1
|
Pant A, Jain A, Chen Y, Patel K, Saleh L, Tzeng S, Nitta RT, Zhao L, Wu CYJ, Bederson M, Wang WL, Bergsneider BHL, Choi J, Medikonda R, Verma R, Cho KB, Kim LH, Kim JE, Yazigi E, Lee SY, Rajendran S, Rajappa P, Mackall CL, Li G, Tyler B, Brem H, Pardoll DM, Lim M, Jackson CM. The CCR6-CCL20 Axis Promotes Regulatory T-cell Glycolysis and Immunosuppression in Tumors. Cancer Immunol Res 2024; 12:1542-1558. [PMID: 39133127 DOI: 10.1158/2326-6066.cir-24-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Regulatory T cells (Treg) are important players in the tumor microenvironment. However, the mechanisms behind their immunosuppressive effects are poorly understood. We found that CCR6-CCL20 activity in tumor-infiltrating Tregs is associated with greater glycolytic activity and ablation of Ccr6 reduced glycolysis and lactic acid production while increasing compensatory glutamine metabolism. Immunosuppressive activity toward CD8+ T cells was abrogated in Ccr6-/- Tregs due to reduction in activation-induced glycolysis. Furthermore, Ccr6-/- mice exhibited improved survival across multiple tumor models compared to wild-type mice and Treg and CD8+ T-cell depletion abrogated the improvement. In addition, Ccr6 ablation further promoted the efficacy of anti-PD-1 therapy in a preclinical glioma model. Follow-up knockdown of Ccl20 with siRNA also demonstrated improvement in antitumor efficacy. Our results unveil CCR6 as a marker and regulator of Treg-induced immunosuppression and identify approaches to target the metabolic determinants of Treg immunosuppressive activity.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yiyun Chen
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Saleh
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephany Tzeng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ryan T Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Liang Zhao
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Maria Bederson
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - William Lee Wang
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | | | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Ravi Medikonda
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Rohit Verma
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Lily H Kim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Jennifer E Kim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Si Yeon Lee
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Sakthi Rajendran
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Prajwal Rajappa
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Crystal L Mackall
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Betty Tyler
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer 2024:10.1038/s41568-024-00754-y. [PMID: 39433978 DOI: 10.1038/s41568-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Li Y, Ji L, Liu C, Li J, Wen D, Li Z, Yu L, Guo M, Zhang S, Duan W, Yi L, Bi Y, Bu H, Li C, Liu Y. TBK1 is involved in M-CSF-induced macrophage polarization through mediating the IRF5/IRF4 axis. FEBS J 2024. [PMID: 39434428 DOI: 10.1111/febs.17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
TANK binding kinase 1 (TBK1) is an important kinase that is involved in innate immunity and tumor development. Macrophage colony-stimulating factor (M-CSF) regulates the differentiation and function of macrophages towards the immunosuppressive M2 phenotype in the glioblastoma multiforme microenvironment. The role of TBK1 in macrophages, especially in regulating macrophage polarization in response to M-CSF stimulation, remains unclear. Here, we found high TBK1 expression in human glioma-infiltrating myeloid cells and that phosphorylated TBK1 was highly expressed in M-CSF-stimulated macrophages but not in granulocyte-macrophage CSF-induced macrophages (granulocyte-macrophage-CSF is involved in the polarization of M1 macrophages). Conditional deletion of TBK1 in myeloid cells induced M-CSF-stimulated bone marrow-derived macrophages to exhibit a proinflammatory M1-like phenotype with increased protein expression of CD86, interleukin-1β and tumor necrosis factor-α, as well as decreased expression of arginase 1. Mechanistically, TBK1 deletion or inhibition by amlexanox or GSK8612 reduced the expression of the transcription factor interferon-regulatory factor (IRF)4 and increased the level of IRF5 activation in macrophages stimulated with M-CSF, leading to an M1-like profile with highly proinflammatory factors. IRF5 deletion reversed the effect of TBK1 inhibition on M-CSF-mediated macrophage polarization. Our findings suggest that TBK1 contributes to the regulation of macrophage polarization in response to M-CSF stimulation partly through the IRF5/IRF4 axis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Le Ji
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Juanjuan Li
- Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Lishuang Yu
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Shaoran Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Yue Bi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| |
Collapse
|
4
|
Xu Y, Hillman H, Chang M, Ivanov S, Williams JW. Identification of conserved and tissue-restricted transcriptional profiles for lipid associated macrophages (LAMs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614807. [PMID: 39386558 PMCID: PMC11463620 DOI: 10.1101/2024.09.24.614807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Macrophages are essential immune cells present in all tissues, and are vital for maintaining tissue homeostasis, immune surveillance, and immune responses. Considerable efforts have identified shared and tissue-specific gene programs for macrophages across organs during homeostasis. This information has dramatically enhanced our understanding of tissue-restricted macrophage programming and function. However, few studies have addressed the overlapping and tissue-specific responses of macrophage subsets following inflammatory responses. One subset of macrophages that has been observed across several studies, lipid-associated macrophages (LAMs), have gained interest due to their unique role in lipid metabolism and potential as a therapeutic target. LAMs have been associated with regulating disease outcomes in metabolically related disorders including atherosclerosis, obesity, and nonalcoholic fatty liver disease (NAFLD). In this study, we utilized single-cell RNA sequencing (scRNAseq) data to profile LAMs across multiple tissues and sterile inflammatory conditions in mice and humans. Integration of data from various disease models revealed that LAMs share a set of conserved transcriptional profiles, including Trem2 and Lpl, but also identified key sets of tissue-specific LAM gene programs. Importantly, the shared LAM markers were highly conserved with human LAM populations that also emerge in chronic inflammatory settings. Overall, this analysis provides a detailed transcriptional landscape of tissue-restricted and shared LAM gene programs and offers insights into their roles in metabolic and chronic inflammatory diseases. These data may help instruct appropriate targets for broad or tissue-restricted therapeutic interventions to modulate LAM populations in disease.
