1
|
Sharifi O, Haghani V, Neier KE, Fraga KJ, Korf I, Hakam SM, Quon G, Johansen N, Yasui DH, LaSalle JM. Sex-specific single cell-level transcriptomic signatures of Rett syndrome disease progression. Commun Biol 2024; 7:1292. [PMID: 39384967 PMCID: PMC11464704 DOI: 10.1038/s42003-024-06990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous MECP2 mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo a poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT, revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct cell types over time and correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant females, indicating that wild-type-expressing cells normalize transcriptional homeostasis. These results advance our understanding of RTT progression and treatment.
Collapse
Affiliation(s)
- Osman Sharifi
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Viktoria Haghani
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Kari E Neier
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Keith J Fraga
- Genome Center, University of California, Davis, CA, USA
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Ian Korf
- Genome Center, University of California, Davis, CA, USA
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Sophia M Hakam
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Gerald Quon
- Genome Center, University of California, Davis, CA, USA
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Nelson Johansen
- Genome Center, University of California, Davis, CA, USA
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Dag H Yasui
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Frasca A, Miramondi F, Butti E, Indrigo M, Balbontin Arenas M, Postogna FM, Piffer A, Bedogni F, Pizzamiglio L, Cambria C, Borello U, Antonucci F, Martino G, Landsberger N. Neural precursor cells rescue symptoms of Rett syndrome by activation of the Interferon γ pathway. EMBO Mol Med 2024:10.1038/s44321-024-00144-9. [PMID: 39304759 DOI: 10.1038/s44321-024-00144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The beneficial effects of Neural Precursor Cell (NPC) transplantation in several neurological disorders are well established and they are generally mediated by the secretion of immunomodulatory and neurotrophic molecules. We therefore investigated whether Rett syndrome (RTT), that represents the first cause of severe intellectual disability in girls, might benefit from NPC-based therapy. Using in vitro co-cultures, we demonstrate that, by sensing the pathological context, NPC-secreted factors induce the recovery of morphological and synaptic defects typical of Mecp2 deficient neurons. In vivo, we prove that intracerebral transplantation of NPCs in RTT mice significantly ameliorates neurological functions. To uncover the molecular mechanisms underpinning the mediated benefic effects, we analyzed the transcriptional profile of the cerebellum of transplanted animals, disclosing the possible involvement of the Interferon γ (IFNγ) pathway. Accordingly, we report the capacity of IFNγ to rescue synaptic defects, as well as motor and cognitive alterations in Mecp2 deficient models, thereby suggesting this molecular pathway as a potential therapeutic target for RTT.
Collapse
Affiliation(s)
- Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Federica Miramondi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Erica Butti
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Marzia Indrigo
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Maria Balbontin Arenas
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Francesca M Postogna
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Arianna Piffer
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Francesco Bedogni
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
- Neuroscience and Mental Health Innovation Institute (NMHII), Cardiff University School of Medicine, Cardiff, CF24 4HQ, UK
| | - Lara Pizzamiglio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Ugo Borello
- Cellular and Developmental Biology Unit, Department of Biology, University of Pisa, I-56127, Pisa, Italy
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy.
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy.
| |
Collapse
|
3
|
Cosentino L, Urbinati C, Lanzillotta C, De Rasmo D, Valenti D, Pellas M, Quattrini MC, Piscitelli F, Kostrzewa M, Di Domenico F, Pietraforte D, Bisogno T, Signorile A, Vacca RA, De Filippis B. Pharmacological inhibition of the CB1 cannabinoid receptor restores abnormal brain mitochondrial CB1 receptor expression and rescues bioenergetic and cognitive defects in a female mouse model of Rett syndrome. Mol Autism 2024; 15:39. [PMID: 39300547 PMCID: PMC11414047 DOI: 10.1186/s13229-024-00617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Mattia Pellas
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | | | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Tiziana Bisogno
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy.
