1
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Ban XX, Wan H, Wan XX, Tan YT, Hu XM, Ban HX, Chen XY, Huang K, Zhang Q, Xiong K. Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Curr Med Sci 2024; 44:28-50. [PMID: 38336987 DOI: 10.1007/s11596-024-2832-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024]
Abstract
Copper is an essential trace element, and plays a vital role in numerous physiological processes within the human body. During normal metabolism, the human body maintains copper homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological disorders are linked to copper homeostasis. This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
Collapse
Affiliation(s)
- Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Ya-Ting Tan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Hong-Xia Ban
- Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 430013, China.
| |
Collapse
|
3
|
Zhang B, Burke R. Copper homeostasis and the ubiquitin proteasome system. Metallomics 2023; 15:7055959. [PMID: 36822629 PMCID: PMC10022722 DOI: 10.1093/mtomcs/mfad010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Copper is involved in many physiological pathways and important biological processes as a cofactor of several copper-dependent enzymes. Given the requirement for copper and its potential toxicity, intracellular copper levels are tightly controlled. Disturbances of human copper homeostasis are characterized by disorders of copper overload (Wilson's disease) or copper deficiency (Menkes disease). The maintenance of cellular copper levels involves numerous copper transporters and copper chaperones. Recently, accumulating evidence has revealed that components of the ubiquitin proteasome system (UPS) participate in the posttranslational regulation of these proteins, suggesting that they might play a role in maintaining copper homeostasis. Cellular copper levels could also affect the activity of the UPS, indicating that copper homeostasis and the UPS are interdependent. Copper homeostasis and the UPS are essential to the integrity of normal brain function and while separate links between neurodegenerative diseases and UPS inhibition/copper dyshomeostasis have been extensively reported, there is growing evidence that these two networks might contribute synergistically to the occurrence of neurodegenerative diseases. Here, we review the role of copper and the UPS in the development of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, and discuss the genetic interactions between copper transporters/chaperones and components of the UPS.
Collapse
Affiliation(s)
- Bichao Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Richard Burke
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
4
|
Burke R. Molecular physiology of copper in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100892. [PMID: 35247643 DOI: 10.1016/j.cois.2022.100892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In this review, I look at advances made in our understanding of the molecular physiology of copper homeostasis in the vinegar fly Drosophila melanogaster over the past five years, focussing in particular on the most recent 24 months. Firstly, I review publications investigating the physiological and genetic basis of dietary copper toxicity and tolerance, with particular attention paid to the identification of novel transcriptional and post translational regulators of copper homeostasis. Then I hone in on the growing body of evidence linking copper dysregulation with aberrant neuronal development and function.
Collapse
Affiliation(s)
- Richard Burke
- Monash University, School of Biological Sciences, Australia.
| |
Collapse
|
5
|
Yang J, Chen W, Chen X, Zhang X, Zhou H, Du H, Wang M, Ma Y, Jin X. Detection of Cu 2+ and S 2- with fluorescent polymer nanoparticles and bioimaging in HeLa cells. Anal Bioanal Chem 2021; 413:3945-3953. [PMID: 33954830 DOI: 10.1007/s00216-021-03345-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Novel spherical polymer nanoparticles were synthesized by hyperbranched polyethylenimine (hPEI) and 6-hydroxy-2-naphthaldehyde (HNA) via Schiff base reaction (one-pot reaction), which had great advantages in water solubility and green synthesis. Meanwhile, probe PEI-HNA could quickly detect Cu2+ in the range of 0-60 μM in 30 s with the detection limit of 243 nM. The fluorescence of PEI-HNA-Cu2+ could be recovered by the addition of S2- in 50 s with the detection limit of 227 nM. Based on the excellent optical properties, PEI-HNA has been used in the bioimaging of living cells with excellent cell penetrability and low toxicity. More importantly, PEI-HNA has been doped into filter paper, hydrogel, and nanofibrous film to prepare solid-phase sensors, displaying rapid response and excellent sensitivity. Moreover, the low-cost and simple preparation of these sensors offers great potential and possibilities for industrialization, which could help accelerate the development of sensors in environmental and biological fields.