Collapse
Affiliation(s)
- Yingzheng Xu
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | - Hannah Hillman
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | - Michael Chang
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | | | - Jesse W. Williams
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
5
|
Canella A, Artomov M, Ukhatov A, Rajendran S, Perez P, Saini U, Hedberg J, Cassady K, Rajappa P. Primary murine high-grade glioma cells derived from RCAS/tv-a diffuse glioma model reprogram naive T cells into immunosuppressive regulatory T lymphocytes. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200861. [PMID: 39328291 PMCID: PMC11426037 DOI: 10.1016/j.omton.2024.200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
High-grade gliomas (HGGs) and glioblastomas (GBMs) are the most aggressive and lethal brain tumors. The current standard of care (SOC) includes gross safe surgical resection followed by chemoradiotherapy. The main chemotherapeutic agents are the DNA-alkylating agent temozolomide (TMZ) and adjuvants. Due to the outdated therapeutic protocols and lack of specific treatments, there is an urgent and rising need to improve our understanding of tumor biology and design more effective therapeutic strategies. In vitro models are essential for investigating glioma biology and testing novel therapeutic approaches. While using commercially available and patient-derived glioma cell lines for in vitro studies is common practice, they exhibit several limitations, including failing to maintain the genetic and phenotypic diversity of primary tumors, undergo genetic drift over time, and often lacking the invasive and stem-like characteristics of patient tumors. These limitations can lead to inconsistent and non-reproducible results, hampering translational research progress. In this study, we established a novel primary murine HGG cell line, isolated from an immunocompetent HGG-bearing RCAS/T-va mouse. We characterized the transcriptome and phenotype to ensure that this cell line resembles the nature of HGGs and retains the ability to reprogram primary murine T lymphocytes.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mykyta Artomov
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Aleksandr Ukhatov
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Phillip Perez
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Uksha Saini
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Jack Hedberg
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Kevin Cassady
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
6
|
Ezaki A, Yano H, Pan C, Fujiwara Y, Anami T, Ibe Y, Motoshima T, Yatsuda J, Esumi S, Miura Y, Kamba T, Komohara Y. Potential protumor function of CD74 in clear cell renal cell carcinoma. Hum Cell 2024; 37:1535-1543. [PMID: 39080216 DOI: 10.1007/s13577-024-01110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
CD74 is a transmembrane protein that functions as a specialized chaperone of HLA class II and CD74 in tumor cells was suggested to be involved in cell proliferation in several kinds of malignant tumors. CD74 is also known to be expressed in macrophages, therefore, we investigated the CD74 expression in clear cell renal cell carcinoma (ccRCC). Immunohistochemistry of CD74 indicated that CD74 was expressed not only in cancer cells but also macrophages. CD74 was detected in surface membrane and cytoplasm of cancer cells in 92 of 94 cases (98%) and of 87 of 94 cases (93%). CD74 was expressed both in cancer cells and TAMs in 86 of 94 cases (91%). In vitro studies using cancer cell lines and monocyte-derived macrophages stimulated by anti-CD74 antibodies showed that CD74 signal accelerated cancer cell proliferation and macrophage activation. However, macrophage activation via CD74 signal did not influence macrophage-mediated cancer cell growth. RNA-sequence of macrophages stimulated by anti-CD74 antibodies indicated that CD74 signal was associated to inflammatory responses in macrophages. In conclusion, we examined the expression and functional significance of CD74 in ccRCC using tissue specimens and cell culture studies. The function of CD74 was suggested to be different in cancer cells and in macrophages, and further studies are necessary to clarify the functional significance of CD74 in ccRCC.
Collapse
MESH Headings
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Humans
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Cell Proliferation/genetics
- Histocompatibility Antigens Class II/metabolism
- Macrophages/metabolism
- Macrophages/immunology
- Cell Line, Tumor
- Macrophage Activation/genetics
- Gene Expression/genetics
Collapse
Affiliation(s)
- Ayano Ezaki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Toshiki Anami
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Ibe
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takanobu Motoshima
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miura
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
Wang Z, Wang B, Feng Y, Ye J, Mao Z, Zhang T, Xu M, Zhang W, Jiao X, Zhang Q, Zhang Y, Cui B. Targeting tumor-associated macrophage-derived CD74 improves efficacy of neoadjuvant chemotherapy in combination with PD-1 blockade for cervical cancer. J Immunother Cancer 2024; 12:e009024. [PMID: 39107132 PMCID: PMC11308911 DOI: 10.1136/jitc-2024-009024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Cervical cancer has the second-highest mortality rate among malignant tumors of the female reproductive system. Immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1) blockade are promising therapeutic agents, but their efficacy when combined with neoadjuvant chemotherapy (NACT) has not been fully tested, and how they alter the tumor microenvironment has not been comprehensively elucidated. METHODS In this study, we conducted single-cell RNA sequencing using 46,950 cells from nine human cervical cancer tissues representing sequential different stages of NACT and PD-1 blockade combination therapy. We delineated the trajectory of cervical epithelial cells and identified the crucial factors involved in combination therapy. Cell-cell communication analysis was performed between tumor and immune cells. In addition, THP-1-derived and primary monocyte-derived macrophages were cocultured with cervical cancer cells and phagocytosis was detected by flow cytometry. The antitumor activity of blocking CD74 was validated in vivo using a CD74 humanized subcutaneous tumor model. RESULTS Pathway enrichment analysis indicated that NACT activated cytokine and complement-related immune responses. Cell-cell communication analysis revealed that after NACT therapy, interaction strength between T cells and cancer cells decreased, but intensified between macrophages and cancer cells. We verified that macrophages were necessary for the PD-1 blockade to exert antitumor effects in vitro. Additionally, CD74-positive macrophages frequently interacted with the most immunoreactive epithelial subgroup 3 (Epi3) cancer subgroup during combination NACT. We found that CD74 upregulation limited phagocytosis and stimulated M2 polarization, whereas CD74 blockade enhanced macrophage phagocytosis, decreasing cervical cancer cell viability in vitro and in vivo. CONCLUSIONS Our study reveals the dynamic cell-cell interaction network in the cervical cancer microenvironment influenced by combining NACT and PD-1 blockade. Furthermore, blocking tumor-associated macrophage-derived CD74 could augment neoadjuvant therapeutic efficacy.
