1
|
Dutta A, Karamikamkar S, Nofar M, Behzadfar E. Nanoporous air filtering systems made from renewable sources: benefits and challenges. NANOSCALE 2024; 16:15059-15077. [PMID: 39072362 DOI: 10.1039/d4nr01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There is a crucial need for air purification systems due to increasing air contamination, while conventional air-filtering materials face challenges in eliminating gaseous and particulate pollutants. This review examines the development and characteristics of nanoporous polymeric materials developed from renewable resources, which have rapidly advanced in recent years. These materials offer more sustainable alternatives for nanoporous structures made out of conventional polymers and significantly impact the properties of porous polymers. The review explores nanoporous materials' production from renewable sources, filtering mechanisms, physicochemical makeup, and sensing capabilities. The recent advancements in this field aim to enhance production techniques, lower pressure drop, and improve adsorption efficiency. Currently, supporting approaches include using adsorbent layers and binders to immobilize nanoporous materials. Furthermore, the prospects and challenges of nanoporous materials obtained from renewable sources used for air purification are discussed.
Collapse
Affiliation(s)
- Arnab Dutta
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ehsan Behzadfar
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
2
|
Zhou S, Guan K, Li Z, Xu P, Fang S, Zhang A, Wang Z, He S, Nakagawa K, Matsuyama H. Nanochannel Stability of Chemically Converted Graphene Oxide Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311237. [PMID: 38593376 DOI: 10.1002/smll.202311237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Chemically converted graphene oxide laminate membranes, which exhibit stable interlayered nanochannels in aqueous environments, are receiving increasing attention owing to their potential for selective water and ion permeation. However, how the molecular properties of conversion agents influence the stabilization of nanochannels and how effectively nanochannels are stabilized have rarely been studied. In this study, mono-, di-, and tri-saccharide molecules of glucose (Glu), maltose (Glu2), and maltotriose (Glu3) are utilized, respectively, to chemically modify graphene oxide (GO). The aim is to create nanochannels with different levels of stability and investigate how these functional conversion agents affect the separation performance. The effects of the property differences between different conversion agents on nanochannel stabilization are demonstrated. An agent with efficient chemical reduction of GO and limited intercalation in the resulting nanochannel ensures satisfactory nanochannel stability during desalination. The stabilized membrane nanochannel exhibits a permeance of 0.69 L m-2 h-1 bar-1 and excellent Na2SO4 rejection of 96.42%. Furthermore, this optimized membrane nanochannel demonstrates enhanced stability under varying external conditions compared to the original GO. This study provides useful information for the design of chemical conversion agents for GO nanochannel stabilization and the development of nanochannel membranes for precise separation.
Collapse
Affiliation(s)
- Siyu Zhou
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ping Xu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Shang Fang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Aiwen Zhang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Zheng Wang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Shengnan He
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
3
|
Tonel MZ, Abal JPK, Fagan SB, Barbosa MC. Ab initio study of water anchored in graphene pristine and vacancy-type defects. J Mol Model 2023; 29:198. [PMID: 37268861 DOI: 10.1007/s00894-023-05611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
CONTEXT In this paper, we have addressed two issues that are relevant to the interaction of water in pristine and vacant graphene through first-principles calculations based on the Density Functional Theory (DFT). The results showed that for the interaction of pristine graphene with water, the DOWN configuration (with the hydrogen atoms facing downwards) was the most stable, presenting binding energies in the order of -13.62 kJ/mol at a distance of 2.375 Å in the TOP position. We also evaluated the interaction of water with two vacancy models, removing one carbon atom (Vac-1C) and four atoms (Vac-4C). In the Vac-1C system, the most favourable system was the DOWN configuration, with binding energies ranging from -20.60 kJ/mol to -18.41 kJ/mol in the TOP and UP positions, respectively. A different behaviour was observed for the interaction of water with Vac-4C; regardless of the configuration of the water, it is always more favourable for the interaction to occur through the vacancy centre, with binding energies between -13.28 kJ/mol and -20.49 kJ/mol. Thus, the results presented open perspectives for the technological development of nanomembranes as well as providing a better understanding of the wettability effects of graphene sheets, whether pristine or with defects. METHOD We evaluated the interaction of pristine and vacant graphene with the water molecule, through calculations based on Density Functional Theory (DFT); implemented by the SIESTA program. The electronic, energetic, and structural properties were analyzed by solving self-consistent Kohn-Sham equations. In all calculations, a double ζ plus a polarized function (DZP) was used for the numerical baise set. Local Density Approximation (LDA) with the Perdew and Zunger (PZ) parameterisation along with a basis set superposition error (BSSE) correction were used to describe the exchange and correlation potential (Vxc). The water and isolated graphene structures were relaxed until the residual forces were less than 0.05 eV/Å-1 in all atomic coordinates.
Collapse
Affiliation(s)
- Mariana Zancan Tonel
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil.
| | - João Pedro Kleinubing Abal
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| | - Solange Binotto Fagan
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil
| | - Marcia Cristina Barbosa
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
4
|
Solvent-Evaporation-Induced Synthesis of Graphene Oxide/Peptide Nanofiber (GO/PNF) Hybrid Membranes Doped with Silver Nanoparticles for Antibacterial Application. Polymers (Basel) 2023; 15:polym15051321. [PMID: 36904561 PMCID: PMC10006990 DOI: 10.3390/polym15051321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Designing functional membranes through the collaboration of multi-dimensional nanomaterials is of particular interest in environmental and biomedical applications. Herein, we propose a facile and green synthetic strategy by collaborating with graphene oxide (GO), peptides, and silver nanoparticles (AgNPs) to synthesize functional hybrid membranes with favourable antibacterial effects. GO nanosheets are functionalized with self-assembled peptide nanofibers (PNFs) to form GO/PNFs nanohybrids, in which the PNFs not only improve the biocompatibility and dispersity of GO, but also provide more active sites for growing and anchoring AgNPs. As a result, multifunctional GO/PNFs/AgNP hybrid membranes with adjustable thickness and AgNP density are prepared via the solvent evaporation technique. The structural morphology of the as-prepared membranes is characterized using scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy, and their properties are analyzed by spectral methods. The hybrid membranes are then subjected to antibacterial experiments and their excellent antibacterial performances are demonstrated.
