengths of 450 nm and 560 nm, respectively. The 19 chiral amino acids were separated in the range of 1.45-14.84. The resolutions of almost all DL-amino acids exceeded 1.5; the exceptions were serine (Ser) and lysine (Lys), with resolutions of 1.45 and 1.46, respectively. In addition, a new approach was devised for the simultaneous analysis of four chiral amino acids (DL-Glu, DL-Ala, DL-Val, and DL-Phe) in human hair. These amino acids were analyzed in the range of 12.5-400 pmol, with R2 ≥ 0.9990, limits of detection (S/N = 3) of 4-10 pmol, and intraday and interday precisions of 0.57-6.23%. The average spikes in the hair recoveries were 89.76-111.54%, and the matrix effects were 92.47-102.40%. Next, the contents of free chiral amino acids in the hair samples of 10 healthy volunteers (five males and five females) were analyzed with this method, and the differences were compared. The developed DBD-S-M-Pro provides a novel strategy for the sensitive determination of free chiral amino acids in living organisms.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xiaoqi Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Yueying Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Shengyu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Minghui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Lingli Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Chun-Yan Xu
- Medical College, Dalian University, Dalian, Liaoning, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
20
|
D-Amino Acids and Cancer: Friends or Foes? Int J Mol Sci 2023; 24:ijms24043274. [PMID: 36834677 PMCID: PMC9962368 DOI: 10.3390/ijms24043274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
α-amino acids exist in two configurations, named D-(dextro) and L-(levo) enantiomers. L-amino acids are used in protein synthesis and play a central role in cell metabolism. The effects of the L-amino acid composition of foods and the dietary modifications of this composition on the efficacy of cancer therapies have been widely investigated in relation to the growth and reproduction of cancerous cells. However, less is known about the involvement of D-amino acids. In recent decades, D-amino acids have been identified as natural biomolecules that play interesting and specific roles as common components of the human diet. Here, we focus on recent investigations showing altered D-amino acid levels in specific cancer types and on the various roles proposed for these biomolecules related to cancer cell proliferation, cell protection during therapy, and as putative, innovative biomarkers. Notwithstanding recent progress, the relationship between the presence of D-amino acids, their nutritional value, and cancer cell proliferation and survival represents an underrated scientific issue. Few studies on human samples have been reported to date, suggesting a need for routine analysis of D-amino acid content and an evaluation of the enzymes involved in regulating their levels in clinical samples in the near future.
Collapse
|
21
|
Veselkina ER, Trostnikov MV, Roshina NV, Pasyukova EG. The Effect of the Tau Protein on D. melanogaster Lifespan Depends on GSK3 Expression and Sex. Int J Mol Sci 2023; 24:2166. [PMID: 36768490 PMCID: PMC9916465 DOI: 10.3390/ijms24032166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The microtubule-associated conserved protein tau has attracted significant attention because of its essential role in the formation of pathological changes in the nervous system, which can reduce longevity. The study of the effects caused by tau dysfunction and the molecular mechanisms underlying them is complicated because different forms of tau exist in humans and model organisms, and the changes in protein expression can be multidirectional. In this article, we show that an increase in the expression of the main isoform of the Drosophila melanogaster tau protein in the nervous system has differing effects on lifespan depending on the sex of individuals but has no effect on the properties of the nervous system, in particular, the synaptic activity and distribution of another microtubule-associated protein, Futsch, in neuromuscular junctions. Reduced expression of tau in the nervous system does not affect the lifespan of wild-type flies, but it does increase the lifespan dramatically shortened by overexpression of the shaggy gene encoding the GSK3 (Glycogen Synthase Kinase 3) protein kinase, which is one of the key regulators of tau phosphorylation levels. This effect is accompanied by the normalization of the Futsch protein distribution impaired by shaggy overexpression. The results presented in this article demonstrate that multidirectional changes in tau expression can lead to effects that depend on the sex of individuals and the expression level of GSK3.
Collapse
Affiliation(s)
- Ekaterina R. Veselkina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Mikhail V. Trostnikov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Natalia V. Roshina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena G. Pasyukova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|