Collapse
Affiliation(s)
- Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Bingyu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Yuan Feng
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jinwen Ye
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Zhonghao Mao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Meining Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Wenjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
8
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Savage WM, Yeary MD, Tang AJ, Sperring CP, Argenziano MG, Adapa AR, Yoh N, Canoll P, Bruce JN. Biomarkers of immunotherapy in glioblastoma. Neurooncol Pract 2024; 11:383-394. [PMID: 39006524 PMCID: PMC11241363 DOI: 10.1093/nop/npae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary brain cancer, comprising half of all malignant brain tumors. Patients with GBM have a poor prognosis, with a median survival of 14-15 months. Current therapies for GBM, including chemotherapy, radiotherapy, and surgical resection, remain inadequate. Novel therapies are required to extend patient survival. Although immunotherapy has shown promise in other cancers, including melanoma and non-small lung cancer, its efficacy in GBM has been limited to subsets of patients. Identifying biomarkers of immunotherapy response in GBM could help stratify patients, identify new therapeutic targets, and develop more effective treatments. This article reviews existing and emerging biomarkers of clinical response to immunotherapy in GBM. The scope of this review includes immune checkpoint inhibitor and antitumoral vaccination approaches, summarizing the variety of molecular, cellular, and computational methodologies that have been explored in the setting of anti-GBM immunotherapies.
Collapse
Affiliation(s)
- William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Mitchell D Yeary
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Anthony J Tang
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Arjun R Adapa
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nina Yoh
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
10
|
Yang M, Shulkin N, Gonzalez E, Castillo J, Yan C, Zhang K, Arvanitis L, Borok Z, Wallace WD, Raz D, Torres ETR, Marconett CN. Cell of origin alters myeloid-mediated immunosuppression in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599651. [PMID: 38948812 PMCID: PMC11213232 DOI: 10.1101/2024.06.19.599651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Solid carcinomas are often highly heterogenous cancers, arising from multiple epithelial cells of origin. Yet, how the cell of origin influences the response of the tumor microenvironment is poorly understood. Lung adenocarcinoma (LUAD) arises in the distal alveolar epithelium which is populated primarily by alveolar epithelial type I (AT1) and type II (AT2) cells. It has been previously reported that Gramd2 + AT1 cells can give rise to a histologically-defined LUAD that is distinct in pathology and transcriptomic identity from that arising from Sftpc + AT2 cells1,2. To determine how cells of origin influence the tumor immune microenvironment (TIME) landscape, we comprehensively characterized transcriptomic, molecular, and cellular states within the TIME of Gramd2 + AT1 and Sftpc + AT2-derived LUAD using KRASG12D oncogenic driver mouse models. Myeloid cells within the Gramd2 + AT1-derived LUAD TIME were increased, specifically, immunoreactive monocytes and tumor associated macrophages (TAMs). In contrast, the Sftpc + AT2 LUAD TIME was enriched for Arginase-1+ myeloid derived suppressor cells (MDSC) and TAMs expressing profiles suggestive of immunosuppressive function. Validation of immune infiltration was performed using flow cytometry, and intercellular interaction analysis between the cells of origin and major myeloid cell populations indicated that cell-type specific markers SFTPD in AT2 cells and CAV1 in AT1 cells mediated unique interactions with myeloid cells of the differential immunosuppressive states within each cell of origin mouse model. Taken together, Gramd2 + AT1-derived LUAD presents with an anti-tumor, immunoreactive TIME, while the TIME of Sftpc + AT2-derived LUAD has hallmarks of immunosuppression. This study suggests that LUAD cell of origin influences the composition and suppression status of the TIME landscape and may hold critical implications for patient response to immunotherapy.
