1
|
Michaud M, Nonglaton G, Anxionnaz-Minvielle Z. Wall-Immobilized Biocatalyst vs. Packed Bed in Miniaturized Continuous Reactors: Performances and Scale-Up. Chembiochem 2024; 25:e202400086. [PMID: 38618870 DOI: 10.1002/cbic.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Sustainable biocatalysis syntheses have gained considerable popularity over the years. However, further optimizations - notably to reduce costs - are required if the methods are to be successfully deployed in a range of areas. As part of this drive, various enzyme immobilization strategies have been studied, alongside process intensification from batch to continuous production. The flow bioreactor portfolio mainly ranges between packed bed reactors and wall-immobilized enzyme miniaturized reactors. Because of their simplicity, packed bed reactors are the most frequently encountered at lab-scale. However, at industrial scale, the growing pressure drop induced by the increase in equipment size hampers their implementation for some applications. Wall-immobilized miniaturized reactors require less pumping power, but a new problem arises due to their reduced enzyme-loading capacity. This review starts with a presentation of the current technology portfolio and a reminder of the metrics to be applied with flow bioreactors. Then, a benchmarking of the most recent relevant works is presented. The scale-up perspectives of the various options are presented in detail, highlighting key features of industrial requirements. One of the main objectives of this review is to clarify the strategies on which future study should center to maximize the performance of wall-immobilized enzyme reactors.
Collapse
Affiliation(s)
- Maïté Michaud
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| | - Guillaume Nonglaton
- Univ. Grenoble Alpes, CEA, LETI, DTIS, Plateforme de Recherche Intégration, fonctionnalisation de Surfaces et Microfabrication (PRISM), F-38000, Grenoble, France
| | - Zoé Anxionnaz-Minvielle
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| |
Collapse
|
2
|
Javed A, Singh J. Process intensification for sustainable extraction of metals from e-waste: challenges and opportunities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9886-9919. [PMID: 36995505 DOI: 10.1007/s11356-023-26433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The electrical and electronic waste is expected to increase up to 74.7 million metric tons by 2030 due to the unparalleled replacement rate of electronic devices, depleting the conventional sources of valuable metals such as rare earth elements, platinum group metals, Co, Sb, Mo, Li, Ni, Cu, Ag, Sn, Au, and Cr. Most of the current techniques for recycling, recovering, and disposing of e-waste are inappropriate and therefore contaminate the land, air, and water due to the release of hazardous compounds into the environment. Hydrometallurgy and pyrometallurgy are two such conventional methods used extensively for metal recovery from waste electrical and electronic equipment (WEEE). However, environmental repercussions and higher energy requirements are the key drawbacks that prevent their widespread application. Thus, to ensure the environment and elemental sustainability, novel processes and technologies must be developed for e-waste management with enhanced recovery and reuse of the valued elements. Therefore, the goal of the current work is to examine the batch and continuous processes of metal extraction from e-waste. In addition to the conventional devices, microfluidic devices have been also analyzed for microflow metal extraction. In microfluidic devices, it has been observed that the large specific surface area and short diffusion distance of microfluidic devices are advantageous for the efficient extraction of metals. Additionally, cutting-edge technologies have been proposed to enhance the recovery, reusability, and recycling of e-waste. The current study may support decision-making by researchers in deciding the direction of future research and moving toward sustainable development.
Collapse
Affiliation(s)
- Aaliya Javed
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Jogender Singh
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
3
|
He M, Zhang K, Guan Y, Sun Y, Han B. Green carbon science: fundamental aspects. Natl Sci Rev 2023; 10:nwad046. [PMID: 37565189 PMCID: PMC10411673 DOI: 10.1093/nsr/nwad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 08/12/2023] Open
Abstract
Carbon energy has contributed to the creation of human civilization, and it can be considered that the configuration of the carbon energy system is one of the important laws that govern the operation of everything in the universe. The core of the carbon energy system is the opposition and unity of two aspects: oxidation and reduction. The operation of oxidation and reduction is based on the ternary elemental system composed of the three elements of carbon, hydrogen and oxygen. Its operation produces numerous reactions and reaction products. Ancient Chinese philosophy helps us to understand in depth the essence of green carbon science, to explore its scientific basis, and to identify the related platforms for technology development.