Collapse
Affiliation(s)
- Jin Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Weixing Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| | - Xinyu Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xi Zhang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Haotian Du
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Mingcheng Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Yiting Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
6
|
Aly KA, Moutaoufik MT, Phanse S, Zhang Q, Babu M. From fuzziness to precision medicine: on the rapidly evolving proteomics with implications in mitochondrial connectivity to rare human disease. iScience 2021; 24:102030. [PMID: 33521598 PMCID: PMC7820543 DOI: 10.1016/j.isci.2020.102030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial (mt) dysfunction is linked to rare diseases (RDs) such as respiratory chain complex (RCC) deficiency, MELAS, and ARSACS. Yet, how altered mt protein networks contribute to these ailments remains understudied. In this perspective article, we identified 21 mt proteins from public repositories that associate with RCC deficiency, MELAS, or ARSACS, engaging in a relatively small number of protein-protein interactions (PPIs), underscoring the need for advanced proteomic and interactomic platforms to uncover the complete scope of mt connectivity to RDs. Accordingly, we discuss innovative untargeted label-free proteomics in identifying RD-specific mt or other macromolecular assemblies and mapping of protein networks in complex tissue, organoid, and stem cell-differentiated neurons. Furthermore, tag- and label-based proteomics, genealogical proteomics, and combinatorial affinity purification-mass spectrometry, along with advancements in detecting and integrating transient PPIs with single-cell proteomics and transcriptomics, collectively offer seminal follow-ups to enrich for RD-relevant networks, with implications in RD precision medicine.
Collapse
Affiliation(s)
- Khaled A. Aly
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
7
|
Hartwig C, Méndez GM, Bhattacharjee S, Vrailas-Mortimer AD, Zlatic SA, Freeman AAH, Gokhale A, Concilli M, Werner E, Sapp Savas C, Rudin-Rush S, Palmer L, Shearing N, Margewich L, McArthy J, Taylor S, Roberts B, Lupashin V, Polishchuk RS, Cox DN, Jorquera RA, Faundez V. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. J Neurosci 2021; 41:215-233. [PMID: 33208468 PMCID: PMC7810662 DOI: 10.1523/jneurosci.1284-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Shatabdi Bhattacharjee
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | | | | | - Amanda A H Freeman
- The Center for the Study of Human Health, Emory University, Atlanta, Georgia 30322
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Erica Werner
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | | | - Laura Palmer
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Nicole Shearing
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Lindsey Margewich
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Jacob McArthy
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Savanah Taylor
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Blaine Roberts
- Departments of Biochemistry, Emory University, Atlanta, Georgia 30322
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Daniel N Cox
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Ramon A Jorquera
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico 00956
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
8
|
Lippert AR, Dickinson BC, New EJ. Imaging Mitochondrial Hydrogen Peroxide in Living Cells. Methods Mol Biol 2021; 2275:127-140. [PMID: 34118035 DOI: 10.1007/978-1-0716-1262-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen peroxide (H2O2) produced from mitochondria is intimately involved in human health and disease, but is challenging to selectively monitor inside living systems. The fluorescent probe MitoPY1 provides a practical tool for imaging mitochondrial H2O2 and has been demonstrated to function in a variety of diverse cell types. In this chapter, we describe the synthetic preparation of the small molecule probe MitoPY1 , methods for validating this probe in vitro and in live cells, and an example procedure for measuring mitochondrial H2O2 in a cell culture model of Parkinson's disease.
Collapse
Affiliation(s)
- Alexander R Lippert
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Lee CE, Singleton KS, Wallin M, Faundez V. Rare Genetic Diseases: Nature's Experiments on Human Development. iScience 2020; 23:101123. [PMID: 32422592 PMCID: PMC7229282 DOI: 10.1016/j.isci.2020.101123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 01/25/2023] Open
Abstract
Rare genetic diseases are the result of a continuous forward genetic screen that nature is conducting on humans. Here, we present epistemological and systems biology arguments highlighting the importance of studying these rare genetic diseases. We contend that the expanding catalog of mutations in ∼4,000 genes, which cause ∼6,500 diseases and their annotated phenotypes, offer a wide landscape for discovering fundamental mechanisms required for human development and involved in common diseases. Rare afflictions disproportionately affect the nervous system in children, but paradoxically, the majority of these disease-causing genes are evolutionarily ancient and ubiquitously expressed in human tissues. We propose that the biased prevalence of childhood rare diseases affecting nervous tissue results from the topological complexity of the protein interaction networks formed by ubiquitous and ancient proteins encoded by childhood disease genes. Finally, we illustrate these principles discussing Menkes disease, an example of the discovery power afforded by rare diseases.
