1
|
Pisani DF, Lettieri-Barbato D, Ivanov S. Polyamine metabolism in macrophage-adipose tissue function and homeostasis. Trends Endocrinol Metab 2024; 35:937-950. [PMID: 38897879 DOI: 10.1016/j.tem.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Intracellular metabolism is a crucial regulator of macrophage function. Recent evidence revealed that the polyamine pathway and subsequent hypusination of eukaryotic initiation factor 5A (eIF5A) are master regulators of immune cell functions. In brown adipose tissue (BAT), macrophages show an impressive degree of heterogenicity, with specific subsets supporting adaptive thermogenesis during cold exposure. In this review, we discuss the impact of polyamine metabolism on macrophage diversity and function, with a particular focus on their role in adipose tissue homeostasis. Thus, we highlight the exploration of how polyamine metabolism in macrophages contributes to BAT homeostasis as an attractive and exciting new field of research.
Collapse
Affiliation(s)
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS-Fondazione Bietti, Rome, Italy.
| | | |
Collapse
|
2
|
Chen X, Yang Y, Sun S, Liu Q, Yang Y, Jiang L. CX3C chemokine: Hallmarks of fibrosis and ageing. Pharmacol Res 2024; 208:107348. [PMID: 39134186 DOI: 10.1016/j.phrs.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/18/2024]
Abstract
Fibrosis refers to the progressive tissue lesion process characterized by excessive secretion and deposition of extracellular matrix (ECM). Abnormal fibrous tissue deposition distorts tissue architecture and leads to the progressive loss of organ function. Notably, fibrosis is one of the primary pathological appearances of many end stage illnesses, and is considered as a lethal threat to human health, especially in the elderly with ageing-related diseases. CX3C ligand 1 (CX3CL1) is the only member of chemokine CX3C and binds specifically to CX3C receptor 1 (CX3CR1). Different from other chemokines, CX3CL1 possesses both chemotactic and adhesive activity. CX3CL1/CX3CR1 axis involves in various physiological and pathological processes, and exerts a critical role in cells from the immune system, vascular system, and nervous system etc. Notably, increasing evidence has demonstrated that CX3CL1/CX3CR1 signaling pathway is closely related to the pathological process of fibrosis in multiple tissue and organs. We reviewed the crucial role of CX3CL1/CX3CR1 axis in fibrosis and ageing and systematically summarized the underlying mechanism, which offers prospective strategies of targeting CX3C for the therapy of fibrosis and ageing-related diseases.
Collapse
Affiliation(s)
- Xuanning Chen
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai 200011, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
3
|
Zhang Y, Jiang Y, Yang X, Huang Y, Pan A, Liao Y. Adipose tissue senescence: Biological changes, hallmarks and therapeutic approaches. Mech Ageing Dev 2024; 222:111988. [PMID: 39265709 DOI: 10.1016/j.mad.2024.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Adipose tissue (AT), the largest energy storage reservoir and endocrine organ, plays a crucial role in regulating systemic energy metabolism. As one of the most vulnerable tissues during aging, the plasticity of AT is impaired. With age, AT undergoes redistribution, characterized by expansion of visceral adipose tissue (VAT) and reduction of peripheral subcutaneous adipose tissue (SAT). Additionally, age-related changes in AT include reduced adipogenesis of white adipocytes, decreased proliferation and differentiation capacity of mesenchymal stromal/stem cells (MSCs), diminished thermogenic capacity in brown/beige adipocytes, and dysregulation of immune cells. Specific and sensitive hallmarks enable the monitoring and evaluation of the biological changes associated with aging. In this study, we have innovatively proposed seven characteristic hallmarks of AT senescence, including telomere attrition, epigenetic alterations, genomic instability, mitochondrial dysfunction, disabled macroautophagy, cellular senescence, and chronic inflammation, which are intricately interconnected and mutually regulated. Finally, we discussed anti-aging strategies targeting AT, offering insights into mitigating or delaying metabolic disturbances caused by AT senescence.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yaoyao Jiang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiaoyue Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yumei Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China.