Collapse
Affiliation(s)
- Minxiao Yang
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
- Department of Translational Genomics, University of Southern California, Los Angeles, CA USA 90089
| | - Noah Shulkin
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
| | - Edgar Gonzalez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Jonathan Castillo
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
| | - Chunli Yan
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
| | - Keqiang Zhang
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA USA 92093
| | - W. Dean Wallace
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Dan Raz
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Evanthia T. Roussos Torres
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Crystal N. Marconett
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
- Department of Translational Genomics, University of Southern California, Los Angeles, CA USA 90089
| |
Collapse
|
11
|
Canella A, Nazzaro M, Artomov M, Rao Venkata LP, Thomas D, Lyberger J, Ukhatov A, Xing YL, Miller K, Behbehani G, Amankulor NM, Petritsch CK, Rajappa P. BRAF V600E in a preclinical model of pleomorphic Xanthoastrocytoma: Analysis of the tumor microenvironment and immune cell infiltration dynamics in vivo. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200808. [PMID: 38784952 PMCID: PMC11112369 DOI: 10.1016/j.omton.2024.200808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Low-grade glioma (LGG) is the most common brain tumor affecting pediatric patients (pLGG) and BRAF mutations constitute the most frequent genetic alterations. Within the spectrum of pLGGs, approximately 70%-80% of pediatric patients diagnosed with transforming pleomorphic xanthoastrocytoma (PXA) harbor the BRAF V600E mutation. However, the impact of glioma BRAF V600E cell regulation of tumor-infiltrating immune cells and their contribution to tumor progression remains unclear. Moreover, the efficacy of BRAF inhibitors in treating pLGGs is limited compared with their impact on BRAF-mutated melanoma. Here we report a novel immunocompetent RCAS-BRAF V600E murine glioma model. Pathological assessment indicates this model seems to be consistent with diffuse gliomas and morphological features of PXA. Our investigations revealed distinct immune cell signatures associated with increased trafficking and activation within the tumor microenvironment (TME). Intriguingly, immune system activation within the TME also generated a pronounced inflammatory response associated with dysfunctional CD8+ T cells, increased presence of immunosuppressive myeloid cells and regulatory T cells. Further, our data suggests tumor-induced inflammatory processes, such as cytokine storm. These findings suggest a complex interplay between tumor progression and the robust inflammatory response within the TME in preclinical BRAF V600E LGGs, which may significantly influence animal survival.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Matthew Nazzaro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Mykyta Artomov
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Diana Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Justin Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aleksandr Ukhatov
- Department of Electrical Engineering. Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yao Lulu Xing
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gregory Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Nduka M. Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
12
|
Pathania AS. Immune Microenvironment in Childhood Cancers: Characteristics and Therapeutic Challenges. Cancers (Basel) 2024; 16:2201. [PMID: 38927907 PMCID: PMC11201451 DOI: 10.3390/cancers16122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The tumor immune microenvironment is pivotal in cancer initiation, advancement, and regulation. Its molecular and cellular composition is critical throughout the disease, as it can influence the balance between suppressive and cytotoxic immune responses within the tumor's vicinity. Studies on the tumor immune microenvironment have enriched our understanding of the intricate interplay between tumors and their immunological surroundings in various human cancers. These studies illuminate the role of significant components of the immune microenvironment, which have not been extensively explored in pediatric tumors before and may influence the responsiveness or resistance to therapeutic agents. Our deepening understanding of the pediatric tumor immune microenvironment is helping to overcome challenges related to the effectiveness of existing therapeutic strategies, including immunotherapies. Although in the early stages, targeted therapies that modulate the tumor immune microenvironment of pediatric solid tumors hold promise for improved outcomes. Focusing on various aspects of tumor immune biology in pediatric patients presents a therapeutic opportunity that could improve treatment outcomes. This review offers a comprehensive examination of recent literature concerning profiling the immune microenvironment in various pediatric tumors. It seeks to condense research findings on characterizing the immune microenvironment in pediatric tumors and its impact on tumor development, metastasis, and response to therapeutic modalities. It covers the immune microenvironment's role in tumor development, interactions with tumor cells, and its impact on the tumor's response to immunotherapy. The review also discusses challenges targeting the immune microenvironment for pediatric cancer therapies.
Collapse
Affiliation(s)
- Anup Singh Pathania
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Solomou G, Young AMH, Bulstrode HJCJ. Microglia and macrophages in glioblastoma: landscapes and treatment directions. Mol Oncol 2024. [PMID: 38712663 DOI: 10.1002/1878-0261.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Glioblastoma is the most common primary malignant tumour of the central nervous system and remains uniformly and rapidly fatal. The tumour-associated macrophage (TAM) compartment comprises brain-resident microglia and bone marrow-derived macrophages (BMDMs) recruited from the periphery. Immune-suppressive and tumour-supportive TAM cell states predominate in glioblastoma, and immunotherapies, which have achieved striking success in other solid tumours have consistently failed to improve survival in this 'immune-cold' niche context. Hypoxic and necrotic regions in the tumour core are found to enrich, especially in anti-inflammatory and immune-suppressive TAM cell states. Microglia predominate at the invasive tumour margin and express pro-inflammatory and interferon TAM cell signatures. Depletion of TAMs, or repolarisation towards a pro-inflammatory state, are appealing therapeutic strategies and will depend on effective understanding and classification of TAM cell ontogeny and state based on new single-cell and spatial multi-omic in situ profiling. Here, we explore the application of these datasets to expand and refine TAM characterisation, to inform improved modelling approaches, and ultimately underpin the effective manipulation of function.
Collapse
Affiliation(s)
- Georgios Solomou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Adam M H Young
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Harry J C J Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
14
|
Zheng Y, Wang X, Ji Q, Fang A, Song L, Xu X, Lin Y, Peng Y, Yu J, Xie L, Chen F, Li X, Zhu S, Zhang B, Zhou L, Yu C, Wang Y, Wang L, Hu H, Zhang Z, Liu B, Wu Z, Li W. OH2 oncolytic virus: A novel approach to glioblastoma intervention through direct targeting of tumor cells and augmentation of anti-tumor immune responses. Cancer Lett 2024; 589:216834. [PMID: 38537773 DOI: 10.1016/j.canlet.2024.216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Glioblastoma (GBM), the deadliest central nervous system cancer, presents a poor prognosis and scant therapeutic options. Our research spotlights OH2, an oncolytic viral therapy derived from herpes simplex virus 2 (HSV-2), which demonstrates substantial antitumor activity and favorable tolerance in GBM. The extraordinary efficacy of OH2 emanates from its unique mechanisms: it selectively targets tumor cells replication, powerfully induces cytotoxic DNA damage stress, and kindles anti-tumor immune responses. Through single-cell RNA sequencing analysis, we discovered that OH2 not only curtails the proliferation of cancer cells and tumor-associated macrophages (TAM)-M2 but also bolsters the infiltration of macrophages, CD4+ and CD8+ T cells. Further investigation into molecular characteristics affecting OH2 sensitivity revealed potential influencers such as TTN, HMCN2 or IRS4 mutations, CDKN2A/B deletion and IDO1 amplification. This study marks the first demonstration of an HSV-2 derived OV's effectiveness against GBM. Significantly, these discoveries have driven the initiation of a phase I/II clinical trial (ClinicalTrials.gov: NCT05235074). This trial is designed to explore the potential of OH2 as a therapeutic option for patients with recurrent central nervous system tumors following surgical intervention.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaomin Wang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiang Ji
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Aizhong Fang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lairong Song
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Lin
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Peng
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianyu Yu
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Xie
- Department of Neurosurgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Chen
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sipeng Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Botao Zhang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lili Zhou
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunna Yu
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - YaLi Wang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liang Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Han Hu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ziyi Zhang
- Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China.