Collapse
Affiliation(s)
- Chelsea E Lee
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Kaela S Singleton
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Melissa Wallin
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
The Endolysosomal System and Proteostasis: From Development to Degeneration. J Neurosci 2019; 38:9364-9374. [PMID: 30381428 DOI: 10.1523/jneurosci.1665-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
How do neurons adapt their endolysosomal system to address the particular challenge of membrane transport across their elaborate cellular landscape and to maintain proteostasis for the lifetime of the organism? Here we review recent findings that address this central question. We discuss the cellular and molecular mechanisms of endolysosomal trafficking and the autophagy pathway in neurons, as well as their role in neuronal development and degeneration. These studies highlight the importance of understanding the basic cell biology of endolysosomal trafficking and autophagy and their roles in the maintenance of proteostasis within the context of neurons, which will be critical for developing effective therapies for various neurodevelopmental and neurodegenerative disorders.
Collapse
|
11
|
Faundez V, Wynne M, Crocker A, Tarquinio D. Molecular Systems Biology of Neurodevelopmental Disorders, Rett Syndrome as an Archetype. Front Integr Neurosci 2019; 13:30. [PMID: 31379529 PMCID: PMC6650571 DOI: 10.3389/fnint.2019.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders represent a challenging biological and medical problem due to their genetic and phenotypic complexity. In many cases, we lack the comprehensive understanding of disease mechanisms necessary for targeted therapeutic development. One key component that could improve both mechanistic understanding and clinical trial design is reliable molecular biomarkers. Presently, no objective biological markers exist to evaluate most neurodevelopmental disorders. Here, we discuss how systems biology and "omic" approaches can address the mechanistic and biomarker limitations in these afflictions. We present heuristic principles for testing the potential of systems biology to identify mechanisms and biomarkers of disease in the example of Rett syndrome, a neurodevelopmental disorder caused by a well-defined monogenic defect in methyl-CpG-binding protein 2 (MECP2). We propose that such an approach can not only aid in monitoring clinical disease severity but also provide a measure of target engagement in clinical trials. By deepening our understanding of the "big picture" of systems biology, this approach could even help generate hypotheses for drug development programs, hopefully resulting in new treatments for these devastating conditions.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Meghan Wynne
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT, United States
| | - Daniel Tarquinio
- Rare Neurological Diseases (Private Research Institution), Atlanta, GA, United States
| |
Collapse
|
12
|
Gokhale A, Hartwig C, Freeman AAH, Bassell JL, Zlatic SA, Sapp Savas C, Vadlamudi T, Abudulai F, Pham TT, Crocker A, Werner E, Wen Z, Repetto GM, Gogos JA, Claypool SM, Forsyth JK, Bearden CE, Glausier J, Lewis DA, Seyfried NT, Kwong JQ, Faundez V. Systems Analysis of the 22q11.2 Microdeletion Syndrome Converges on a Mitochondrial Interactome Necessary for Synapse Function and Behavior. J Neurosci 2019; 39:3561-3581. [PMID: 30833507 PMCID: PMC6495129 DOI: 10.1523/jneurosci.1983-18.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 11/21/2022] Open
Abstract
Neurodevelopmental disorders offer insight into synaptic mechanisms. To unbiasedly uncover these mechanisms, we studied the 22q11.2 syndrome, a recurrent copy number variant, which is the highest schizophrenia genetic risk factor. We quantified the proteomes of 22q11.2 mutant human fibroblasts from both sexes and mouse brains carrying a 22q11.2-like defect, Df(16)A+/- Molecular ontologies defined mitochondrial compartments and pathways as some of top ranked categories. In particular, we identified perturbations in the SLC25A1-SLC25A4 mitochondrial transporter interactome as associated with the 22q11.2 genetic defect. Expression of SLC25A1-SLC25A4 interactome components was affected in neuronal cells from schizophrenia patients. Furthermore, hemideficiency of the Drosophila SLC25A1 or SLC25A4 orthologues, dSLC25A1-sea and dSLC25A4-sesB, affected synapse morphology, neurotransmission, plasticity, and sleep patterns. Our findings indicate that synapses are sensitive to partial loss of function of mitochondrial solute transporters. We propose that mitoproteomes regulate synapse development and function in normal and pathological conditions in a cell-specific manner.SIGNIFICANCE STATEMENT We address the central question of how to comprehensively define molecular mechanisms of the most prevalent and penetrant microdeletion associated with neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. This complex mutation reduces gene dosage of ∼63 genes in humans. We describe a disruption of the mitoproteome in 22q11.2 patients and brains of a 22q11.2 mouse model. In particular, we identify a network of inner mitochondrial membrane transporters as a hub required for synapse function. Our findings suggest that mitochondrial composition and function modulate the risk of neurodevelopmental disorders, such as schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Trishna Vadlamudi
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030
| | - Farida Abudulai
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030
| | | | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Middlebury, Vermont 05753
| | | | | | - Gabriela M Repetto
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Joseph A Gogos
- Departments of Neuroscience and Physiology, Columbia University, New York, New York 10032
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jennifer K Forsyth
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, California, 90095, and
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, California, 90095, and
| | - Jill Glausier
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | | | | | | |
Collapse
|
13
|
Trafficking mechanisms of P-type ATPase copper transporters. Curr Opin Cell Biol 2019; 59:24-33. [PMID: 30928671 DOI: 10.1016/j.ceb.2019.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Copper is an essential micronutrient required for oxygen-dependent enzymes, yet excess of the metal is a toxicant. The tug-of-war between these copper activities is balanced by chaperones and membrane transporters, which control copper distribution and availability. The P-type ATPase transporters, ATP7A and ATP7B, regulate cytoplasmic copper by pumping copper out of cells or into the endomembrane system. Mutations in ATP7A and ATP7B cause diseases that share neuropsychiatric phenotypes, which are similar to phenotypes observed in mutations affecting cytoplasmic trafficking complexes required for ATP7A/B dynamics. Here, we discuss evidence indicating that phenotypes associated to genetic defects in trafficking complexes, such as retromer and the adaptor complex AP-1, result in part from copper dyshomeostasis due to mislocalized ATP7A and ATP7B.