| |
Collapse
|
4
|
Cao X, Gao T, Lv F, Wang Y, Li B, Wang X. ROS-triggered and macrophage-targeted micelles modulate mitochondria function and polarization in obesity. NANOTECHNOLOGY 2024; 35:475707. [PMID: 39240071 DOI: 10.1088/1361-6528/ad7034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024]
Abstract
Inflammation involving adipose macrophages is an important inducer of obesity. Regulating macrophages polarization and improving the inflammatory microenvironment of adipose tissue is a new strategy for the treatment of obesity. An amphiphilic chondroitin sulfate phenylborate derivative (CS-PBE) was obtained by modifying the main chain of chondroitin sulfate with the hydrophobic small molecule phenylborate. Using CS-PBE self-assembly, macrophage targeting, reactive oxygen species (ROS) release and celastrol (CLT) encapsulation were achieved. The cytotoxicity, cellular uptake, internalization pathways and transmembrane transport efficiency of CS-PBE micelles were studied in Caco-2 and RAW264.7 cells. Hemolysis and organotoxicity tests were performed to assess the safety of the platform, while its therapeutic efficacy was investigated in high-fat diet-induced obese mice. Multifunctional micelles with macrophage targeting and ROS clearance capabilities were developed to improve the efficacy of CLT in treating obesity.In vitrostudies indicated that CS-PBE micelles had better ability to target M1 macrophages, better protective effects on mitochondrial function, better ability to reduce the number of LPS-stimulated M1 macrophages, better ability to reduce the number of M2 macrophages, and better ability to scavenge ROS in inflammatory macrophages.In vivostudies have shown that CS-PBE micelles improve inflammation and significantly reduce toxicity of CLT in the treatment of obesity. In summary, CS-PBE micelles could significantly improve the ability to target inflammatory macrophages and scavenge ROS in adipose tissue to alleviate inflammation, suggesting that CS-PBE micelles are a highly promising approach for the treatment of obesity.
Collapse
Affiliation(s)
- Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Tingting Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Fengwen Lv
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Yongchun Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Bo Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Xiaohua Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, People's Republic of China
| |
Collapse
|
5
|
Apaza CJ, Cerezo JF, García-Tejedor A, Giménez-Bastida JA, Laparra-Llopis JM. Revisiting the Immunometabolic Basis for the Metabolic Syndrome from an Immunonutritional View. Biomedicines 2024; 12:1825. [PMID: 39200288 PMCID: PMC11352112 DOI: 10.3390/biomedicines12081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic syndrome (MetS) implies different conditions where insulin resistance constitutes a major hallmark of the disease. The disease incurs a high risk for the development of cardiovascular complications, and takes its toll in regard to the gut-liver axis (pancreas, primary liver and colorectal)-associated immunity. The modulation of immunometabolic responses by immunonutritional factors (IFs) has emerged as a key determinant of the gut-liver axis' metabolic and immune health. IFs from plant seeds have shown in vitro and pre-clinical effectiveness primarily in dealing with various immunometabolic and inflammatory diseases. Only recently have immunonutritional studies established the engagement of innate intestinal immunity to effectively control immune alterations in inflamed livers preceding the major features of the MetS. However, integrative analyses and the demonstration of causality between IFs and specific gut-liver axis-associated immunometabolic imbalances for the MetS remain ill-defined in the field. Herein, a better understanding of the IFs with a significant role in the MetS, as well as within the dynamic interplay in the functional differentiation of innate immune key effectors (i.e., monocytes/macrophages), worsening or improving the disease, could be of crucial relevance. The development of an adequate intermediary phenotype of these cells can significantly contribute to maintaining the function of Tregs and innate lymphoid cells for the prevention and treatment of MetS and associated comorbidities.