Collapse
Affiliation(s)
- Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Research Institute of Petrochem Processing, SINOPEC, Beijing 100083, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Yejun Guan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Yuhan Sun
- Low Carbon Energy Conversion Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Low Carbon Technology Innovation Platform, Shanghai 210620, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
4
|
Study of liquid-liquid extraction and mass transfer process with solid particles in the inline teethed high shear mixer. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Molnár M, Kappe CO, Ötvös SB. Merger of Visible Light-Driven Chiral Organocatalysis and Continuous Flow Chemistry: An Accelerated and Scalable Access into Enantioselective α-Alkylation of Aldehydes. Adv Synth Catal 2023; 365:1660-1670. [PMID: 38515505 PMCID: PMC10952295 DOI: 10.1002/adsc.202300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Indexed: 03/23/2024]
Abstract
The electron donor-acceptor complex-enabled asymmetric photochemical alkylation strategy holds potential to attain elusive chiral α-alkylated aldehydes without an external photoredox catalyst. The photosensitizer-free conditions are beneficial concerning process costs and sustainability. However, lengthy organocatalyst preparation steps as well as limited productivity and difficult scalability render the current approaches unsuitable for synthesis on enlarged scales. Inspired by these limitations, a protocol was developed for the enantioselective α-alkylation of aldehydes based on the synergistic combination of visible light-driven asymmetric organocatalysis and a controlled continuous flow reaction environment. With the aim to reduce process costs, a commercially available chiral catalyst has been exploited to achieve photosensitizer-free enantioselective α-alkylations using phenacyl bromide derivates as alkylating agents. As a result of elaborate optimization and process development, the present flow strategy furnishes an accelerated and inherently scalable entry into enantioenriched α-alkylated aldehydes including a chiral key intermediate of the antirheumatic esonarimod.
Collapse
Affiliation(s)
- Márk Molnár
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28A-8010GrazAustria
- Servier Research Institute of Medicinal ChemistryZáhony u. 71031BudapestHungary
| | - C. Oliver Kappe
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| | - Sándor B. Ötvös
- Institute of ChemistryUniversity of GrazNAWI Graz, Heinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| |
Collapse
|
6
|
Ran J, Wang X, Liu Y, Yin S, Li S, Zhang L. Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. MATERIALS HORIZONS 2023. [PMID: 37139613 DOI: 10.1039/d3mh00329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Micro/nanomaterials are widely used in optoelectronics, environmental materials, bioimaging, agricultural industries, and drug delivery owing to their marvelous features, such as quantum tunneling, size, surface and boundary, and Coulomb blockade effects. Recently, microreactor technology has opened up broad prospects for green and sustainable chemical synthesis as a powerful tool for process intensification and microscale manipulation. This review focuses on recent progress in the microreactor synthesis of micro/nanomaterials. First, the fabrication and design principles of existing microreactors for producing micro/nanomaterials are summarized and classified. Afterwards, typical examples are shown to demonstrate the fabrication of micro/nanomaterials, including metal nanoparticles, inorganic nonmetallic nanoparticles, organic nanoparticles, Janus particles, and MOFs. Finally, the future research prospects and key issues of microreactor-based micro/nanomaterials are discussed. In short, microreactors provide new ideas and methods for the synthesis of micro/nanomaterials, which have huge potential and inestimable possibilities in large-scale production and scientific research.
Collapse
Affiliation(s)
- Jianfeng Ran
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Xuxu Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yuanhong Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shiwei Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
7
|
Yang L, Sun Y, Zhang L. Microreactor Technology: Identifying Focus Fields and Emerging Trends by Using CiteSpace II. Chempluschem 2023; 88:e202200349. [PMID: 36482287 DOI: 10.1002/cplu.202200349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Indexed: 11/28/2022]
Abstract
Microreactors have gained widespread attention from academia and industrial researchers due to their exceptionally fast mass and heat transfer and flexible control. In this work, CiteSpace software was used to systematically analyze the relevant literature to gain a comprehensively understand on the research status of microreactors in various fields. The results show that the research depth and application scope of microreactors are continuing to expand. The top 10 most popular research fields are photochemistry, pharmaceutical intermediates, multistep flow synthesis, mass transfer, computational fluid dynamics, μ-TAS (micro total analysis system), nanoparticles, biocatalysis, hydrogen production, and solid-supported reagents. The evolution trends of current focus areas are examined, including photochemistry, mass transfer, biocatalysis and hydrogen production and their milestone literature is analyzed in detail. This article demonstrates the development of different fields of microreactors technology and highlights the unending opportunities and challenges offered by this fascinating technology.