Collapse
|
14
|
Switching on Endogenous Metal Binding Proteins in Parkinson's Disease. Cells 2019; 8:cells8020179. [PMID: 30791479 PMCID: PMC6406413 DOI: 10.3390/cells8020179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 12/28/2022] Open
Abstract
The formation of cytotoxic intracellular protein aggregates is a pathological signature of multiple neurodegenerative diseases. The principle aggregating protein in Parkinson’s disease (PD) and atypical Parkinson’s diseases is α-synuclein (α-syn), which occurs in neural cytoplasmic inclusions. Several factors have been found to trigger α-syn aggregation, including raised calcium, iron, and copper. Transcriptional inducers have been explored to upregulate expression of endogenous metal-binding proteins as a potential neuroprotective strategy. The vitamin-D analogue, calcipotriol, induced increased expression of the neuronal vitamin D-dependent calcium-binding protein, calbindin-D28k, and this significantly decreased the occurrence of α-syn aggregates in cells with transiently raised intracellular free Ca, thereby increasing viability. More recently, the induction of endogenous expression of the Zn and Cu binding protein, metallothionein, by the glucocorticoid analogue, dexamethasone, gave a specific reduction in Cu-dependent α-syn aggregates. Fe accumulation has long been associated with PD. Intracellularly, Fe is regulated by interactions between the Fe storage protein ferritin and Fe transporters, such as poly(C)-binding protein 1. Analysis of the transcriptional regulation of Fe binding proteins may reveal potential inducers that could modulate Fe homoeostasis in disease. The current review highlights recent studies that suggest that transcriptional inducers may have potential as novel mechanism-based drugs against metal overload in PD.
Collapse
|
15
|
Faundez V, De Toma I, Bardoni B, Bartesaghi R, Nizetic D, de la Torre R, Cohen Kadosh R, Herault Y, Dierssen M, Potier MC. Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. Eur Neuropsychopharmacol 2018; 28:675-690. [PMID: 29887288 DOI: 10.1016/j.euroneuro.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Ongoing treatments for genetic developmental disorders of the central nervous system are mostly symptomatic and do not correct the genetic cause. Recent identification of common mechanisms between diseases has suggested that new therapeutic targets could be applied across intellectual disabilities with potential disease-modifying properties. The European Down syndrome and other genetic developmental disorders (DSG2D) network joined basic and clinical scientists to foster this research and carry out clinical trials. Here we discuss common mechanisms between several intellectual disabilities from genetic origin including Down's and Fragile X syndromes: i) how to model these complex diseases using neuronal cells and brain organoids derived from induced pluripotent stem cells; ii) how to integrate genomic, proteomic and interactome data to help defining common mechanisms and boundaries between diseases; iii) how to target common pathways for designing clinical trials and assessing their efficacy; iv) how to bring new neuro-therapies, such as noninvasive brain stimulations and cognitive training to clinical research. The basic and translational research efforts of the last years have utterly transformed our understanding of the molecular pathology of these diseases but much is left to be done to bring them to newborn babies and children to improve their quality of life.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - Ilario De Toma
- Cellular and Systems Neurobiology, Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red CIBERER, Spain
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| | - Renata Bartesaghi
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Barts and The London School of Medicine, Queen Mary University of London, United Kingdom
| | - Rafael de la Torre
- Integrated Pharmacology and Neurosciences Systems Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; CIBEROBN, Madrid, Spain
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red CIBERER, Spain.
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France.
| |
Collapse
|