Collapse
|
5
|
Ritchhart A, Filatov AS, Jeon IR, Anderson JS. Structure and Magnetic Properties of Pseudo-1D Chromium Thiolate Coordination Polymers. Inorg Chem 2023; 62:2817-2825. [PMID: 36728752 DOI: 10.1021/acs.inorgchem.2c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The synthesis, structure, and magnetic properties of two novel, pseudo-one-dimensional (1D) chromium thiolate coordination polymers (CPs), CrBTT and Cr2BDT3, are reported. The structures of these materials were determined using X-ray powder diffraction revealing highly symmetric 1D chains embedded within a CP framework. The magnetic coupling of this chain system was measured by SQUID magnetometry, revealing a switch from antiferromagnetic to ferromagnetic behavior dictated by the angular geometrical constraints within the CP scaffold consistent with the Goodenough-Kanamori-Anderson rules. Intrachain magnetic coupling constants JNN of -32.0 and +5.7 K were found for CrBTT and Cr2BDT3, respectively, using the 1D Bonner-Fisher model of magnetism. The band structure of these materials has also been examined by optical spectroscopy and density functional theory calculations revealing semiconducting behavior. Our findings here demonstrate how CP scaffolds can support idealized low-dimensional structural motifs and dictate magnetic interactions through tuning of geometry and inter-spin couplings.
Collapse
Affiliation(s)
- Andrew Ritchhart
- Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Ie-Rang Jeon
- Université de Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, 35042Rennes, France
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
6
|
Sardarabadi H, Kiani S, Karkhanechi H, Mousavi SM, Saljoughi E, Matsuyama H. Effect of Nanofillers on Properties and Pervaporation Performance of Nanocomposite Membranes: A Review. MEMBRANES 2022; 12:membranes12121232. [PMID: 36557140 PMCID: PMC9785865 DOI: 10.3390/membranes12121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 05/12/2023]
Abstract
In recent years, a well-known membrane-based process called pervaporation (PV), has attracted remarkable attention due to its advantages for selective separation of a wide variety of liquid mixtures. However, some restrictions of polymeric membranes have led to research studies on developing membranes for efficient separation in the PV process. Recent studies have focused on preparation of nanocomposite membranes as an effective method to improve both selectivity and permeability of polymeric membranes. The present study provides a review of PV nanocomposite membranes for various applications. In this review, recent developments in the field of nanocomposite membranes, including the fabrication methods, characterization, and PV performance, are summarized.
Collapse
Affiliation(s)
- Hamideh Sardarabadi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Shirin Kiani
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Hamed Karkhanechi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Seyed Mahmoud Mousavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ehsan Saljoughi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Correspondence:
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Pazani F, Shariatifar M, Salehi Maleh M, Alebrahim T, Lin H. Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Han S, Xie Y, Xin Q, Lv J, Zhang Y, Wang F, Fu X, Li H, Zhao L, Ye H, Zhang Y. High permeability dual-channel membranes based on porous Fluorine–Cerium nanosheets for molecular sieving. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Cortés HA, Scherlis DA, Factorovich MH. Partition Constant of Binary Mixtures for the Equilibrium between a Bulk and a Confined Phase. J Phys Chem B 2022; 126:6985-6996. [PMID: 36049076 DOI: 10.1021/acs.jpcb.2c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well-known that the thermodynamic, kinetic and structural properties of fluids, and in particular of water and its solutions, can be drastically affected in nanospaces. A possible consequence of nanoscale confinement of a solution is the partial segregation of its components. Thereby, confinement in nanoporous materials (NPM) has been proposed as a means for the separation of mixtures. In fact, separation science can take great advantage of NPM due to the tunability of their properties as a function of nanostructure, morphology, pore size, and surface chemistry. Alcohol-water mixtures are in this context among the most relevant systems. However, a quantitative thermodynamic description allowing for the prediction of the segregation capabilities as a function of the material-solution characteristics is missing. In the present study we attempt to fill this vacancy, by contributing a thermodynamic treatment for the calculation of the partition coefficient in confinement. Combining the multilayer adsorption model for binary mixtures with the Young equation, we conclude that the liquid-vapor surface tension and the contact angle of the pure substances can be used to predict the separation ability of a particular material for a given mixture to a semiquantitative extent. Moreover, we develop a Kelvin-type equation that relates the partition coefficient to the radius of the pore, the contact angle, and the liquid-vapor surface tensions of the constituents. To assess the validity of our thermodynamic formulation, coarse grained molecular dynamics simulations were performed on models of alcohol-water mixtures confined in cylindrical pores. To this end, a coarse-grained amphiphilic molecule was parametrized to be used in conjunction with the mW potential for water. This amphiphilic model reproduces some of the properties of methanol such as enthalpy of vaporization and liquid-vapor surface tension, and the minimum of the excess enthalpy for the aqueous solution. The partition coefficient turns out to be highly dependent on the molar fraction, on the interaction between the components and the confining matrix, and on the radius of the pore. A remarkable agreement between the theory and the simulations is found for pores of radius larger than 15 Å.
Collapse
Affiliation(s)
- Henry A Cortés
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina.,BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Spain
| | - Damian A Scherlis
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Matías H Factorovich
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
10
|
Niu Y, Chen Y, Bao S, Sun H, Wang Y, Ge B, Li P, Hou Y. Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Rong H, Zhang J, Guan Y, Gai D, Zou X. Interzeolite Conversion-Synthesized Sub-1 μm NaA Zeolite Membrane for C 2H 2/C 2H 4 Selective Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26171-26179. [PMID: 35605136 DOI: 10.1021/acsami.2c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zeolite membranes with reduced thickness and high continuity are of paramount importance for accelerating selective gas separation for resemblant molecules, and the synthesis of such membranes remains a grand challenge. Herein, we developed an interzeolite conversion synthesis approach to grow NaA zeolite membranes on NaX. The conversion of NaX into NaA proceeded via mild hydrothermal treatment of a dilute synthesis solution, preferentially forming a continuous polycrystalline NaA layer on the surface of NaX, which was precrystallized on a porous alumina support. The thickness of the NaA zeolite membrane was successfully controlled to the submicron scale (500 nm). The synthesized NaA membrane functioned as a selective separator for C2H2 and C2H4 gases. Taking the traditionally in situ grown membrane as a reference, the interzeolite-derived membrane exhibited a 3.5-fold separation factor and ∼4.0 times C2H2 permeance. This approach provides an alternative synthesis option for zeolite membranes with advanced properties, and high efficiency in terms of superior gas selectivity and permeability is promising in precise gas separation.