| |
Collapse
|
4
|
Karaosmanoglu B, Imren G, Ozisin MS, Reçber T, Simsek Kiper PO, Haliloglu G, Alikaşifoğlu M, Nemutlu E, Taskiran EZ, Utine GE. Ex vivo disease modelling of Rett syndrome: the transcriptomic and metabolomic implications of direct neuronal conversion. Mol Biol Rep 2024; 51:979. [PMID: 39269588 DOI: 10.1007/s11033-024-09915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Rett syndrome (RTT) is a rare neurodevelopmental disorder that primarily affects females and is characterized by a period of normal development followed by severe cognitive, motor, and communication impairment. The syndrome is predominantly caused by mutations in the MECP2. This study aimed to use comprehensive multi-omic analysis to identify the molecular and metabolic alterations associated with Rett syndrome. METHODS AND RESULTS Transcriptomic and metabolomic profiling was performed using neuron-like cells derived from the fibroblasts of 3 Rett syndrome patients with different MECP2 mutations (R168X, P152R, and R133C) and 1 healthy control. Differential gene expression, alternative splicing events, and metabolite changes were analyzed to identify the key pathways and processes affected in patients with Rett syndrome. Transcriptomic analysis showed there was significant down-regulation of genes associated with the extracellular matrix (ECM) and cytoskeletal components, which was particularly notable in patient P3 (R133C mutation), who had non-random X chromosome inactivation. Additionally, significant changes in microtubule-related gene expression and alternative splicing events were observed, especially in patient P2 (P152R mutation). Metabolomic profiling showed that there were alterations in metabolic pathways, particularly up-regulation of ketone body synthesis and degradation pathways, in addition to an increase in free fatty acid levels. Integrated analysis highlighted the interplay between structural gene down-regulation and metabolic shifts, underscoring the adaptive responses to cellular stress in Rett neurons. CONCLUSION The present findings provide valuable insights into the molecular and metabolic landscape of Rett syndrome, emphasizing the importance of combining omic data to enlighten the molecular pathophysiology of this syndrome.
Collapse
Affiliation(s)
- Beren Karaosmanoglu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Türkiye
| | - Gozde Imren
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Türkiye
| | - M Samil Ozisin
- Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Türkiye
| | - Tuba Reçber
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Türkiye
| | | | - Goknur Haliloglu
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Hacettepe University, Ankara, Türkiye
| | - Mehmet Alikaşifoğlu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Türkiye
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Türkiye
| | - Ekim Z Taskiran
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Türkiye.
| | - Gulen Eda Utine
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
5
|
Tomasello DL, Barrasa MI, Mankus D, Alarcon KI, Lytton-Jean AKR, Liu XS, Jaenisch R. Mitochondrial dysfunction and increased reactive oxygen species production in MECP2 mutant astrocytes and their impact on neurons. Sci Rep 2024; 14:20565. [PMID: 39232000 PMCID: PMC11374804 DOI: 10.1038/s41598-024-71040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Studies on MECP2 function and its implications in Rett Syndrome (RTT) have traditionally centered on neurons. Here, using human embryonic stem cell (hESC) lines, we modeled MECP2 loss-of-function to explore its effects on astrocyte (AST) development and dysfunction in the brain. Ultrastructural analysis of RTT hESC-derived cerebral organoids revealed significantly smaller mitochondria compared to controls (CTRs), particularly pronounced in glia versus neurons. Employing a multiomics approach, we observed increased gene expression and accessibility of a subset of nuclear-encoded mitochondrial genes upon mutation of MECP2 in ASTs compared to neurons. Analysis of hESC-derived ASTs showed reduced mitochondrial respiration and altered key proteins in the tricarboxylic acid cycle and electron transport chain in RTT versus CTRs. Additionally, RTT ASTs exhibited increased cytosolic amino acids under basal conditions, which were depleted upon increased energy demands. Notably, mitochondria isolated from RTT ASTs exhibited increased reactive oxygen species and influenced neuronal activity when transferred to cortical neurons. These findings underscore MECP2 mutation's differential impact on mitochondrial and metabolic pathways in ASTs versus neurons, suggesting that dysfunctional AST mitochondria may contribute to RTT pathophysiology by affecting neuronal health.
Collapse
Affiliation(s)
| | | | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katia I Alarcon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abigail K R Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - X Shawn Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Bonzano S, Dallorto E, Bovetti S, Studer M, De Marchis S. Mitochondrial regulation of adult hippocampal neurogenesis: Insights into neurological function and neurodevelopmental disorders. Neurobiol Dis 2024; 199:106604. [PMID: 39002810 DOI: 10.1016/j.nbd.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.