Collapse
Affiliation(s)
- Lin Yang
- School of Economics and Management, School of Intellectual Property, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Yutao Sun
- School of Economics and Management, School of Intellectual Property, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Lijing Zhang
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| |
Collapse
|
8
|
Rawas-Qalaji M, Cagliani R, Al-Hashimi N, Al-Dabbagh R, Al-Dabbagh A, Hussain Z. Microfluidics in drug delivery: review of methods and applications. Pharm Dev Technol 2023; 28:61-77. [PMID: 36592376 DOI: 10.1080/10837450.2022.2162543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microfluidics technology has emerged as a promising methodology for the fabrication of a wide variety of advanced drug delivery systems. Owing to its ability for accurate handling and processing of small quantities of fluidics as well as immense control over physicochemical properties of fabricated micro and nanoparticles (NPs), microfluidic technology has significantly improved the pharmacokinetics and pharmacodynamics of drugs. This emerging technology has offered numerous advantages over the conventional drug delivery methods for fabricating of a variety of micro and nanocarriers for poorly soluble drugs. In addition, a microfluidic system can be designed for targeted drug delivery aiming to increase the local bioavailability of drugs. This review spots the light on the recent advances made in the area of microfluidics including various methods of fabrication of drug carriers, their characterization, and unique features. Furthermore, applications of microfluidic technology for the robust fabrication and development of drug delivery systems, the existing challenges associated with conventional fabrication methodologies as well as the proposed solutions offered by microfluidic technology have been discussed in details.HighlightsMicrofluidic technology has revolutionized fabrication of tunable micro and nanocarriers.Microfluidic platforms offer several advantages over the conventional fabrication methods.Microfluidic devices hold great promise in controlling the physicochemical features of fabricated drug carriers.Micro and nanocarriers with controllable release kinetics and site-targeting efficiency can be fabricated.Drug carriers fabricated by microfluidic technology exhibited improved pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Roberta Cagliani
- Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Noor Al-Hashimi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rahma Al-Dabbagh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Amena Al-Dabbagh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Zahid Hussain
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Liu H, Jiang J, Wang C, Yang N, Yang X, Wang R. Investigations of mixing and heat transfer in a structured tube‐in‐tube millireactor by numerical, experimental and statistical methods. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hanyang Liu
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Junan Jiang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Chenfeng Wang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Ning Yang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Xiaoxia Yang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Rijie Wang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
10
|
Zheng M, Li H, Chen C, Chen T, Zou W, Zheng H, Yan Z. Breakup of bubbles in Advanced-Flow Reactor at low Reynolds numbers. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Chen TY, Hsiao YW, Baker-Fales M, Cameli F, Dimitrakellis P, Vlachos DG. Microflow chemistry and its electrification for sustainable chemical manufacturing. Chem Sci 2022; 13:10644-10685. [PMID: 36320706 PMCID: PMC9491096 DOI: 10.1039/d2sc01684b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 10/26/2023] Open
Abstract
Sustainability is vital in solving global societal problems. Still, it requires a holistic view by considering renewable energy and carbon sources, recycling waste streams, environmentally friendly resource extraction and handling, and green manufacturing. Flow chemistry at the microscale can enable continuous sustainable manufacturing by opening up new operating windows, precise residence time control, enhanced mixing and transport, improved yield and productivity, and inherent safety. Furthermore, integrating microfluidic systems with alternative energy sources, such as microwaves and plasmas, offers tremendous promise for electrifying and intensifying modular and distributed chemical processing. This review provides an overview of microflow chemistry, electrification, their integration toward sustainable manufacturing, and their application to biomass upgrade (a select number of other processes are also touched upon). Finally, we identify critical areas for future research, such as matching technology to the scale of the application, techno-economic analysis, and life cycle assessment.
Collapse
Affiliation(s)
- Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Yung Wei Hsiao
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Montgomery Baker-Fales
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Fabio Cameli
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Panagiotis Dimitrakellis
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| |
Collapse
|
12
|
Giraud RJ, Taylor PH, Diemer RB, Huang CP. Design and qualification of a bench-scale model for municipal waste-to-energy combustion. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:849-875. [PMID: 35363604 DOI: 10.1080/10962247.2022.2054879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This paper reports the design and qualification of the first purpose-built, bench-scale reactor system to model the municipal waste-to-energy combustion of fluorinated polymers. Using the principle of similarity, the gas-phase combustion zone of a typical municipal waste-to-energy plant has been scaled down to the bench with a focus on chemical similarity. Chemical similarity is achieved in large part through the use of methanol as a surrogate for municipal solid waste (MSW). Review of prior research shows that methanol is one of the major volatile products expected during MSW thermal conversion in the fuel bed of waste-to-energy plants. Like full-scale waste-energy plants, the design of the bench-scale model includes a flame zone and a post-flame zone. Maintaining steady methanol vapor flow premixed with air to the model reactor system ensures stable combustion resulting in bench-scale CO emission levels comparable to those of full-scale waste-to-energy plants. Since investigation of fluorinated polymer combustion includes trace analysis of exhaust gas for perfluorooctanoic acid (PFOA), qualification testing focused on PFOA collection efficiency. High PFOA collection efficiency (>90%) demonstrated the capability of the reactor system in transporting and absorbing PFOA that may be generated during high-temperature combustion testing of fluorinated polymers. Overall, the bench-scale system is qualified for its intended use to investigate potential generation of PFOA from combustion of fluorinated polymers under conditions representative of waste-to-energy combustion.Implications: Decision-makers depend on environmental researchers to provide reliable predictions of pollutant emissions from waste combustion of polymers at end of product life. Reliable predictions are especially important with regard to questions about potential PFOA emissions from municipal waste combustion of fluorinated polymers. Results from qualification testing confirm that the novel bench-scale model reactor system is capable of representing gas-phase municipal waste combustion behavior upstream of air pollution control and generating representative exhaust gas samples for off-line trace-level analysis of PFOA.