Collapse
Affiliation(s)
- Huazhen Rong
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jingjing Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yixing Guan
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Dongxu Gai
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
12
|
Nanofiltration Performance of Glutaraldehyde Crosslinked Graphene Oxide-Cellulose Nanofiber Membrane. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Lin K, Chen C, Wang C, Lian P, Wang Y, Xue S, Sha J, Chen Y. Fabrication of solid-state nanopores. NANOTECHNOLOGY 2022; 33:272003. [PMID: 35349996 DOI: 10.1088/1361-6528/ac622b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Nanopores are valuable single-molecule sensing tools that have been widely applied to the detection of DNA, RNA, proteins, viruses, glycans, etc. The prominent sensing platform is helping to improve our health-related quality of life and accelerate the rapid realization of precision medicine. Solid-state nanopores have made rapid progress in the past decades due to their flexible size, structure and compatibility with semiconductor fabrication processes. With the development of semiconductor fabrication techniques, materials science and surface chemistry, nanopore preparation and modification technologies have made great breakthroughs. To date, various solid-state nanopore materials, processing technologies, and modification methods are available to us. In the review, we outline the recent advances in nanopores fabrication and analyze the virtues and limitations of various membrane materials and nanopores drilling techniques.
Collapse
Affiliation(s)
- Kabin Lin
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Congsi Wang
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Peiyuan Lian
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Yan Wang
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Song Xue
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
14
|
Freestanding non-covalent thin films of the propeller-shaped polycyclic aromatic hydrocarbon decacyclene. Nat Commun 2022; 13:1920. [PMID: 35395820 PMCID: PMC8993932 DOI: 10.1038/s41467-022-29429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Molecularly thin, nanoporous thin films are of paramount importance in material sciences. Their use in a wide range of applications requires control over their chemical functionalities, which is difficult to achieve using current production methods. Here, the small polycyclic aromatic hydrocarbon decacyclene is used to form molecular thin films, without requiring covalent crosslinking of any kind. The 2.5 nm thin films are mechanically stable, able to be free-standing over micrometer distances, held together solely by supramolecular interactions. Using a combination of computational chemistry and microscopic imaging techniques, thin films are studied on both a molecular and microscopic scale. Their mechanical strength is quantified using AFM nanoindentation, showing their capability of withstanding a point load of 26 ± 9 nN, when freely spanning over a 1 μm aperture, with a corresponding Young’s modulus of 6 ± 4 GPa. Our thin films constitute free-standing, non-covalent thin films based on a small PAH. Molecularly thin films are important in material sciences but their use in a wide range of applications requires control over their chemical functionalities, which is difficult to achieve. Here, the authors use decacyclene to form such freestanding and mechanically stable molecular films held together by supramolecular interactions without requiring covalent crosslinking of any kind
Collapse
|
15
|
A mixed matrix membrane for enhanced CO2/N2 separation via aligning hierarchical porous zeolite with a polyethersulfone based comb-like polymer. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Cao Z, Markey G, Barati Farimani A. Ozark Graphene Nanopore for Efficient Water Desalination. J Phys Chem B 2021; 125:11256-11263. [PMID: 34591487 DOI: 10.1021/acs.jpcb.1c06327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nanoporous graphene membrane is crucial to energy-efficient reverse osmosis water desalination given its high permeation rate and ion selectivity. However, the ion selectivity of the common circular graphene nanopore is dependent on the pore size and scales inversely with the water permeation rate. Larger, circular graphene nanopores give rise to the high water permeation rate but compromise the ability to reject ions. Therefore, the pursuit of a higher permeation rate while maintaining high ion selectivity can be challenging. In this work, we discover that the geometry of graphene nanopore can play a significant role in its water desalination performance. We demonstrate that the ozark graphene nanopore, which has an irregular slim shape, can reject over 12% more ions compared with a circular nanopore with the same water permeation rate. To reveal the physical reason behind the outstanding performance of the ozark nanopore, we compared it with circular, triangular, and rhombic pores from perspectives including interfacial water density, energy barrier, water/ion distribution in pores, the ion-water RDF in pores, and the hydraulic diameter. The ozark graphene nanopore further explores the potential of graphene for efficient water desalination.