| | - Zhen Wu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
15
|
Tang W, Lo CWS, Ma W, Chu ATW, Tong AHY, Chung BHY. Revealing the role of SPP1 + macrophages in glioma prognosis and therapeutic targeting by investigating tumor-associated macrophage landscape in grade 2 and 3 gliomas. Cell Biosci 2024; 14:37. [PMID: 38515213 PMCID: PMC10956315 DOI: 10.1186/s13578-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Glioma is a highly heterogeneous brain tumor categorized into World Health Organization (WHO) grades 1-4 based on its malignancy. The suppressive immune microenvironment of glioma contributes significantly to unfavourable patient outcomes. However, the cellular composition and their complex interplays within the glioma environment remain poorly understood, and reliable prognostic markers remain elusive. Therefore, in-depth exploration of the tumor microenvironment (TME) and identification of predictive markers are crucial for improving the clinical management of glioma patients. RESULTS Our analysis of single-cell RNA-sequencing data from glioma samples unveiled the immunosuppressive role of tumor-associated macrophages (TAMs), mediated through intricate interactions with tumor cells and lymphocytes. We also discovered the heterogeneity within TAMs, among which a group of suppressive TAMs named TAM-SPP1 demonstrated a significant association with Epidermal Growth Factor Receptor (EGFR) amplification, impaired T cell response and unfavourable patient survival outcomes. Furthermore, by leveraging genomic and transcriptomic data from The Cancer Genome Atlas (TCGA) dataset, two distinct molecular subtypes with a different constitution of TAMs, EGFR status and clinical outcomes were identified. Exploiting the molecular differences between these two subtypes, we developed a four-gene-based prognostic model. This model displayed strong associations with an elevated level of suppressive TAMs and could be used to predict anti-tumor immune response and prognosis in glioma patients. CONCLUSION Our findings illuminated the molecular and cellular mechanisms that shape the immunosuppressive microenvironment in gliomas, providing novel insights into potential therapeutic targets. Furthermore, the developed prognostic model holds promise for predicting immunotherapy response and assisting in more precise risk stratification for glioma patients.
Collapse
Affiliation(s)
- Wenshu Tang
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Cario W S Lo
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Wei Ma
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Annie T W Chu
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Amy H Y Tong
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Brian H Y Chung
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China.
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Frederico SC, Sharma N, Darling C, Taori S, Dubinsky AC, Zhang X, Raphael I, Kohanbash G. Myeloid cells as potential targets for immunotherapy in pediatric gliomas. Front Pediatr 2024; 12:1346493. [PMID: 38523840 PMCID: PMC10960498 DOI: 10.3389/fped.2024.1346493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) including pediatric glioblastoma (pGBM) are highly aggressive pediatric central nervous system (CNS) malignancies. pGBM comprises approximately 3% of all pediatric CNS malignancies and has a 5-year survival rate of approximately 20%. Surgical resection and chemoradiation are often the standard of care for pGBM and pHGG, however, even with these interventions, survival for children diagnosed with pGBM and pHGG remains poor. Due to shortcomings associated with the standard of care, many efforts have been made to create novel immunotherapeutic approaches targeted to these malignancies. These efforts include the use of vaccines, cell-based therapies, and immune-checkpoint inhibitors. However, it is believed that in many pediatric glioma patients an immunosuppressive tumor microenvironment (TME) possess barriers that limit the efficacy of immune-based therapies. One of these barriers includes the presence of immunosuppressive myeloid cells. In this review we will discuss the various types of myeloid cells present in the glioma TME, including macrophages and microglia, myeloid-derived suppressor cells, and dendritic cells, as well as the specific mechanisms these cells can employ to enable immunosuppression. Finally, we will highlight therapeutic strategies targeted to these cells that are aimed at impeding myeloid-cell derived immunosuppression.
Collapse
Affiliation(s)
- Stephen C. Frederico
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nikhil Sharma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Corbin Darling
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Suchet Taori
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY, United States
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Ran X, Zheng J, Chen L, Xia Z, Wang Y, Sun C, Guo C, Lin P, Liu F, Wang C, Zhou J, Sun C, Liu Q, Ma J, Qin Z, Zhu X, Xie Q. Single-Cell Transcriptomics Reveals the Heterogeneity of the Immune Landscape of IDH-Wild-Type High-Grade Gliomas. Cancer Immunol Res 2024; 12:232-246. [PMID: 38091354 PMCID: PMC10835213 DOI: 10.1158/2326-6066.cir-23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/21/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
Isocitrate dehydrogenase (IDH)-wild-type (WT) high-grade gliomas, especially glioblastomas, are highly aggressive and have an immunosuppressive tumor microenvironment. Although tumor-infiltrating immune cells are known to play a critical role in glioma genesis, their heterogeneity and intercellular interactions remain poorly understood. In this study, we constructed a single-cell transcriptome landscape of immune cells from tumor tissue and matching peripheral blood mononuclear cells (PBMC) from IDH-WT high-grade glioma patients. Our analysis identified two subsets of tumor-associated macrophages (TAM) in tumors with the highest protumorigenesis signatures, highlighting their potential role in glioma progression. We also investigated the T-cell trajectory and identified the aryl hydrocarbon receptor (AHR) as a regulator of T-cell dysfunction, providing a potential target for glioma immunotherapy. We further demonstrated that knockout of AHR decreased chimeric antigen receptor (CAR) T-cell exhaustion and improved CAR T-cell antitumor efficacy both in vitro and in vivo. Finally, we explored intercellular communication mediated by ligand-receptor interactions within the tumor microenvironment and PBMCs and revealed the unique cellular interactions present in the tumor microenvironment. Taken together, our study provides a comprehensive immune landscape of IDH-WT high-grade gliomas and offers potential drug targets for glioma immunotherapy.