Collapse
Affiliation(s)
- Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Michèle Studer
- Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy.
| |
Collapse
|
7
|
Osaki T, Delepine C, Osako Y, Kranz D, Levin A, Nelson C, Fagiolini M, Sur M. Early differential impact of MeCP2 mutations on functional networks in Rett syndrome patient-derived human cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607464. [PMID: 39149328 PMCID: PMC11326256 DOI: 10.1101/2024.08.10.607464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Human cerebral organoids derived from induced pluripotent stem cells can recapture early developmental processes and reveal changes involving neurodevelopmental disorders. Mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene are associated with Rett syndrome, and disease severity varies depending on the location and type of mutation. Here, we focused on neuronal activity in Rett syndrome patient-derived organoids, analyzing two types of MeCP2 mutations - a missense mutation (R306C) and a truncating mutation (V247X) - using calcium imaging with three-photon microscopy. Compared to isogenic controls, we found abnormal neuronal activity in Rett organoids and altered network function based on graph theoretic analyses, with V247X mutations impacting functional responses and connectivity more severely than R306C mutations. These changes paralleled EEG data obtained from patients with comparable mutations. Labeling DLX promoter-driven inhibitory neurons demonstrated differences in activity and functional connectivity of inhibitory and excitatory neurons in the two types of mutation. Transcriptomic analyses revealed HDAC2-associated impairment in R306C organoids and decreased GABAA receptor expression in excitatory neurons in V247X organoids. These findings demonstrate mutation-specific mechanisms of vulnerability in Rett syndrome and suggest targeted strategies for their treatment.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chloe Delepine
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuma Osako
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Devorah Kranz
- Boston Children’s Hospital, Brookline, MA 02445, USA
- Harvard University, Cambridge, MA 02139, USA
| | - April Levin
- Boston Children’s Hospital, Brookline, MA 02445, USA
| | - Charles Nelson
- Boston Children’s Hospital, Brookline, MA 02445, USA
- Harvard University, Cambridge, MA 02139, USA
| | - Michela Fagiolini
- Boston Children’s Hospital, Brookline, MA 02445, USA
- Harvard University, Cambridge, MA 02139, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Cordone V. Biochemical and molecular determinants of the subclinical inflammatory mechanisms in Rett syndrome. Arch Biochem Biophys 2024; 757:110046. [PMID: 38815782 DOI: 10.1016/j.abb.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
To date, Rett syndrome (RTT), a genetic disorder mainly caused by mutations in the X-linked MECP2 gene, is increasingly considered a broad-spectrum pathology, instead of just a neurodevelopmental disease, due to the multitude of peripheral co-morbidities and the compromised metabolic pathways, affecting the patients. The altered molecular processes include an impaired mitochondrial function, a perturbed redox homeostasis, a chronic subclinical inflammation and an improper cholesterol metabolism. The persistent subclinical inflammatory condition was first defined ten years ago, as a previously unrecognized feature of RTT, playing a role in the pathology progress and modulation of phenotypical severity. In light of this, the present work aims at reviewing the current knowledge on the chronic inflammatory status and the altered immune/inflammatory functions in RTT, as well as investigating the emerging mechanisms underlying this condition with a special focus on the latest findings about inflammasome system, autoimmunity responses and intestinal micro- and mycobiota. On these bases, although further research is needed, future therapeutic strategies able to re-establish an adequate immune/inflammatory response could represent potential approaches for RTT patients.
Collapse
Affiliation(s)
- Valeria Cordone
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
9
|
Bicks LK, Geschwind DH. Functional neurogenomics in autism spectrum disorders: A decade of progress. Curr Opin Neurobiol 2024; 86:102858. [PMID: 38547564 DOI: 10.1016/j.conb.2024.102858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 06/11/2024]
Abstract
Advances in autism spectrum disorder (ASD) genetics have identified many genetic causes, reflecting remarkable progress while at the same time identifying challenges such as heterogeneity and pleiotropy, which complicate attempts to connect genetic risk to mechanisms. High-throughput functional genomic approaches have yielded progress by defining a molecular pathology in the brain of individuals with ASD and in identifying convergent biological pathways through which risk genes are predicted to act. These studies indicate that ASD genetic risk converges in early brain development, primarily during the period of cortical neurogenesis. Over development, genetic perturbations in turn lead to broad neuronal signaling dysregulation, most prominent in glutamatergic cortical-cortical projecting neurons and somatostatin positive interneurons, which is accompanied by glial dyshomeostasis throughout the cerebral cortex. Connecting these developmental perturbations to disrupted neuronal and glial function in the postnatal brain is an important direction in current research. Coupling functional genomic approaches with advances in induced pluripotent stem cell-derived neural organoid development provides a promising avenue for connecting brain pathology to developmental mechanisms.