Collapse
Affiliation(s)
- Robert J Giraud
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware, USA
- The Chemours Company, Wilmington, Delaware, USA
| | | | - R Bertrum Diemer
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Chin-Pao Huang
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
13
|
Wang X, Zhang T, Lv L, Tang W, Gupta RK, Tang S. Reaction Performance and Flow Behavior of Isobutane/1-Butene and H 2SO 4 in the Microreactor Configured with the Micro-mixer. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tao Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Li Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Shengwei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Zong J, Yue J. Continuous Solid Particle Flow in Microreactors for Efficient Chemical Conversion. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Zong
- Department of Chemical Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jun Yue
- Department of Chemical Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
15
|
Sebastian V. Toward continuous production of high-quality nanomaterials using microfluidics: nanoengineering the shape, structure and chemical composition. NANOSCALE 2022; 14:4411-4447. [PMID: 35274121 DOI: 10.1039/d1nr06342a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last decade, a multitude of synthesis strategies has been reported for the production of high-quality nanoparticles. Wet-chemical methods are generally the most efficient synthesis procedures since high control of crystallinity and physicochemical properties can be achieved. However, a number of challenges remain from inadequate reaction control during the nanocrystallization process; specifically variability, selectivity, scalability and safety. These shortcomings complicate the synthesis, make it difficult to obtain a uniform product with desired properties, and present serious limitations for scaling the production of colloidal nanocrystals from academic studies to industrial applications. Continuous flow reactors based on microfluidic principles offer potential solutions and advantages. The reproducibility of reaction conditions in microfluidics and therefore product quality have proved to exceed those obtained by batch processing. Considering that in nanoparticles' production not only is it crucial to control the particle size distribution, but also the shape and chemical composition, this review presents an overview of the current state-of-the-art in synthesis of anisotropic and faceted nanostructures by using microfluidics techniques. The review surveys the available tools that enable shape and chemical control, including secondary growth methods, active segmented flow, and photoinduced shape conversion. In addition, emphasis is placed on the available approaches developed to tune the structure and chemical composition of nanomaterials in order to produce complex heterostructures in a continuous and reproducible fashion.
Collapse
Affiliation(s)
- Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Department of Chemical Engineering and Environmental Technologies, University de Zaragoza, 50018, Zaragoza, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
16
|
Peng Z, Wang G, Moghtaderi B, Doroodchi E. A review of microreactors based on slurry Taylor (segmented) flow. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Highly Efficient Micro-Scale Liquid-Liquid In-Flow Extraction of 99mTc from Molybdenum. Molecules 2021; 26:molecules26185699. [PMID: 34577170 PMCID: PMC8464863 DOI: 10.3390/molecules26185699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
The trend to achieve even more compact-sized systems is leading to the development of micro-scale reactors (lab-on-chip) in the field of radiochemical separation and radiopharmaceutical production. Technetium-99m extraction from both high and low specific activity molybdenum could be simply performed by MEK-driven solvent extraction if it were not for unpractical automation. The aim of this work is to develop a solvent extraction and separation process of technetium from molybdenum in a micro-scale in-flow chemistry regime with the aid of a capillary loop and a membrane-based separator, respectively. The developed system is able to extract and separate quantitatively and selectively (91.0 ± 1.8% decay corrected) the [99mTc]TcO4Na in about 20 min, by using a ZAIPUT separator device. In conclusion, we demonstrated for the first time in our knowledge the high efficiency of a MEK-based solvent extraction process of 99mTc from a molybdenum-based liquid phased in an in-flow micro-scale regime.
Collapse
|
18
|
Lv H, Yang Z, Zhang J, Qian G, Duan X, Shu Z, Zhou X. Liquid Flow and Mass Transfer Behaviors in a Butterfly-Shaped Microreactor. MICROMACHINES 2021; 12:883. [PMID: 34442505 PMCID: PMC8401375 DOI: 10.3390/mi12080883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022]
Abstract
Based on the split-and-recombine principle, a millimeter-scale butterfly-shaped microreactor was designed and fabricated through femtosecond laser micromachining. The velocity fields, streamlines and pressure fields of the single-phase flow in the microreactor were obtained by a computational fluid dynamics simulation, and the influence of flow rates on the homogeneous mixing efficiency was quantified by the mixing index. The flow behaviors in the microreactor were investigated using water and n-butanol, from which schematic diagrams of various flow patterns were given and a flow pattern map was established for regulating the flow behavior via controlling the flow rates of the two-phase flow. Furthermore, effects of the two-phase flow rates on the droplet flow behavior (droplet number, droplet size and standard deviation) in the microreactor were investigated. In addition, the interfacial mass transfer behaviors of liquid-liquid flow were evaluated using the standard low interfacial tension system of "n-butanol/succinic acid/water", where the dependence between the flow pattern and mass transfer was discussed. The empirical relationship between the volumetric mass transfer coefficient and Reynold number was established with prediction error less than 20%.