Collapse
Affiliation(s)
- Zhonglin Cao
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Greta Markey
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
17
|
Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem Sci 2021; 12:12874-12910. [PMID: 34745520 PMCID: PMC8513907 DOI: 10.1039/d1sc03581a] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023] Open
Abstract
The increase of energy demand added to the concern for environmental pollution linked to energy generation based on the combustion of fossil fuels has motivated the study and development of new sustainable ways for energy harvesting. Among the different alternatives, the opportunity to generate energy by exploiting the osmotic pressure difference between water sources of different salinities has attracted considerable attention. It is well-known that this objective can be accomplished by employing ion-selective dense membranes. However, so far, the current state of this technology has shown limited performance which hinders its real application. In this context, advanced nanostructured membranes (nanoporous membranes) with high ion flux and selectivity enabling the enhancement of the output power are perceived as a promising strategy to overcome the existing barriers in this technology. While the utilization of nanoporous membranes for osmotic power generation is a relatively new field and therefore, its application for large-scale production is still uncertain, there have been major developments at the laboratory scale in recent years that demonstrate its huge potential. In this review, we introduce a comprehensive analysis of the main fundamental concepts behind osmotic energy generation and how the utilization of nanoporous membranes with tailored ion transport can be a key to the development of high-efficiency blue energy harvesting systems. Also, the document discusses experimental issues related to the different ways to fabricate this new generation of membranes and the different experimental set-ups for the energy-conversion measurements. We highlight the importance of optimizing the experimental variables through the detailed analysis of the influence on the energy capability of geometrical features related to the nanoporous membranes, surface charge density, concentration gradient, temperature, building block integration, and others. Finally, we summarize some representative studies in up-scaled membranes and discuss the main challenges and perspectives of this emerging field.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany
- Technische Universität Darmstadt, Materialwissenschaft 64287 Darmstadt Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| |
Collapse
|
18
|
Two-Dimensional MFI Zeolite Nanosheets Exfoliated by Surfactant Assisted Solution Process. NANOMATERIALS 2021; 11:nano11092327. [PMID: 34578643 PMCID: PMC8472291 DOI: 10.3390/nano11092327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Two-dimensional (2D) zeolite nanosheets are important for the synthesis of high flux zeolite membranes due to their lateral size in a preferred orientation. A way to obtain 2D zeolite nanosheets is to exfoliate interlocked structures generated during the hydrothermal synthesis. The mechanical and polymer assisted exfoliation process leads to mechanical damage in nanosheets and short lateral size. In the present study, polyvinylpyrrolidone (PVP) was introduced as an exfoliation agent and dispersant, so that multilamellar interlocked silicalite-1 zeolite nanosheets successfully exfoliated into a large lateral size (individual nanosheets 500~1200 nm). The good exfoliation behavior was due to the strong penetration of PVP into multilamellar nanosheets. Sonication assisted by mild milling helps PVP molecules to penetrate through the lamellar structure, contributing to the expansion of the distance between adjacent layers and thus decreasing the interactions between each layer. In addition, the stability of exfoliated nanosheets was evaluated with a series of organic solvents. The exfoliated nanosheets were well dispersed in n-butanol and stable for 30 days. Therefore, the PVP-assisted solution-based exfoliation process provides high aspect ratio MFI zeolite nanosheets in organic solvents for a long period.
Collapse
|
19
|
Spoială A, Ilie CI, Ficai D, Ficai A, Andronescu E. Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2091. [PMID: 33919022 PMCID: PMC8122305 DOI: 10.3390/ma14092091] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023]
Abstract
During the past few years, researchers have focused their attention on developing innovative nanocomposite polymeric membranes with applications in water purification. Natural and synthetic polymers were considered, and it was proven that chitosan-based materials presented important features. This review presents an overview regarding diverse materials used in developing innovative chitosan-based nanocomposite polymeric membranes for water purification. The first part of the review presents a detailed introduction about chitosan, highlighting the fact that is a biocompatible, biodegradable, low-cost, nontoxic biopolymer, having unique structure and interesting properties, and also antibacterial and antioxidant activities, reasons for using it in water treatment applications. To use chitosan-based materials for developing nanocomposite polymeric membranes for wastewater purification applications must enhance their performance by using different materials. In the second part of the review, the performance's features will be presented as a consequence of adding different nanoparticles, also showing the effect that those nanoparticles could bring on other polymeric membranes. Among these features, pollutant's retention and enhancing thermo-mechanical properties will be mentioned. The focus of the third section of the review will illustrate chitosan-based nanocomposite as polymeric membranes for water purification. Over the last few years, researchers have demonstrated that adsorbent nanocomposite polymeric membranes are powerful, important, and potential instruments in separation or removal of pollutants, such as heavy metals, dyes, and other toxic compounds presented in water systems. Lastly, we conclude this review with a summary of the most important applications of chitosan-based nanocomposite polymeric membranes and their perspectives in water purification.
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania;
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
20
|
Suhail F, Batool M, Shah AT, Tabassum S, Khan AL, Gilani MA. Highly CO2 selective mixed matrix membranes of polysulfone based on hetaryl modified SBA-16 particles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Houben SA, van Merwijk SA, Langers BJH, Oosterlaken BM, Borneman Z, Schenning APHJ. Smectic Liquid Crystalline Polymer Membranes with Aligned Nanopores in an Anisotropic Scaffold. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7592-7599. [PMID: 33539067 PMCID: PMC7898271 DOI: 10.1021/acsami.0c20898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Bottom-up methods for the fabrication of nanoporous polymer membranes have numerous advantages. However, it remains challenging to fabricate nanoporous membranes that are mechanically robust and have aligned pores, that is, with a low tortuosity. Here, a mechanically robust thin-film composite membrane was fabricated consisting of a two-dimensional (2D) porous smectic liquid crystalline polymer network inside an anisotropic, microporous polymer scaffold. The polymer scaffold allows for relatively straightforward planar alignment of the smectic liquid crystalline mixture, which consisted of a diacrylate cross-linker and a dimer forming benzoic acid-based monoacrylate. Polymerized samples displayed a smectic A (SmA) phase, which formed the eventual 2D porous channels after base treatment. The aligned 2D nanoporous membranes showed a high rejection of anionic solutes bigger than 322 g/mol. Cleaning and reusability of the system were demonstrated by intentionally fouling the porous channels with a cationic dye and subsequently cleaning the membrane with an acidic solution. After cleaning, the membrane properties were unaffected; this, combined with numerous pressurizing cycles, demonstrated reusability of the system.
Collapse
Affiliation(s)
- Simon
J. A. Houben
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Storm A. van Merwijk
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bruno J. H. Langers
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bernette M. Oosterlaken
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert P. H. J. Schenning
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
22
|
Kang Z, Guo H, Fan L, Yang G, Feng Y, Sun D, Mintova S. Scalable crystalline porous membranes: current state and perspectives. Chem Soc Rev 2021; 50:1913-1944. [PMID: 33319885 DOI: 10.1039/d0cs00786b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Crystalline porous materials (CPMs) with uniform and regular pore systems show great potential for separation applications using membrane technology. Along with the research on the synthesis of precisely engineered porous structures, significant attention has been paid to the practical application of these materials for preparation of crystalline porous membranes (CPMBs). In this review, the progress made in the preparation of thin, large area and defect-free CPMBs using classical and novel porous materials and processing is presented. The current state-of-the-art of scalable CPMBs with different nodes (inorganic, organic and hybrid) and various linking bonds (covalent, coordination, and hydrogen bonds) is revealed. The advances made in the scalable production of high-performance crystalline porous membranes are categorized according to the strategies adapted from polymer membranes (interfacial assembly, solution-casting, melt extrusion and polymerization of CPMs) and tailored based on CPM properties (seeding-secondary growth, conversion of precursors, electrodeposition and chemical vapor deposition). The strategies are compared and ranked based on their scalability and cost. The potential applications of CPMBs have been concisely summarized. Finally, the performance and challenges in the preparation of scalable CPMBs with emphasis on their sustainability are presented.