Collapse
Affiliation(s)
- Lucy K Bicks
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA. https://twitter.com/Bickslucy
| | - D H Geschwind
- Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Gordillo-Sampedro S, Antounians L, Wei W, Mufteev M, Lendemeijer B, Kushner SA, de Vrij FMS, Zani A, Ellis J. iPSC-derived healthy human astrocytes selectively load miRNAs targeting neuronal genes into extracellular vesicles. Mol Cell Neurosci 2024; 129:103933. [PMID: 38663691 DOI: 10.1016/j.mcn.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/31/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
Astrocytes are in constant communication with neurons during the establishment and maturation of functional networks in the developing brain. Astrocytes release extracellular vesicles (EVs) containing microRNA (miRNA) cargo that regulates transcript stability in recipient cells. Astrocyte released factors are thought to be involved in neurodevelopmental disorders. Healthy astrocytes partially rescue Rett Syndrome (RTT) neuron function. EVs isolated from stem cell progeny also correct aspects of RTT. EVs cross the blood-brain barrier (BBB) and their cargo is found in peripheral blood which may allow non-invasive detection of EV cargo as biomarkers produced by healthy astrocytes. Here we characterize miRNA cargo and sequence motifs in healthy human astrocyte derived EVs (ADEVs). First, human induced Pluripotent Stem Cells (iPSC) were differentiated into Neural Progenitor Cells (NPCs) and subsequently into astrocytes using a rapid differentiation protocol. iPSC derived astrocytes expressed specific markers, displayed intracellular calcium transients and secreted ADEVs. miRNAs were identified by RNA-Seq on astrocytes and ADEVs and target gene pathway analysis detected brain and immune related terms. The miRNA profile was consistent with astrocyte identity, and included approximately 80 miRNAs found in astrocytes that were relatively depleted in ADEVs suggestive of passive loading. About 120 miRNAs were relatively enriched in ADEVs and motif analysis discovered binding sites for RNA binding proteins FUS, SRSF7 and CELF5. miR-483-5p was the most significantly enriched in ADEVs. This miRNA regulates MECP2 expression in neurons and has been found differentially expressed in blood samples from RTT patients. Our results identify potential miRNA biomarkers selectively sorted into ADEVs and implicate RNA binding protein sequence dependent mechanisms for miRNA cargo loading.
Collapse
Affiliation(s)
- Sara Gordillo-Sampedro
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lina Antounians
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Wei Wei
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Marat Mufteev
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bas Lendemeijer
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands; Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Augusto Zani
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Sharifi O, Haghani V, Neier KE, Fraga KJ, Korf I, Hakam SM, Quon G, Johansen N, Yasui DH, LaSalle JM. Sex-specific single cell-level transcriptomic signatures of Rett syndrome disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594595. [PMID: 38798575 PMCID: PMC11118571 DOI: 10.1101/2024.05.16.594595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous MECP2 mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT, revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct cell types over time, and correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant females, indicating wild-type-expressing cells normalizing transcriptional homeostasis. These results improve understanding of RTT progression and treatment.
Collapse
Affiliation(s)
- Osman Sharifi
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Viktoria Haghani
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Kari E. Neier
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Keith J. Fraga
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
| | - Ian Korf
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
| | - Sophia M. Hakam
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Gerald Quon
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
| | - Nelson Johansen
- Cellular and Molecular Biology, College of Biological Sciences, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
| | - Dag H. Yasui
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| | - Janine M. LaSalle
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
- Genome Center, University of California, Davis, CA 95616
- MIND Institute, University of California, Davis, CA 95616
| |
Collapse
|
12
|
Leventoux N, Morimoto S, Ishikawa M, Nakamura S, Ozawa F, Kobayashi R, Watanabe H, Supakul S, Okamoto S, Zhou Z, Kobayashi H, Kato C, Hirokawa Y, Aiba I, Takahashi S, Shibata S, Takao M, Yoshida M, Endo F, Yamanaka K, Kokubo Y, Okano H. Aberrant CHCHD2-associated mitochondriopathy in Kii ALS/PDC astrocytes. Acta Neuropathol 2024; 147:84. [PMID: 38750212 DOI: 10.1007/s00401-024-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
| | - Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO, Higashinagoya National Hospital, Aichi, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Department of Neurology and Stroke, International Medical Centre, Saitama Medical University, Saitama, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Centre of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Centre, Mie University Graduate School of Regional Innovation Studies, Mie, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
13
|
Albizzati E, Breccia M, Florio E, Cabasino C, Postogna FM, Grassi R, Boda E, Battaglia C, De Palma C, De Quattro C, Pozzi D, Landsberger N, Frasca A. Mecp2 knock-out astrocytes affect synaptogenesis by interleukin 6 dependent mechanisms. iScience 2024; 27:109296. [PMID: 38469559 PMCID: PMC10926209 DOI: 10.1016/j.isci.2024.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/09/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Synaptic abnormalities are a hallmark of several neurological diseases, and clarification of the underlying mechanisms represents a crucial step toward the development of therapeutic strategies. Rett syndrome (RTT) is a rare neurodevelopmental disorder, mainly affecting females, caused by mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene, leading to a deep derangement of synaptic connectivity. Although initial studies supported the exclusive involvement of neurons, recent data have highlighted the pivotal contribution of astrocytes in RTT pathogenesis through non-cell autonomous mechanisms. Since astrocytes regulate synapse formation and functionality by releasing multiple molecules, we investigated the influence of soluble factors secreted by Mecp2 knock-out (KO) astrocytes on synapses. We found that Mecp2 deficiency in astrocytes negatively affects their ability to support synaptogenesis by releasing synaptotoxic molecules. Notably, neuronal inputs from a dysfunctional astrocyte-neuron crosstalk lead KO astrocytes to aberrantly express IL-6, and blocking IL-6 activity prevents synaptic alterations.
Collapse
Affiliation(s)
- Elena Albizzati
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Martina Breccia
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Elena Florio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cecilia Cabasino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Francesca Maddalena Postogna
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Riccardo Grassi
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Cristina Battaglia
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Concetta De Quattro
- Department of Biotechnology, University of Verona, Cà Vignal 1, 37134 Verona, Italy
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| |
Collapse
|
14
|
Zito A, Lee JT. Variable expression of MECP2, CDKL5, and FMR1 in the human brain: Implications for gene restorative therapies. Proc Natl Acad Sci U S A 2024; 121:e2312757121. [PMID: 38386709 PMCID: PMC10907246 DOI: 10.1073/pnas.2312757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 02/24/2024] Open
Abstract
MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.
Collapse
Affiliation(s)
- Antonino Zito
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| | - Jeannie T. Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| |
Collapse
|
15
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases. Biomedicines 2024; 12:457. [PMID: 38398057 PMCID: PMC10887322 DOI: 10.3390/biomedicines12020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
16
|
Balicza P, Gezsi A, Fedor M, Sagi JC, Gal A, Varga NA, Molnar MJ. Multilevel evidence of MECP2-associated mitochondrial dysfunction and its therapeutic implications. Front Psychiatry 2024; 14:1301272. [PMID: 38250256 PMCID: PMC10796460 DOI: 10.3389/fpsyt.2023.1301272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024] Open
Abstract
We present a male patient carrying a pathogenic MECP2 p. Arg179Trp variant with predominant negative psychiatric features and multilevel evidence of mitochondrial dysfunction who responded to the cariprazine treatment. He had delayed speech development and later experienced severe social anxiety, learning disabilities, cognitive slowing, and predominant negative psychiatric symptoms associated with rigidity. Clinical examinations showed multisystemic involvement. Together with elevated ergometric lactate levels, the clinical picture suggested mitochondrial disease, which was also supported by muscle histopathology. Exploratory transcriptome analysis also revealed the involvement of metabolic and oxidative phosphorylation pathways. Whole-exome sequencing identified a pathogenic MECP2 variant, which can explain both the dopamine imbalance and mitochondrial dysfunction in this patient. Mitochondrial dysfunction was previously suggested in classical Rett syndrome, and we detected related phenotype evidence on multiple consistent levels for the first time in a MECP2 variant carrier male. This study further supports the importance of the MECP2 gene in the mitochondrial pathways, which can open the gate for more personalized therapeutic interventions. Good cariprazine response highlights the role of dopamine dysfunction in the complex psychiatric symptoms of Rett syndrome. This can help identify the optimal treatment strategy from a transdiagnostic perspective instead of a classical diagnostic category.