Collapse
Affiliation(s)
| | - Zhirong Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (H.L.); (G.Q.); (X.D.); (Z.S.); (X.Z.)
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (H.L.); (G.Q.); (X.D.); (Z.S.); (X.Z.)
| | | | | | | | | |
Collapse
|
19
|
Hosoya M, Manaka A, Nishijima S, Tsuno N. Development of a Liquid‐Liquid Biphasic Reaction Using a Taylor Vortex Flow Reactor. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masahiro Hosoya
- API R&D Laboratory CMC R&D Division Shionogi and Co., Ltd. 1–3, Kuise Terajima 2-chome Amagasaki Hyogo 660-0813 Japan
| | - Atsushi Manaka
- API R&D Laboratory CMC R&D Division Shionogi and Co., Ltd. 1–3, Kuise Terajima 2-chome Amagasaki Hyogo 660-0813 Japan
| | - Shogo Nishijima
- API R&D Laboratory CMC R&D Division Shionogi and Co., Ltd. 1–3, Kuise Terajima 2-chome Amagasaki Hyogo 660-0813 Japan
| | - Naoki Tsuno
- API R&D Laboratory CMC R&D Division Shionogi and Co., Ltd. 1–3, Kuise Terajima 2-chome Amagasaki Hyogo 660-0813 Japan
| |
Collapse
|
20
|
Sampat C, Pal S, Kulkarni AA. Effect of wettability on hydrodynamics and mass transfer in small capillaries. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100097] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
22
|
Chen TY, Desir P, Bracconi M, Saha B, Maestri M, Vlachos DG. Liquid–Liquid Microfluidic Flows for Ultrafast 5-Hydroxymethyl Furfural Extraction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Pierre Desir
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Mauro Bracconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
| | - Basudeb Saha
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), 221 Academy Street, Newark, Delaware 19716, United States
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
23
|
Process Intensification Approach Using Microreactors for Synthesizing Nanomaterials-A Critical Review. NANOMATERIALS 2021; 11:nano11010098. [PMID: 33406661 PMCID: PMC7823899 DOI: 10.3390/nano11010098] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials have found many applications due to their unique properties such as high surface-to-volume ratio, density, strength, and many more. This review focuses on the recent developments on the synthesis of nanomaterials using process intensification. The review covers the designing of microreactors, design principles, and fundamental mechanisms involved in process intensification using microreactors for synthesizing nanomaterials. The microfluidics technology operates in continuous mode as well as the segmented flow of gas–liquid combinations. Various examples from the literature are discussed in detail highlighting the advantages and disadvantages of microfluidics technology for nanomaterial synthesis.
Collapse
|
24
|
Wang X, Wang Y, Li F, Li L, Ge X, Zhang S, Qiu T. Scale-up of microreactor: Effects of hydrodynamic diameter on liquid–liquid flow and mass transfer. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Kayahan E, Jacobs M, Braeken L, Thomassen LC, Kuhn S, van Gerven T, Leblebici ME. Dawn of a new era in industrial photochemistry: the scale-up of micro- and mesostructured photoreactors. Beilstein J Org Chem 2020; 16:2484-2504. [PMID: 33093928 PMCID: PMC7554662 DOI: 10.3762/bjoc.16.202] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023] Open
Abstract
Photochemical activation routes are gaining the attention of the scientific community since they can offer an alternative to the traditional chemical industry that mainly utilizes thermochemical activation of molecules. Photoreactions are fast and selective, which would potentially reduce the downstream costs significantly if the process is optimized properly. With the transition towards green chemistry, the traditional batch photoreactor operation is becoming abundant in this field. Process intensification efforts led to micro- and mesostructured flow photoreactors. In this work, we are reviewing structured photoreactors by elaborating on the bottleneck of this field: the development of an efficient scale-up strategy. In line with this, micro- and mesostructured bench-scale photoreactors were evaluated based on a new benchmark called photochemical space time yield (mol·day−1·kW−1), which takes into account the energy efficiency of the photoreactors. It was manifested that along with the selection of the photoreactor dimensions and an appropriate light source, optimization of the process conditions, such as the residence time and the concentration of the photoactive molecule is also crucial for an efficient photoreactor operation. In this paper, we are aiming to give a comprehensive understanding for scale-up strategies by benchmarking selected photoreactors and by discussing transport phenomena in several other photoreactors.