Collapse
Affiliation(s)
- César Jeri Apaza
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Carretera Cantoblanco 8, 28049 Madrid, Spain
- Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, 46002 Valencia, Spain
| | - Juan Francisco Cerezo
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Carretera Cantoblanco 8, 28049 Madrid, Spain
| | - Aurora García-Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, 46002 Valencia, Spain
| | - Juan Antonio Giménez-Bastida
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Campus de Espinardo, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain;
| | - José Moisés Laparra-Llopis
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Carretera Cantoblanco 8, 28049 Madrid, Spain
- Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, 46002 Valencia, Spain
| |
Collapse
|
6
|
Chen Y, Liu L, Calhoun R, Cheng L, Merrick D, Steger DJ, Seale P. Transcriptional regulation of adipocyte lipolysis by IRF2BP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605689. [PMID: 39211193 PMCID: PMC11360913 DOI: 10.1101/2024.07.31.605689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by post-translational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis. Here, we identify the transcriptional factor interferon regulatory factor-2 binding protein 2 (IRF2BP2) as a repressor of adipocyte lipolysis. Deletion of IRF2BP2 in primary human adipocytes increases lipolysis without affecting glucose uptake, whereas IRF2BP2 overexpression decreases lipolysis. RNA-seq and ChIP-seq analyses reveal that IRF2BP2 directly represses several lipolysis-related genes, including LIPE ( HSL , hormone sensitive lipase), which encodes the rate-limiting enzyme in lipolysis. Adipocyte-selective deletion of Irf2bp2 in mice increases Lipe expression and free fatty acid levels, resulting in elevated adipose tissue inflammation and glucose intolerance. Altogether, these findings demonstrate that IRF2BP2 restrains adipocyte lipolysis and opens new avenues to target lipolysis for the treatment of metabolic disease.
Collapse
|
7
|
Arsenault BJ, Carpentier AC, Poirier P, Després JP. Adiposity, type 2 diabetes and atherosclerotic cardiovascular disease risk: Use and abuse of the body mass index. Atherosclerosis 2024; 394:117546. [PMID: 38692978 DOI: 10.1016/j.atherosclerosis.2024.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
The worldwide prevalence of individuals with an elevated body weight has increased steadily over the past five decades. Billions of research dollars have been invested to improve our understanding of the causes and consequences of having an elevated body weight. All this knowledge has, however, failed to influence populational body weight trajectories of most countries around the world. Research on the definition of "obesity" has also evolved. Body mass index (BMI), the most commonly used tool to make its diagnosis, has major limitations. In this review article, we will highlight evidence from observational studies, genetic association studies and randomized clinical trials that have shown the remarkable inter-individual differences in the way humans store energy as body fat. Increasing evidence also suggests that, as opposed to weight inclusive, lifestyle-based approaches, weight-centric approaches advising people to simply eat less and move more are not sustainable for most people for long-term weight loss and maintenance. It is time to recognize that this outdated approach may have produced more harm than good. On the basis of pathophysiological, genetic and clinical evidence presented in this review, we propose that it may be time to shift away from the traditional clinical approach, which is BMI-centric. Rather, emphasis should be placed on actionable lifestyle-related risk factors aiming at improving overall diet quality and increasing physical activity level in the general population.
Collapse
Affiliation(s)
- Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec (QC), Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec (QC), Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke (QC), Canada
| | - Paul Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec (QC), Canada; Faculté de pharmacie, Université Laval, Québec (QC), Canada
| | - Jean-Pierre Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec (QC), Canada; VITAM - Centre de recherche en santé durable, CIUSSS de la Capitale-Nationale, Québec (QC), Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec (QC), Canada.