Collapse
Affiliation(s)
- Zixi Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hailing Guo
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China
| | - Lili Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Ge Yang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China
| | - Yang Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Svetlana Mintova
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China and Laboratoire Catalyse et Spectrochimie (LCS), Normandie University, ENSICAEN, CNRS, 6 boulevard du Marechal Juin, 14050 Caen, France.
| |
Collapse
|
23
|
On the correlation between Raman spectra and structural properties of activated carbons derived by hyper-crosslinked polymers. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04338-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ricci E, Benedetti FM, Dose ME, De Angelis MG, Freeman BD, Paul DR. Competitive sorption in CO2/CH4 separations: the case of HAB-6FDA polyimide and its TR derivative and a general analysis of its impact on the selectivity of glassy polymers at multicomponent conditions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Ranjan P, Lee JM, Kumar P, Vinu A. Borophene: New Sensation in Flatland. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000531. [PMID: 32666554 DOI: 10.1002/adma.202000531] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/29/2020] [Indexed: 05/09/2023]
Abstract
Borophene, a 2D allotrope of boron and the lightest elemental Dirac material, is the latest very promising 2D material owing to its unique structural and electronic characteristics of the X3 and β12 phases. The high atomic density on ridgelines of the β12 phase of borophene provides a substantial orbital overlap, which leads to an excellent electron density in the conduction level and thus to a highly metallic behavior. These unique structural characteristics and electronic properties of borophene attract significant scientific interest. Herein, approaches for crystal growth/synthesis of these unique nanostructures and their potential technological applications are discussed. Various substrate-supported ultrahigh-vacuum growth techniques for borophene, such as molecular beam epitaxy, atomic layer deposition, and chemical vapor deposition, along with their challenges, are also summarized. The sonochemical exfoliation and modified Hummer's technique for the synthesis of free-standing borophene are also discussed. Solution-phase exfoliation seems to address the scalability issues and expands the applications of these unique materials to various fields, including renewable energy devices and ultrafast sensors. Furthermore, the electronic, optical, thermal, and elastic properties of borophene are thoroughly discussed and are compared with those of graphene and its "cousins." Numerous frontline applications are envisaged and an outlook is presented.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Physics, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801103, India
- Department of Physics, UAE University, Al-Ain, Abu Dhabi, 15551, United Arab Emirates
| | - Jang Mee Lee
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801103, India
- Birck Nanotechnology Centre, Purdue University, West Lafayette, IN, 47907, USA
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
26
|
Obrero JM, Filippin AN, Alcaire M, Sanchez-Valencia JR, Jacob M, Matei C, Aparicio FJ, Macias-Montero M, Rojas TC, Espinos JP, Saghi Z, Barranco A, Borras A. Supported Porous Nanostructures Developed by Plasma Processing of Metal Phthalocyanines and Porphyrins. Front Chem 2020; 8:520. [PMID: 32626693 PMCID: PMC7311806 DOI: 10.3389/fchem.2020.00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
The large area scalable fabrication of supported porous metal and metal oxide nanomaterials is acknowledged as one of the greatest challenges for their eventual implementation in on-device applications. In this work, we will present a comprehensive revision and the latest results regarding the pioneering use of commercially available metal phthalocyanines and porphyrins as solid precursors for the plasma-assisted deposition of porous metal and metal oxide films and three-dimensional nanostructures (hierarchical nanowires and nanotubes). The most advanced features of this method relay on its ample general character from the point of view of the porous material composition and microstructure, mild deposition and processing temperature and energy constrictions and, finally, its straightforward compatibility with the direct deposition of the porous nanomaterials on processable substrates and device-architectures. Thus, taking advantage of the variety in the composition of commercially available metal porphyrins and phthalocyanines, we present the development of metal and metal oxides layers including Pt, CuO, Fe2O3, TiO2, and ZnO with morphologies ranging from nanoparticles to nanocolumnar films. In addition, we combine this method with the fabrication by low-pressure vapor transport of single-crystalline organic nanowires for the formation of hierarchical hybrid organic@metal/metal-oxide and @metal/metal-oxide nanotubes. We carry out a thorough characterization of the films and nanowires using SEM, TEM, FIB 3D, and electron tomography. The latest two techniques are revealed as critical for the elucidation of the inner porosity of the layers.
Collapse
Affiliation(s)
- Jose M Obrero
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Alejandro N Filippin
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Maria Alcaire
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Juan R Sanchez-Valencia
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain.,Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville, Spain
| | - Martin Jacob
- Université Grenoble Alpes, CEA, LETI, Grenoble, France
| | | | - Francisco J Aparicio
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Manuel Macias-Montero
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain.,Instituto de Óptica Daza Baldés (CSIC), Madrid, Spain
| | - Teresa C Rojas
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Juan P Espinos
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Zineb Saghi
- Université Grenoble Alpes, CEA, LETI, Grenoble, France
| | - Angel Barranco
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Ana Borras
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| |
Collapse
|
27
|
Bi Q, Zhang C, Liu J, Cheng Q, Xu S. A nanofiltration membrane prepared by PDA-C 3N 4 for removal of divalent ions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:253-264. [PMID: 32333658 DOI: 10.2166/wst.2020.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a positively charged nanofiltration (NF) membrane was prepared by interfacial polymerization for separation of divalent cations, whereby a nanomaterial (modified graphitic carbon nitride (g-C3N4) with poly(dopamine), PDA-C3N4) was incorporated into the active layer of the NF membrane. PDA-C3N4 sheets were synthesized from g-C3N4 sheets prepared by thermal oxidation of melamine, and the preparation conditions of NF membrane were also optimized. The results show that the roughness of PDA-C3N4 embedded NF membrane decreases, and the hydrophilicity and the permeation increase. The membrane also shows high rejection for divalent cations (Mg2+, Ca2+, Ba2+, Cu2+ and Zn2+) but low rejection (36.8%) for monovalent cation (Li+), as well as good fouling resistance performance. The fabricated membrane has the potential for treatment of industrial wastewater.