Collapse
Affiliation(s)
- Emine Kayahan
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium
| | - Mathias Jacobs
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium
| | - Leen Braeken
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Leen Cj Thomassen
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Simon Kuhn
- Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Tom van Gerven
- Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - M Enis Leblebici
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Razi Asrami M, Tran NN, Saien J, Hessel V. Mass Transfer Characterization of Ionic Liquid Solvents for Extracting Phenol from Aqueous Phase in a Microscale Coiled Flow Inverter. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahdieh Razi Asrami
- Department of Applied Chemistry, Bu-Ali Sina University, Hamadan 65174, Iran
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Chemical Engineering, Can Tho University, Can Tho 910000, Vietnam
| | - Javad Saien
- Department of Applied Chemistry, Bu-Ali Sina University, Hamadan 65174, Iran
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
27
|
Design, Fundamental Principles of Fabrication and Applications of Microreactors. Processes (Basel) 2020. [DOI: 10.3390/pr8080891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study highlights the development of small-scale reactors, in the form of microstructures with microchannel networking. Microreactors have achieved an impressive reputation, regarding chemical synthesis ability and their applications in the engineering, pharmaceutical, and biological fields. This review elaborates on the fabrication, construction, and schematic fundamentals in the design of the microreactors and microchannels. The materials used in the fabrication or construction of the microreactors include silicon, polymer, and glass. A general review of the application of microreactors in medical, biological, and engineering fields is carried out and significant improvements in these areas are reported. Finally, we highlight the flow patterns, mixing, and scaling-up of multiphase microreactor developments, with emphasis on the more significant industrial applications.
Collapse
|
28
|
Abraham E, Prabhu A, Soundarajan B, Narayanasamy S. Experimental Study on Influencing Factors of Microfluidic Reactive Extraction of Citric Acid Using TOA in 1-Decanol and Flow Schemes for Performance Improvement. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Eldho Abraham
- Department of Chemical Engineering, National Institute of Technology, Calicut, Kerala 673601, India
| | - Anuvind Prabhu
- Department of Mechanical Engineering, National Institute of Technology, Calicut, Kerala 673601, India
| | | | - Selvaraju Narayanasamy
- *Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
29
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
30
|
Steiner A, Roth PMC, Strauss FJ, Gauron G, Tekautz G, Winter M, Williams JD, Kappe CO. Multikilogram per Hour Continuous Photochemical Benzylic Brominations Applying a Smart Dimensioning Scale-up Strategy. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00239] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexander Steiner
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Philippe M. C. Roth
- Corning Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156 Samois sur Seine, 77215 Avon Cedex, France
| | - Franz J. Strauss
- Microinnova Engineering GmbH, Europapark 1, 8412 Allerheiligen bei Wildon, Austria
| | - Guillaume Gauron
- Corning Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156 Samois sur Seine, 77215 Avon Cedex, France
| | - Günter Tekautz
- Microinnova Engineering GmbH, Europapark 1, 8412 Allerheiligen bei Wildon, Austria
| | - Marc Winter
- Corning Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156 Samois sur Seine, 77215 Avon Cedex, France
| | - Jason D. Williams
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
31
|
Horn CR, Gremetz S. A method to determine the correct photocatalyst concentration for photooxidation reactions conducted in continuous flow reactors. Beilstein J Org Chem 2020; 16:871-879. [PMID: 32461768 PMCID: PMC7214865 DOI: 10.3762/bjoc.16.78] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
When conducting a photooxidation reaction, the key question is what is the best amount of photocatalyst to be used in the reaction? This work demonstrates a fast and simple method to calculate a reliable concentration of the photocatalyst that will ensure an efficient reaction. The determination is based on shifting the calculation away from the concentration of the compound to be oxidized to utilizing the limitations on the total light dose that can be delivered to the catalyst. These limitations are defined by the photoflow setup, specifically the channel height and the emission peak of the light source. This method was tested and shown to work well for three catalysts with different absorption properties through using LEDs with emission maxima close to the absorption maximum of each catalyst.