| |
Collapse
|
8
|
Wang Q, Hartig SM, Ballantyne CM, Wu H. The multifaceted life of macrophages in white adipose tissue: Immune shift couples with metabolic switch. Immunol Rev 2024; 324:11-24. [PMID: 38683173 PMCID: PMC11262992 DOI: 10.1111/imr.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
White adipose tissue (WAT) is a vital endocrine organ that regulates energy balance and metabolic homeostasis. In addition to fat cells, WAT harbors macrophages with distinct phenotypes that play crucial roles in immunity and metabolism. Nutrient demands cause macrophages to accumulate in WAT niches, where they remodel the microenvironment and produce beneficial or detrimental effects on systemic metabolism. Given the abundance of macrophages in WAT, this review summarizes the heterogeneity of WAT macrophages in physiological and pathological conditions, including their alterations in quantity, phenotypes, characteristics, and functions during WAT growth and development, as well as healthy or unhealthy expansion. We will discuss the interactions of macrophages with other cell partners in WAT including adipose stem cells, adipocytes, and T cells in the context of various microenvironment niches in lean or obese condition. Finally, we highlight how adipose tissue macrophages merge immunity and metabolic changes to govern energy balance for the organism.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Sean M. Hartig
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA 77030
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA 77030
| |
Collapse
|
9
|
Choi C, Jeong YL, Park KM, Kim M, Kim S, Jo H, Lee S, Kim H, Choi G, Choi YH, Seong JK, Namgoong S, Chung Y, Jung YS, Granneman JG, Hyun YM, Kim JK, Lee YH. TM4SF19-mediated control of lysosomal activity in macrophages contributes to obesity-induced inflammation and metabolic dysfunction. Nat Commun 2024; 15:2779. [PMID: 38555350 PMCID: PMC10981689 DOI: 10.1038/s41467-024-47108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yujin L Jeong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Koung-Min Park
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minji Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangseob Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honghyun Jo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeseong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Garam Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), and Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sik Namgoong
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea.
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Wu Y, Teh YC, Chong SZ. Going Full TeRM: The Seminal Role of Tissue-Resident Macrophages in Organ Remodeling during Pregnancy and Lactation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:513-521. [PMID: 38315948 DOI: 10.4049/jimmunol.2300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 02/07/2024]
Abstract
During pregnancy and lactation, the uterus and mammary glands undergo remarkable structural changes to perform their critical reproductive functions before reverting to their original dormant state upon childbirth and weaning, respectively. Underlying this incredible plasticity are complex remodeling processes that rely on coordinated decisions at both the cellular and tissue-subunit levels. With their exceptional versatility, tissue-resident macrophages play a variety of supporting roles in these organs during each stage of development, ranging from maintaining immune homeostasis to facilitating tissue remodeling, although much remains to be discovered about the identity and regulation of individual macrophage subsets. In this study, we review the increasingly appreciated contributions of these immune cells to the reproductive process and speculate on future lines of inquiry. Deepening our understanding of their interactions with the parenchymal or stromal populations in their respective niches may reveal new strategies to ameliorate complications in pregnancy and breastfeeding, thereby improving maternal health and well-being.
Collapse
Affiliation(s)
- Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
11
|
Jacks RD, Lumeng CN. Macrophage and T cell networks in adipose tissue. Nat Rev Endocrinol 2024; 20:50-61. [PMID: 37872302 DOI: 10.1038/s41574-023-00908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
The signals and structure of the tissues in which leukocytes reside critically mould leukocyte function and development and have challenged our fundamental understanding of how to define and categorize tissue-resident immune cells. One specialized tissue niche that has a powerful effect on immune cell function is adipose tissue. The field of adipose tissue leukocyte biology has expanded dramatically and has revealed how tissue niches can shape immune cell function and reshape them in a setting of metabolic stress, such as obesity. Most notably, adipose tissue macrophages and T cells are under intense investigation due to their contributions to adipose tissue in the lean and obese states. Both adipose tissue macrophages and T cells have features associated with the metabolic function of adipose tissue that are distinct from features of macrophages and T cells that are classically characterized in other tissues. This Review provides state-of-the-art understanding of adipose tissue macrophages and T cells and discusses how their unique niche can help us to better understand diversity in leukocyte responses.