Collapse
Affiliation(s)
- Xiaojuan Ran
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Jian Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linchao Chen
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Xia
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Yin Wang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Chengfang Sun
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Guo
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Peng Lin
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianguo Zhou
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qichang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianzhu Ma
- Institute of AI Industrial Research, Tsinghua University, Beijing, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangdong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi Xie
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute of Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Jarmula J, Lee J, Lauko A, Rajappa P, Grabowski MM, Dhawan A, Chen P, Bucala R, Vogelbaum MA, Lathia JD. Macrophage migration inhibitory factor as a therapeutic target in neuro-oncology: A review. Neurooncol Adv 2024; 6:vdae142. [PMID: 39233830 PMCID: PMC11372298 DOI: 10.1093/noajnl/vdae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Primary central nervous system (CNS) tumors affect tens of thousands of patients each year, and there is a significant need for new treatments. Macrophage migration inhibitory factor (MIF) is a cytokine implicated in multiple tumorigenic processes such as cell proliferation, vascularization, and immune evasion and is therefore a promising therapeutic target in primary CNS tumors. There are several MIF-directed treatments available, including small-molecule inhibitors, peptide drugs, and monoclonal antibodies. However, only a small number of these drugs have been tested in preclinical models of primary CNS tumors, and even fewer have been studied in patients. Moreover, the brain has unique therapeutic requirements that further make effective targeting challenging. In this review, we summarize the latest functions of MIF in primary CNS tumor initiation and progression. We also discuss advances in MIF therapeutic development and ongoing preclinical studies and clinical trials. Finally, we discuss potential future MIF therapies and the strategies required for successful clinical translation.
Collapse
Affiliation(s)
- Jakub Jarmula
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Lauko
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Matthew M Grabowski
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Dhawan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peiwen Chen
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard Bucala
- Section of Rheumatology, Allergy, and Immunology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Justin D Lathia
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Wang W, Tugaoen JD, Fadda P, Toland AE, Ma Q, Elder JB, Giglio P, Otero JJ. Glioblastoma pseudoprogression and true progression reveal spatially variable transcriptional differences. Acta Neuropathol Commun 2023; 11:192. [PMID: 38049893 PMCID: PMC10694987 DOI: 10.1186/s40478-023-01587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/20/2023] [Indexed: 12/06/2023] Open
Abstract
Post-resection radiologic monitoring to identify areas of new or progressive enhancement concerning for cancer recurrence is critical during patients with glioblastoma follow-up. However, treatment-related pseudoprogression presents with similar imaging features but requires different clinical management. While pathologic diagnosis is the gold standard to differentiate true progression and pseudoprogression, the lack of objective clinical standards and admixed histologic presentation creates the needs to (1) validate the accuracy of current approaches and (2) characterize differences between these entities to objectively differentiate true disease. We demonstrated using an online RNAseq repository of recurrent glioblastoma samples that cancer-immune cell activity levels correlate with heterogenous clinical outcomes in patients. Furthermore, nCounter RNA expression analysis of 48 clinical samples taken from second neurosurgical resection supports that pseudoprogression gene expression pathways are dominated with immune activation, whereas progression is predominated with cell cycle activity. Automated image processing and spatial expression analysis however highlight a failure to apply these broad expressional differences in a subset of cases with clinically challenging admixed histology. Encouragingly, applying unsupervised clustering approaches over our segmented histologic images provides novel understanding of morphologically derived differences between progression and pseudoprogression. Spatially derived data further highlighted polarization of myeloid populations that may underscore the tumorgenicity of novel lesions. These findings not only help provide further clarity of potential targets for pathologists to better assist stratification of progression and pseudoprogression, but also highlight the evolution of tumor-immune microenvironment changes which promote tumor recurrence.
Collapse
Affiliation(s)
- Wesley Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA
| | - Jonah Domingo Tugaoen
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA
| | - Paolo Fadda
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Amanda Ewart Toland
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - J Brad Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pierre Giglio
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - José Javier Otero
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
20
|
Nasir I, McGuinness C, Poh AR, Ernst M, Darcy PK, Britt KL. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies. Trends Immunol 2023; 44:971-985. [PMID: 37995659 DOI: 10.1016/j.it.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Macrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice. Emerging studies utilizing single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics have improved our understanding of the ontogeny, phenotype, and functional plasticity of macrophages. Overlaying the wealth of current information regarding macrophage molecular subtypes and functions has also identified novel therapeutic vulnerabilities that might drive better control of tumor-associated macrophages (TAMs). Here, we discuss the functional profiling of macrophages and provide an update of novel macrophage-targeted therapies in development.