Collapse
Affiliation(s)
- Clemens R Horn
- Corning European Technology Center, 7 Bis Avenue de Valvins, F-77215 Avon Cedex, France
| | - Sylvain Gremetz
- Corning European Technology Center, 7 Bis Avenue de Valvins, F-77215 Avon Cedex, France
| |
Collapse
|
32
|
He Y, Guo S, Chen K, Li S, Yin S. Green Effectively Enhanced Extraction to Produce Yttrium(
III
) in Slug Flow Microreactor. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan He
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming Yunnan 650093 China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming Yunnan 650093 China
- Kunming Key Laboratory of Special Metallurgy Kunming Yunnan 650093 China
| | - Shenghui Guo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming Yunnan 650093 China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming Yunnan 650093 China
- Kunming Key Laboratory of Special Metallurgy Kunming Yunnan 650093 China
| | - Kaihua Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming Yunnan 650093 China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming Yunnan 650093 China
- Kunming Key Laboratory of Special Metallurgy Kunming Yunnan 650093 China
| | - Shiwei Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming Yunnan 650093 China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming Yunnan 650093 China
- Kunming Key Laboratory of Special Metallurgy Kunming Yunnan 650093 China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming Yunnan 650093 China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming Yunnan 650093 China
- Kunming Key Laboratory of Special Metallurgy Kunming Yunnan 650093 China
| |
Collapse
|
33
|
Cheng D, Chen FE. Experimental and Numerical Studies of the Phase-Transfer-Catalyzed Wittig Reaction in Liquid–Liquid Slug-Flow Microchannels. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dang Cheng
- Engineering Center for Catalysis and Synthesis of Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering & Technology Research Center for Industrial Asymmetric Catalysis of Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center for Catalysis and Synthesis of Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering & Technology Research Center for Industrial Asymmetric Catalysis of Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
34
|
Yuan WQ, Zhou SQ, Jiang YY, Li HH, Zheng HD. Organocatalyzed styrene epoxidation accelerated by continuous-flow reactor. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00065-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Shrimal P, Jadeja G, Patel S. A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Desir P, Chen TY, Bracconi M, Saha B, Maestri M, Vlachos DG. Experiments and computations of microfluidic liquid–liquid flow patterns. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00332k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A high accuracy model is built using machine learning to predict flow patterns, providing a powerful tool for continuous flow microreactor design.
Collapse
Affiliation(s)
- Pierre Desir
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Delaware 19716
- USA
| | - Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Delaware 19716
- USA
| | - Mauro Bracconi
- Laboratory of Catalysis and Catalytic Processes
- Dipartimento di Energia
- Politecnico di Milano
- 20156 Milano
- Italy
| | - Basudeb Saha
- Catalysis Center for Energy Innovation
- Delaware 19716
- USA
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes
- Dipartimento di Energia
- Politecnico di Milano
- 20156 Milano
- Italy
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Delaware 19716
- USA
- Catalysis Center for Energy Innovation
| |
Collapse
|
37
|
Hosseini F, Rahimi M. Computational fluid dynamics and experimental investigations on liquid–liquid mass transfer in T-type microchannels with different mixing channel barrier shapes. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1706569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fardin Hosseini
- CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, Iran
| | - Masoud Rahimi
- CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, Iran
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Wang S, Zhang J, Peng F, Tang Z, Sun Y. Enhanced Hydroformylation in a Continuous Flow Microreactor System. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sijing Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Jie Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Fei Peng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Zhiyong Tang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People’s Republic of China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People’s Republic of China
| |
Collapse
|
39
|
Breen CP, Jamison TF. Continuous Flow Synthesis of ACE Inhibitors From N-Substituted l-Alanine Derivatives. Chemistry 2019; 25:14527-14531. [PMID: 31625640 DOI: 10.1002/chem.201904400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 12/25/2022]
Abstract
A strategy for the continuous flow synthesis of angiotensin converting enzyme (ACE) inhibitors is described. An optimization effort guided by in situ IR analysis resulted in a general amide coupling approach facilitated by N-carboxyanhydride (NCA) activation that was further characterized by reaction kinetics analysis in batch. The three-step continuous process was demonstrated by synthesizing 8 different ACE inhibitors in up to 88 % yield with throughputs in the range of ≈0.5 g h-1 , all while avoiding both isolation of reactive intermediates and process intensive reaction conditions. The process was further developed by preparing enalapril, a World Health Organization (WHO) essential medicine, in an industrially relevant flow platform that scaled throughput to ≈1 g h-1 .