Collapse
Affiliation(s)
- Qiuyan Bi
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail: ; School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Zhang
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Jiandong Liu
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Qi Cheng
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Shiai Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail: ; School of Chemical Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
28
|
Parthiban V, Sahu AK. Performance enhancement of direct methanol fuel cells using a methanol barrier boron nitride–Nafion hybrid membrane. NEW J CHEM 2020. [DOI: 10.1039/d0nj00433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sulfonated hexagonal boron nitride is explored as a potential filler to prepare Nafion hybrid membranes for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- V. Parthiban
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| | - A. K. Sahu
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| |
Collapse
|
29
|
Kamble AR, Patel CM, Murthy Z. Different 2D materials based polyetherimide mixed matrix membranes for CO2/N2 separation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Tanna VA, Enokida JS, Coughlin EB, Winter HH. Functionalized Polybutadiene for Clay–Polymer Nanocomposite Fabrication. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Najari S, Saeidi S, Gallucci F, Drioli E. Mixed matrix membranes for hydrocarbons separation and recovery: a critical review. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
The separation and purification of light hydrocarbons are significant challenges in the petrochemical and chemical industries. Because of the growing demand for light hydrocarbons and the environmental and economic issues of traditional separation technologies, much effort has been devoted to developing highly efficient separation techniques. Accordingly, polymeric membranes have gained increasing attention because of their low costs and energy requirements compared with other technologies; however, their industrial exploitation is often hampered because of the trade-off between selectivity and permeability. In this regard, high-performance mixed matrix membranes (MMMs) are prepared by embedding various organic and/or inorganic fillers into polymeric materials. MMMs exhibit the advantageous and disadvantageous properties of both polymer and filler materials. In this review, the influence of filler on polymer chain packing and membrane sieving properties are discussed. Furthermore, the influential parameters affecting MMMs affinity toward hydrocarbons separation are addressed. Selection criteria for a suitable combination of polymer and filler are discussed. Moreover, the challenges arising from polymer/filler interactions are analyzed to allow for the successful implementation of this promising class of membranes.
Collapse
Affiliation(s)
- Sara Najari
- Department of Chemical Engineering , Tarbiat Modares University , Tehran 14115-114 , Iran
| | - Samrand Saeidi
- Department of Energy Engineering , Budapest University of Technology and Economics , Budapest , Hungary
| | - Fausto Gallucci
- Inorganic Membranes and Membrane Reactors, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry , Eindhoven , The Netherlands
| | - Enrico Drioli
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , Via P. Bucci 17c , 87030 Rende (CS) , Italy
| |
Collapse
|
32
|
|
33
|
Seyyed Shahabi S, Azizi N, Vatanpour V. Synthesis and characterization of novel g-C3N4 modified thin film nanocomposite reverse osmosis membranes to enhance desalination performance and fouling resistance. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Affiliation(s)
| | - Martin Maldovan
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia
- School of Physics Georgia Institute of Technology Atlanta Georgia
| |
Collapse
|
35
|
Gatti G, Errahali M, Tei L, Cossi M, Marchese L. On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers. Polymers (Basel) 2019; 11:polym11040588. [PMID: 30960572 PMCID: PMC6523183 DOI: 10.3390/polym11040588] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
The preparation of porous carbons by post-synthesis treatment of hypercrosslinked polymers is described, with a careful physico-chemical characterization, to obtain new materials for gas storage and separation. Different procedures, based on chemical and thermal activations, are considered; they include thermal treatment at 380 °C, and chemical activation with KOH followed by thermal treatment at 750 or 800 °C; the resulting materials are carefully characterized in their structural and textural properties. The thermal treatment at temperature below decomposition (380 °C) maintains the polymer structure, removing the side-products of the polymerization entrapped in the pores and improving the textural properties. On the other hand, the carbonization leads to a different material, enhancing both surface area and total pore volume—the textural properties of the final porous carbons are affected by the activation procedure and by the starting polymer. Different chemical activation methods and temperatures lead to different carbons with BET surface area ranging between 2318 and 2975 m2/g and pore volume up to 1.30 cc/g. The wise choice of the carbonization treatment allows the final textural properties to be finely tuned by increasing either the narrow pore fraction or the micro- and mesoporous volume. High pressure gas adsorption measurements of methane, hydrogen, and carbon dioxide of the most promising material are investigated, and the storage capacity for methane is measured and discussed.
Collapse
Affiliation(s)
- Giorgio Gatti
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Via T. Michel 11, 15121 Alessandria, Italy.
| | - Mina Errahali
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Via T. Michel 11, 15121 Alessandria, Italy.
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Via T. Michel 11, 15121 Alessandria, Italy.
| | - Maurizio Cossi
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Via T. Michel 11, 15121 Alessandria, Italy.
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Via T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
36
|
First-principles modeling of water permeation through periodically porous graphene derivatives. J Colloid Interface Sci 2019; 538:367-376. [DOI: 10.1016/j.jcis.2018.11.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/24/2023]
|
37
|
Xu F, Wei M, Zhang X, Song Y, Zhou W, Wang Y. How Pore Hydrophilicity Influences Water Permeability? RESEARCH 2019; 2019:2581241. [PMID: 31549051 PMCID: PMC6750107 DOI: 10.34133/2019/2581241] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/10/2019] [Indexed: 11/06/2022]
Abstract
Membrane separation is playing increasingly important role in providing clean water. Simulations predict that membrane pores with strong hydrophobicity produce ultrahigh water permeability as a result of low friction. However, experiments demonstrate that hydrophilic pores favor higher permeability. Herein we simulate water molecules transporting through interlayers of two-dimensional nanosheets with various hydrophilicities using nonequilibrium molecular dynamics. We reveal that there is a threshold pressure drop (ΔP T), exceeding which stable water permeability appears. Strongly hydrophobic pores exhibit extremely high ΔP T, prohibiting the achievement of ultrahigh water permeability under the experimentally accessible pressures. Under pressures < ΔP T, water flows in hydrophobic pores in a running-stop mode because of alternative wetting and nonwetting, thus leading to significantly reduced permeability. We discover that hydrophilic modification to one surface of the nanosheet can remarkably reduce ΔP T by > 99%, indicating a promising strategy to experimentally realize ultrafast membranes.