Collapse
Affiliation(s)
- Ibraheem Nasir
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Conor McGuinness
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia; Cancer Immunology Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
21
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Molecular landscapes of glioblastoma cell lines revealed a group of patients that do not benefit from WWOX tumor suppressor expression. Front Neurosci 2023; 17:1260409. [PMID: 37781246 PMCID: PMC10540236 DOI: 10.3389/fnins.2023.1260409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Glioblastoma (GBM) is notorious for its clinical and molecular heterogeneity, contributing to therapeutic failure and a grim prognosis. WWOX is one of the tumor suppressor genes important in nervous tissue or related pathologies, which was scarcely investigated in GBM for reliable associations with prognosis or disease progression despite known alterations. Recently, we observed a phenotypic heterogeneity between GBM cell lines (U87MG, T98G, U251MG, DBTRG-05MG), among which the anti-GBM activity of WWOX was generally corresponding, but colony growth and formation were inconsistent in DBTRG-05MG. This prompted us to investigate the molecular landscapes of these cell lines, intending to translate them into the clinical context. Methods U87MG/T98G/U251MG/DBTRG-05MG were subjected to high-throughput sequencing, and obtained data were explored via weighted gene co-expression network analysis, differential expression analysis, functional annotation, and network building. Following the identification of the most relevant DBTRG-distinguishing driver genes, data from GBM patients were employed for, e.g., differential expression analysis, survival analysis, and principal component analysis. Results Although most driver genes were unique for each cell line, some were inversely regulated in DBTRG-05MG. Alongside driver genes, the differentially-expressed genes were used to build a WWOX-related network depicting protein-protein interactions in U87MG/T98G/U251MG/DBTRG-05MG. This network revealed processes distinctly regulated in DBTRG-05MG, e.g., microglia proliferation or neurofibrillary tangle assembly. POLE4 and HSF2BP were selected as DBTRG-discriminating driver genes based on the gene significance, module membership, and fold-change. Alongside WWOX, POLE4 and HSF2BP expression was used to stratify patients into cell lines-resembling groups that differed in, e.g., prognosis and treatment response. Some differences from a WWOX-related network were certified in patients, revealing genes that clarify clinical outcomes. Presumably, WWOX overexpression in DBTRG-05MG resulted in expression profile change resembling that of patients with inferior prognosis and drug response. Among these patients, WWOX may be inaccessible for its partners and does not manifest its anti-cancer activity, which was proposed in the literature but not regarding glioblastoma or concerning POLE4 and HSF2BP. Conclusion Cell lines data enabled the identification of patients among which, despite high expression of WWOX tumor suppressor, no advantageous outcomes were noted due to the cancer-promoting profile ensured by other genes.
Collapse
Affiliation(s)
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Liu X, Cao Z, Wang W, Zou C, Wang Y, Pan L, Jia B, Zhang K, Zhang W, Li W, Hao Q, Zhang Y, Zhang W, Xue X, Lin W, Li M, Gu J. Engineered Extracellular Vesicle-Delivered CRISPR/Cas9 for Radiotherapy Sensitization of Glioblastoma. ACS NANO 2023; 17:16432-16447. [PMID: 37646615 PMCID: PMC10510715 DOI: 10.1021/acsnano.2c12857] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Radiotherapy is a mainstay of glioblastoma (GBM) treatment; however, the development of therapeutic resistance has hampered the efficacy of radiotherapy, suggesting that additional treatment strategies are needed. Here, an in vivo loss-of-function genome-wide CRISPR screen was carried out in orthotopic tumors in mice subjected to radiation treatment to identify synthetic lethal genes associated with radiotherapy. Using functional screening and transcriptome analyses, glutathione synthetase (GSS) was found to be a potential regulator of radioresistance through ferroptosis. High GSS levels were closely related to poor prognosis and relapse in patients with glioma. Mechanistic studies demonstrated that GSS was associated with the suppression of radiotherapy-induced ferroptosis in glioma cells. The depletion of GSS resulted in the disruption of glutathione (GSH) synthesis, thereby causing the inactivation of GPX4 and iron accumulation, thus enhancing the induction of ferroptosis upon radiotherapy treatment. Moreover, to overcome the obstacles to broad therapeutic translation of CRISPR editing, we report a previously unidentified genome editing delivery system, in which Cas9 protein/sgRNA complex was loaded into Angiopep-2 (Ang) and the trans-activator of the transcription (TAT) peptide dual-modified extracellular vesicle (EV), which not only targeted the blood-brain barrier (BBB) and GBM but also permeated the BBB and penetrated the tumor. Our encapsulating EVs showed encouraging signs of GBM tissue targeting, which resulted in high GSS gene editing efficiency in GBM (up to 67.2%) with negligible off-target gene editing. These results demonstrate that a combination of unbiased genetic screens, and CRISPR-Cas9-based gene therapy is feasible for identifying potential synthetic lethal genes and, by extension, therapeutic targets.
Collapse
Affiliation(s)
- Xiao Liu
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
- Department
of Neurosurgery, Xijing Hospital, Xi’an, 710000, China
| | - Zhengcong Cao
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Weizhong Wang
- Department
of Neurosurgery, Xijing Hospital, Xi’an, 710000, China
| | - Cheng Zou
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Yingwen Wang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Luxiang Pan
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Bo Jia
- Department
of Neurosurgery, Xijing Hospital, Xi’an, 710000, China
| | - Kuo Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Wangqian Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Weina Li
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Qiang Hao
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Yingqi Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Wei Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Xiaochang Xue
- The
Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry,
The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, 710000, China
| | - Wei Lin
- Department
of Neurosurgery, Xijing Hospital, Xi’an, 710000, China
| | - Meng Li
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| | - Jintao Gu
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an, 710000, China
| |
Collapse
|
23
|
Zheng H, Zhao Y, Zhou H, Tang Y, Xie Z. The Comprehensive Analysis of m6A-Associated Anoikis Genes in Low-Grade Gliomas. Brain Sci 2023; 13:1311. [PMID: 37759912 PMCID: PMC10527396 DOI: 10.3390/brainsci13091311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The relationship between N6-methyladenosine (m6A) regulators and anoikis and their effects on low-grade glioma (LGG) is not clear yet. The TCGA-LGG cohort, mRNAseq 325 dataset, and GSE16011 validation set were separately obtained via the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Altas (CGGA), and Gene Expression Omnibus (GEO) databases. In total, 27 m6A-related genes (m6A-RGs) and 508 anoikis-related genes (ANRGs) were extracted from published articles individually. First, differentially expressed genes (DEGs) between LGG and normal samples were sifted out by differential expression analysis. DEGs were respectively intersected with m6A-RGs and ANRGs to acquire differentially expressed m6A-RGs (DE-m6A-RGs) and differentially expressed ANRGs (DE-ANRGs). A correlation analysis of DE-m6A-RGs and DE-ANRGs was performed to obtain DE-m6A-ANRGs. Next, univariate Cox and least absolute shrinkage and selection operator (LASSO) were performed on DE-m6A-ANRGs to sift out risk model genes, and a risk score was gained according to them. Then, gene set enrichment analysis (GSEA) was implemented based on risk model genes. After that, we constructed an independent prognostic model and performed immune infiltration analysis and drug sensitivity analysis. Finally, an mRNA-miRNA-lncRNA regulatory network was constructed. There were 6901 DEGs between LGG and normal samples. Six DE-m6A-RGs and 214 DE-ANRGs were gained through intersecting DEGs with m6A-RGs and ANRGs, respectively. A total of 149 DE-m6A-ANRGs were derived after correlation analysis. Four genes, namely ANXA5, KIF18A, BRCA1, and HOXA10, composed the risk model, and they were involved in apoptosis, fatty acid metabolism, and glycolysis. The age and risk scores were finally sifted out to construct an independent prognostic model. Activated CD4 T cells, gamma delta T cells, and natural killer T cells had the largest positive correlations with risk model genes, while activated B cells were significantly negatively correlated with KIF18A and BRCA1. AT.9283, EXEL.2280, Gilteritinib, and Pracinostat had the largest correlation (absolute value) with a risk score. Four risk model genes (mRNAs), 12 miRNAs, and 21 lncRNAs formed an mRNA-miRNA-lncRNA network, containing HOXA10-hsa-miR-129-5p-LINC00689 and KIF18A-hsa-miR-221-3p-DANCR. Through bioinformatics, we constructed a prognostic model of m6A-associated anoikis genes in LGG, providing new ideas for research related to the prognosis and treatment of LGG.