Collapse
Affiliation(s)
- Ramiah D Jacks
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Zhou Z, Zhang H, Tao Y, Zang J, Zhao J, Li H, Wang Y, Wang T, Zhao H, Wang F, Guo C, Zhu F, Mao H, Liu F, Zhang L, Wang Q. FGF21 alleviates adipose stem cell senescence via CD90 glycosylation-dependent glucose influx in remodeling healthy white adipose tissue. Redox Biol 2023; 67:102877. [PMID: 37690164 PMCID: PMC10497791 DOI: 10.1016/j.redox.2023.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
The senescence of adipose stem cells (ASCs) impairs healthy adipose tissue remodeling, causing metabolic maladaptation to energy surplus. The intrinsic molecular pathways and potential therapy targets for ASC senescence are largely unclear. Here, we showed that visceral ASCs were prone to senescence that was caused by reactive oxygen species (ROS) overload, especially mitochondrial ROS. These senescent ASCs failed to sustain efficient glucose influx, pentose phosphate pathway (PPP) and redox homeostasis. We showed that CD90 silence restricted the glucose uptake by ASCs and thus disrupted their PPP and anti-oxidant system, resulting in ASC senescence. Notably, fibroblast growth factor 21 (FGF21) treatment significantly reduced the senescent phenotypes of ASCs by augmenting CD90 protein via glycosylation, which promoted glucose influx via the AKT-GLUT4 axis and therefore mitigated ROS overload. For diet-induced obese mice, chronic administration of low-dose FGF21 relieved their visceral white adipose tissue (VAT) dysfunction and systemic metabolic disorders. In particular, VAT homeostasis was restored in FGF21-treated obese mice, where ASC repertoire was markedly recovered, accompanied by CD90 elevation and anti-senescent phenotypes in these ASCs. Collectively, we reveal a molecular mechanism of ASC senescence by which CD90 downregulation interferes glucose influx into PPP and redox homeostasis. And we propose a FGF21-based strategy for healthy VAT remodeling, which targets CD90 glycosylation to correct ASC senescence and therefore combat obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huiying Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yan Tao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jinhao Zang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jingyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huijie Li
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yalin Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Tianci Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Fuwu Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Fengming Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
13
|
Abstract
Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.
Collapse
Affiliation(s)
- Jessica Cannavino
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Rana K Gupta
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| |
Collapse
|
14
|
Kuziel G, Moore BN, Arendt LM. Obesity and Fibrosis: Setting the Stage for Breast Cancer. Cancers (Basel) 2023; 15:cancers15112929. [PMID: 37296891 DOI: 10.3390/cancers15112929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a rising health concern and is linked to a worsened breast cancer prognosis. Tumor desmoplasia, which is characterized by elevated numbers of cancer-associated fibroblasts and the deposition of fibrillar collagens within the stroma, may contribute to the aggressive clinical behavior of breast cancer in obesity. A major component of the breast is adipose tissue, and fibrotic changes in adipose tissue due to obesity may contribute to breast cancer development and the biology of the resulting tumors. Adipose tissue fibrosis is a consequence of obesity that has multiple sources. Adipocytes and adipose-derived stromal cells secrete extracellular matrix composed of collagen family members and matricellular proteins that are altered by obesity. Adipose tissue also becomes a site of chronic, macrophage-driven inflammation. Macrophages exist as a diverse population within obese adipose tissue and mediate the development of fibrosis through the secretion of growth factors and matricellular proteins and interactions with other stromal cells. While weight loss is recommended to resolve obesity, the long-term effects of weight loss on adipose tissue fibrosis and inflammation within breast tissue are less clear. Increased fibrosis within breast tissue may increase the risk for tumor development as well as promote characteristics associated with tumor aggressiveness.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Lisa M Arendt
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|