Collapse
Affiliation(s)
- Fang Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yang Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
38
|
Ricci E, De Angelis MG. Modelling Mixed-Gas Sorption in Glassy Polymers for CO₂ Removal: A Sensitivity Analysis of the Dual Mode Sorption Model. MEMBRANES 2019; 9:membranes9010008. [PMID: 30621225 PMCID: PMC6359057 DOI: 10.3390/membranes9010008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022]
Abstract
In an effort to reduce the experimental tests required to characterize the mixed-gas solubility and solubility-selectivity of materials for membrane separation processes, there is a need for reliable models which involve a minimum number of adjustable parameters. In this work, the ability of the Dual Mode Sorption (DMS) model to represent the sorption of CO2/CH4 mixtures in three high free volume glassy polymers, poly(trimethylsilyl propyne) (PTMSP), the first reported polymer of intrinsic microporosity (PIM-1) and tetrazole-modified PIM-1 (TZ-PIM), was tested. The sorption of gas mixtures in these materials suitable for CO2 separation has been characterized experimentally in previous works, which showed that these systems exhibit rather marked deviations from the ideal pure-gas behavior, especially due to competitive effects. The accuracy of the DMS model in representing the non-idealities that arise during mixed-gas sorption was assessed in a wide range of temperatures, pressures and compositions, by comparing with the experimental results available. Using the parameters obtained from the best fit of pure-gas sorption isotherms, the agreement between the mixed-gas calculations and the experimental data varied greatly in the different cases inspected, especially in the case of CH4 absorbed in mixed-gas conditions. A sensitivity analysis revealed that pure-gas data can be represented with the same accuracy by several different parameter sets, which, however, yield markedly different mixed-gas predictions, that, in some cases, agree with the experimental data only qualitatively. However, the multicomponent calculations with the DMS model yield more reliable results than the use of pure-gas data in the estimation of the solubility-selectivity of the material.
Collapse
Affiliation(s)
- Eleonora Ricci
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131, Bologna, Italy.
| | - Maria Grazia De Angelis
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131, Bologna, Italy.
| |
Collapse
|
39
|
Prozorovska L, Kidambi PR. State-of-the-Art and Future Prospects for Atomically Thin Membranes from 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801179. [PMID: 30085371 DOI: 10.1002/adma.201801179] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Atomically thin 2D materials, such as graphene, hexagonal boron-nitride, and others, offer new possibilities for ultrathin barrier and membrane applications. While the impermeability of pristine 2D materials to gas molecules, such as He, allows the realization of the thinnest physical barrier, nanoscale vacancy defects in the 2D material lattice manifest as nanopores in an atomically thin membrane. Such nanoporous atomically thin membranes (NATMs) present potential for enabling ultrahigh permeance and selectivity in a wide range of novel separation processes. Herein, the transport properties observed in NATMs are described and recent experimental progress achieved in their fabrication is summarized. Some of the challenges in NATM scale-up for practical applications are highlighted and several opportunities are identified, including the possibility of blending traditional membrane-processing approaches. Finally, a technological roadmap is presented with a contextual discussion for NATMs to progress from research to applications.
Collapse
Affiliation(s)
- Liudmyla Prozorovska
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235-1826, USA
| | - Piran R Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235-1826, USA
| |
Collapse
|
40
|
Aryanpour M, Rafiefard N, Hosseini-Shokouh SH, Fardindoost S, Iraji Zad A. Computational investigation of gas detection and selectivity on TiS 3 nanoflakes supported by experimental evidence. Phys Chem Chem Phys 2018; 20:25458-25466. [PMID: 30272069 DOI: 10.1039/c8cp05026k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium trisulfide (TiS3), a transition metal chalcogenide, bears the potential to replace silicon, when taking the form of nanoflakes, due to its favorable band gap and optical response. In this paper, we investigate the response of TiS3 nanoflakes to gas detection through a careful quantum computational approach and a few succinct measurements. The computations are benchmarked and compared with a relevant experiment at each step, where their results/conclusions are discussed. The most stable surface of TiS3 particles is determined as (001), in agreement with the literature. The adsorption of 5 gas molecules is characterized through formulating and estimating their adsorption intensity values, rather than using singled-out values of binding energies. This formulation, which is rooted in a statistical view of the gas adsorption process, distinguishes H2 and CH4 molecules from H2O and O2 explicitly and unambiguously through comparing their adsorption profiles. The difference in the adsorption intensities thus predicts and elucidates the difference in the sensing behaviour of TiS3 particles. This work suggests that the computationally obtained profile for the adsorption spectrum of gas molecules serves as a tool/criterion to predict the selectivity of their detection by TiS3.