Collapse
Affiliation(s)
| | | | | | | | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 404100, China; (H.Z.); (Y.Z.); (H.Z.); (Y.T.)
| |
Collapse
|
24
|
Zhang L, Jiang Y, Zhang G, Wei S. The diversity and dynamics of tumor-associated macrophages in recurrent glioblastoma. Front Immunol 2023; 14:1238233. [PMID: 37731483 PMCID: PMC10507272 DOI: 10.3389/fimmu.2023.1238233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Despite tremendous efforts to exploit effective therapeutic strategies, most glioblastoma (GBM) inevitably relapse and become resistant to therapies, including radiotherapy and immunotherapy. The tumor microenvironment (TME) of recurrent GBM (rGBM) is highly immunosuppressive, dominated by tumor-associated macrophages (TAMs). TAMs consist of tissue-resident microglia and monocyte-derived macrophages (MDMs), which are essential for favoring tumor growth, invasion, angiogenesis, immune suppression, and therapeutic resistance; however, restricted by the absence of potent methods, the heterogeneity and plasticity of TAMs in rGBM remain incompletely investigated. Recent application of single-cell technologies, such as single-cell RNA-sequencing has enabled us to decipher the unforeseen diversity and dynamics of TAMs and to identify new subsets of TAMs which regulate anti-tumor immunity. Here, we first review hallmarks of the TME, progress and challenges of immunotherapy, and the biology of TAMs in the context of rGBM, including their origins, categories, and functions. Next, from a single-cell perspective, we highlight recent findings regarding the distinctions between tissue-resident microglia and MDMs, the identification and characterization of specific TAM subsets, and the dynamic alterations of TAMs during tumor progression and treatment. Last, we briefly discuss the potential of TAM-targeted strategies for combination immunotherapy in rGBM. We anticipate the comprehensive understanding of the diversity and dynamics of TAMs in rGBM will shed light on further improvement of immunotherapeutic efficacy in rGBM.
Collapse
Affiliation(s)
- Lingyun Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, Hong Kong SAR, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Canella A, Nazzaro M, Rajendran S, Schmitt C, Haffey A, Nigita G, Thomas D, Lyberger JM, Behbehani GK, Amankulor NM, Mardis ER, Cripe TP, Rajappa P. Genetically modified IL2 bone-marrow-derived myeloid cells reprogram the glioma immunosuppressive tumor microenvironment. Cell Rep 2023; 42:112891. [PMID: 37516967 DOI: 10.1016/j.celrep.2023.112891] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells. A single intravenous dose of engineered bone-marrow-derived myeloid cells that release interleukin-2 (GEMys-IL2) was used to treat mice with LGGs. Our results demonstrate that GEMys-IL2 crossed the blood-brain barrier, infiltrated the TME, and reprogrammed the immune cell composition and transcriptome. Moreover, GEMys-IL2 extended survival in an LGG immunocompetent mouse model. Here, we report the efficacy of an in vivo approach that demonstrates the potential for a cell-mediated innate immunotherapy designed to enhance the recruitment of activated effector T and natural killer cells within the glioma TME.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Nazzaro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Claire Schmitt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abigail Haffey
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Diana Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Justin M Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory K Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Nduka M Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy P Cripe
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
26
|
Eisenbarth D, Wang YA. Glioblastoma heterogeneity at single cell resolution. Oncogene 2023; 42:2155-2165. [PMID: 37277603 PMCID: PMC10913075 DOI: 10.1038/s41388-023-02738-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest types of cancer and highly refractory to chemoradiation and immunotherapy. One of the main reasons for this resistance to therapy lies within the heterogeneity of the tumor and its associated microenvironment. The vast diversity of cell states, composition of cells, and phenotypical characteristics makes it difficult to accurately classify GBM into distinct subtypes and find effective therapies. The advancement of sequencing technologies in recent years has further corroborated the heterogeneity of GBM at the single cell level. Recent studies have only begun to elucidate the different cell states present in GBM and how they correlate with sensitivity to therapy. Furthermore, it has become clear that GBM heterogeneity not only depends on intrinsic factors but also strongly differs between new and recurrent GBM, and treatment naïve and experienced patients. Understanding and connecting the complex cellular network that underlies GBM heterogeneity will be indispensable in finding new ways to tackle this deadly disease. Here, we present an overview of the multiple layers of GBM heterogeneity and discuss novel findings in the age of single cell technologies.
Collapse
Affiliation(s)
- David Eisenbarth
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Y Alan Wang
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|