Collapse
Affiliation(s)
- Peter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- Eotvos Lorand Research Network, Multiomic Neurodegeneration Research Group, Budapest, Hungary
| | - Andras Gezsi
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Mariann Fedor
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Judit C. Sagi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Aniko Gal
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Noemi Agnes Varga
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- Eotvos Lorand Research Network, Multiomic Neurodegeneration Research Group, Budapest, Hungary
| |
Collapse
|
17
|
Zlatic SA, Werner E, Surapaneni V, Lee CE, Gokhale A, Singleton K, Duong D, Crocker A, Gentile K, Middleton F, Dalloul JM, Liu WLY, Patgiri A, Tarquinio D, Carpenter R, Faundez V. Systemic proteome phenotypes reveal defective metabolic flexibility in Mecp2 mutants. Hum Mol Genet 2023; 33:12-32. [PMID: 37712894 PMCID: PMC10729867 DOI: 10.1093/hmg/ddad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.
Collapse
Affiliation(s)
- Stephanie A Zlatic
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Veda Surapaneni
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Chelsea E Lee
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Kaela Singleton
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Duc Duong
- Department of Biochemistry, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Bicentennial Way, Middlebury, VT 05753, United States
| | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Frank Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Joseph Martin Dalloul
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - William Li-Yun Liu
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Anupam Patgiri
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Daniel Tarquinio
- Center for Rare Neurological Diseases, 5600 Oakbrook Pkwy, Norcross, GA 30093, United States
| | - Randall Carpenter
- Rett Syndrome Research Trust, 67 Under Cliff Rd, Trumbull, CT 06611, United States
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| |
Collapse
|
18
|
Vallese A, Cordone V, Pecorelli A, Valacchi G. Ox-inflammasome involvement in neuroinflammation. Free Radic Biol Med 2023; 207:161-177. [PMID: 37442280 DOI: 10.1016/j.freeradbiomed.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Neuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target. The role of oxidative stress in inflammasome activation has been described, however the exact way of action of specific endogenous and exogenous oxidants needs to be better clarified. In this review, we provide the current knowledge on the involvement of inflammasome in the main neuropathologies, emphasizing the importance to further clarify the role of oxidative stress in its activation including the role of mitochondria in inflammasome-induced neuroinflammation.
Collapse
Affiliation(s)
- Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Department of Animal Science, North Carolina State University, 28081, Kannapolis, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
19
|
Kotchetkov P, Blakeley N, Lacoste B. Involvement of brain metabolism in neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:67-113. [PMID: 37993180 DOI: 10.1016/bs.irn.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Neurodevelopmental disorders (NDDs) affect a significant portion of the global population and have a substantial social and economic impact worldwide. Most NDDs manifest in early childhood and are characterized by deficits in cognition, communication, social interaction and motor control. Due to a limited understanding of the etiology of NDDs, current treatment options primarily focus on symptom management rather than on curative solutions. Moreover, research on NDDs is problematic due to its reliance on a neurocentric approach. However, recent studies are broadening the scope of research on NDDs, to include dysregulations within a diverse network of brain cell types, including vascular and glial cells. This review aims to summarize studies from the past few decades on potential new contributions to the etiology of NDDs, with a special focus on metabolic signatures of various brain cells. In particular, we aim to convey how the metabolic functions are intimately linked to the onset and/or progression of common NDDs such as autism spectrum disorders, fragile X syndrome, Rett syndrome and Down syndrome.
Collapse
Affiliation(s)
- Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
20
|
Zlatic SA, Werner E, Surapaneni V, Lee CE, Gokhale A, Singleton K, Duong D, Crocker A, Gentile K, Middleton F, Dalloul JM, Liu WLY, Patgiri A, Tarquinio D, Carpenter R, Faundez V. Systemic Proteome Phenotypes Reveal Defective Metabolic Flexibility in Mecp2 Mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535431. [PMID: 37066332 PMCID: PMC10103972 DOI: 10.1101/2023.04.03.535431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.
Collapse
Affiliation(s)
| | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Veda Surapaneni
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Chelsea E. Lee
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Kaela Singleton
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Duc Duong
- Department of Biochemistry, Emory University, Atlanta, GA, USA, 30322
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Middlebury, Vermont 05753
| | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Joseph Martin Dalloul
- Department of Pharmacology & Chemical Biology, Emory University, Atlanta, GA, USA, 30322
| | - William Li-Yun Liu
- Department of Pharmacology & Chemical Biology, Emory University, Atlanta, GA, USA, 30322
| | - Anupam Patgiri
- Department of Pharmacology & Chemical Biology, Emory University, Atlanta, GA, USA, 30322
| | | | | | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| |
Collapse
|