Collapse
Affiliation(s)
- Masoud Aryanpour
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 11365-9161, Iran.
| | | | | | | | | |
Collapse
|
41
|
Chuah CY, Goh K, Yang Y, Gong H, Li W, Karahan HE, Guiver MD, Wang R, Bae TH. Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chem Rev 2018; 118:8655-8769. [DOI: 10.1021/acs.chemrev.8b00091] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chong Yang Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kunli Goh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yanqin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Heqing Gong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wen Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - H. Enis Karahan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Michael D. Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 649798, Singapore
| | - Tae-Hyun Bae
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
42
|
Lugger JA, Mulder DJ, Bhattacharjee S, Sijbesma RP. Homeotropic Self-Alignment of Discotic Liquid Crystals for Nanoporous Polymer Films. ACS NANO 2018; 12:6714-6724. [PMID: 29975513 PMCID: PMC6060402 DOI: 10.1021/acsnano.8b01822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/05/2018] [Indexed: 05/25/2023]
Abstract
Nanostructured polymer films with continuous, membrane-spanning pores from polymerizable hexagonal columnar discotic liquid crystals (LCs) were fabricated. A robust alignment method was developed to obtain homeotropic alignment of columns between glass surfaces by adding a small amount of a tri(ethylene glycol) modified analogue of the mesogen as a dopant that preferentially wets glass. The homeotropic LC alignment was fixated via a photoinitiated free radical copolymerization of a high-temperature tolerant trisallyl mesogen with a divinyl ester. Removal of the hydrogen-bonded template from the aligned columns afforded a nanoporous network with pores of nearly 1 nm in diameter perpendicular to the surface, and without noticeable collapse of the nanopores. The effect of pore orientation was demonstrated by an adsorption experiment in which homeotropic film showed a threefold increase in the initial uptake rate of methylene blue compared to planarly aligned films.
Collapse
Affiliation(s)
- Jody A.
M. Lugger
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven, Netherlands 5600
MB
- Laboratory
of Supramolecular Polymer Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, Netherlands 5600 MB
| | - Dirk J. Mulder
- Laboratory
of Stimuli-Responsive Functional Materials and Devices, Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Pox 513, Eindhoven, Netherlands 5600
MB
| | - Subham Bhattacharjee
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven, Netherlands 5600
MB
| | - Rint P. Sijbesma
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven, Netherlands 5600
MB
- Laboratory
of Supramolecular Polymer Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, Netherlands 5600 MB
| |
Collapse
|
43
|
|
44
|
Hou J, Wei Y, Zhou S, Wang Y, Wang H. Highly efficient H2/CO2 separation via an ultrathin metal-organic framework membrane. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.02.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
|
46
|
Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A. Progress of Nanocomposite Membranes for Water Treatment. MEMBRANES 2018; 8:E18. [PMID: 29614045 PMCID: PMC6027241 DOI: 10.3390/membranes8020018] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.
Collapse
Affiliation(s)
- Claudia Ursino
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| | - Roberto Castro-Muñoz
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Enrico Drioli
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Mohammad H. Albeirutty
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
- Mechanical Engineering Department, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Alberto Figoli
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| |
Collapse
|
47
|
Li Y, Liu H, Wang H, Qiu J, Zhang X. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H 2/CO 2 separation. Chem Sci 2018; 9:4132-4141. [PMID: 29780543 PMCID: PMC5941280 DOI: 10.1039/c7sc04815g] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/01/2018] [Indexed: 11/21/2022] Open
Abstract
A highly oriented 2D nanosheet metal–organic framework membrane is fabricated by a direct growth strategy.
Highly oriented, ultrathin metal–organic framework (MOF) membranes are attractive for practical separation applications, but the scalable preparation of such membranes especially on standard tubular supports remains a huge challenge. Here we report a novel bottom-up strategy for directly growing a highly oriented Zn2(bIm)4 (bIm = benzimidazole) ZIF nanosheet tubular membrane, based on graphene oxide (GO) guided self-conversion of ZnO nanoparticles (NPs). Through our approach, a thin layer of ZnO NPs confined between a substrate and a GO ultrathin layer self-converts into a highly oriented Zn2(bIm)4 nanosheet membrane. The resulting membrane with a thickness of around 200 nm demonstrates excellent H2/CO2 gas separation performance with a H2 performance of 1.4 × 10–7 mol m–2 s–1 Pa–1 and an ideal separation selectivity of about 106. The method can be easily scaled up and extended to the synthesis of other types of Zn-based MOF nanosheet membranes. Importantly, our strategy is particularly suitable for the large-scale fabrication of tubular MOF membranes that has not been possible through other methods.
Collapse
Affiliation(s)
- Yujia Li
- State Key Laboratory of Fine Chemicals , School of Chemical Engineering , Dalian University of Technology , Dalian , 116024 , China .
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals , School of Chemical Engineering , Dalian University of Technology , Dalian , 116024 , China .
| | - Huanting Wang
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals , School of Chemical Engineering , Dalian University of Technology , Dalian , 116024 , China .
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals , School of Chemical Engineering , Dalian University of Technology , Dalian , 116024 , China .
| |
Collapse
|
48
|
|
49
|
Shete M, Kumar P, Bachman JE, Ma X, Smith ZP, Xu W, Mkhoyan KA, Long JR, Tsapatsis M. On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Kardani R, Asghari M, Mohammadi T, Afsari M. Effects of nanofillers on the characteristics and performance of PEBA-based mixed matrix membranes. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mixed matrix membranes (MMMs) with superior structural and functional properties provide an interesting approach to enhance the separation properties of polymer membranes. As a matter of fact, MMMs combine the advantages of both components; polymeric continuous phase and nanoparticle dispersed phase. Generally, the separation performance of polymeric membranes suffers from an upper-performance limit. Hence, the incorporation of nanoparticles helps to overcome such limitations. Block copolymers such as poly(ether-block-amide) (PEBA) composed of immiscible soft ether segments as well as hard amide segments have been shown as excellent materials for the synthesis of membranes. Consequently, PEBA membranes have been extensively used in scientific research and industrial processes. It is thus aimed to provide an overview of PEBA MMMs. This review is especially devoted to summarizing the effects of nanoparticle loading on PEBA performance and properties such as selectivity, permeability, thermal and mechanical properties, and others. In addition, the preparation techniques of PEBA MMMs and solvent selection are discussed. This article also discusses the many types of nanoparticles incorporated into PEBA membranes. Furthermore, the future direction in PEBA MMMs research for separation processes is briefly predicted.
Collapse
Affiliation(s)
- Rokhsare Kardani
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| | - Morteza Asghari
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
- Energy Research Institute, University of Kashan , Kashan , Iran
| | - Toraj Mohammadi
- Research and Technology Centre for Membrane Processes, Iran University of Science and Technology , Tehran , Iran
| | - Morteza Afsari
- Separation Processes Research Group, Department of Engineering , University of Kashan , Kashan 8731753153 , Iran
| |
Collapse
|