Collapse
Affiliation(s)
- Christopher P Breen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Timothy F Jamison
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
40
|
He Y, Guo S, Chen K, Zhang L, Li S, Yin S. Application of microchemical technology in mass transfer behavior contrastive research of rare earth extraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Hommes A, Heeres HJ, Yue J. Catalytic Transformation of Biomass Derivatives to Value‐Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem 2019. [DOI: 10.1002/cctc.201900807] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Arne Hommes
- Department of Chemical Engineering Engineering and Technology Institute GroningenUniversity of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| | - Hero Jan Heeres
- Department of Chemical Engineering Engineering and Technology Institute GroningenUniversity of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| | - Jun Yue
- Department of Chemical Engineering Engineering and Technology Institute GroningenUniversity of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| |
Collapse
|
42
|
Hommes A, de Wit T, Euverink GJW, Yue J. Enzymatic Biodiesel Synthesis by the Biphasic Esterification of Oleic Acid and 1-Butanol in Microreactors. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Brandner JJ. In-Situ Measurements in Microscale Gas Flows-Conventional Sensors or Something Else? MICROMACHINES 2019; 10:E292. [PMID: 31035685 PMCID: PMC6562918 DOI: 10.3390/mi10050292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/03/2022]
Abstract
Within the last few decades miniaturization has a driving force in almost all areas of technology, leading to a tremendous intensification of systems and processes. Information technology provides now data density several orders of magnitude higher than a few years ago, and the smartphone technology includes, as well the simple ability to communicate with others, features like internet, video and music streaming, but also implementation of the global positioning system, environment sensors or measurement systems for individual health. So-called wearables are everywhere, from the physio-parameter sensing wrist smart watch up to the measurement of heart rates by underwear. This trend holds also for gas flow applications, where complex flow arrangements and measurement systems formerly designed for a macro scale have been transferred into miniaturized versions. Thus, those systems took advantage of the increased surface to volume ratio as well as of the improved heat and mass transfer behavior of miniaturized equipment. In accordance, disadvantages like gas flow mal-distribution on parallelized mini- or micro tubes or channels as well as increased pressure losses due to the minimized hydraulic diameters and an increased roughness-to-dimension ratio have to be taken into account. Furthermore, major problems are arising for measurement and control to be implemented for in-situ and/or in-operando measurements. Currently, correlated measurements are widely discussed to obtain a more comprehensive view to a process by using a broad variety of measurement techniques complementing each other. Techniques for correlated measurements may include commonly used techniques like thermocouples or pressure sensors as well as more complex systems like gas chromatography, mass spectrometry, infrared or ultraviolet spectroscopy and many others. Some of these techniques can be miniaturized, some of them cannot yet. Those should, nevertheless, be able to conduct measurements at the same location and the same time, preferably in-situ and in-operando. Therefore, combinations of measurement instruments might be necessary, which will provide complementary techniques for accessing local process information. A recently more intensively discussed additional possibility is the application of nuclear magnetic resonance (NMR) systems, which might be useful in combination with other, more conventional measurement techniques. NMR is currently undergoing a tremendous change from large-scale to benchtop measurement systems, and it will most likely be further miniaturized. NMR allows a multitude of different measurements, which are normally covered by several instruments. Additionally, NMR can be combined very well with other measurement equipment to perform correlative in-situ and in-operando measurements. Such combinations of several instruments would allow us to retrieve an "information cloud" of a process. This paper will present a view of some common measurement techniques and the difficulties of applying them on one hand in a miniaturized scale, and on the other hand in a correlative mode. Basic suggestions to achieve the above-mentioned objective by a combination of different methods including NMR will be given.
Collapse
Affiliation(s)
- Juergen J Brandner
- Staff Position Microstructures and Process Sensors (MPS), Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
44
|
|
45
|
Rave A, Kuwertz R, Fieg G, Heck J. Characterization of a Modular, Scalable Millistructured Plate Reactor. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander Rave
- Hamburg University of TechnologyInstitute of Process and Plant Engineering Am Schwarzenberg-Campus 4 21073 Hamburg Germany
- Ehrfeld Mikrotechnik GmbH Mikroforum Ring 1 55234 Wendelsheim Germany
| | - Rafael Kuwertz
- Ehrfeld Mikrotechnik GmbH Mikroforum Ring 1 55234 Wendelsheim Germany
| | - Georg Fieg
- Hamburg University of TechnologyInstitute of Process and Plant Engineering Am Schwarzenberg-Campus 4 21073 Hamburg Germany
| | - Joachim Heck
- Ehrfeld Mikrotechnik GmbH Mikroforum Ring 1 55234 Wendelsheim Germany
| |
Collapse
|
46
|
Potdar A, Thomassen LCJ, Kuhn S. Structured Porous Millireactors for Liquid‐Liquid Chemical Reactions. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aditi Potdar
- KU LeuvenDepartment of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| | - Leen C. J. Thomassen
- KU LeuvenDepartment of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
- KU LeuvenFaculty of Industrial EngineeringLab4U Agoralaan building B box 8 3590 Diepenbeek Belgium
| | - Simon Kuhn
- KU LeuvenDepartment of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
47
|
Perspectives on the Use of Liquid Extraction for Radioisotope Purification. Molecules 2019; 24:molecules24020334. [PMID: 30669256 PMCID: PMC6359044 DOI: 10.3390/molecules24020334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
The reliable and efficient production of radioisotopes for diagnosis and therapy is becoming an increasingly important capability, due to their demonstrated utility in Nuclear Medicine applications. Starting from the first processes involving the separation of 99mTc from irradiated materials, several methods and concepts have been developed to selectively extract the radioisotopes of interest. Even though the initial methods were based on liquid-liquid extraction (LLE) approaches, the perceived difficulty in automating such processes has slowly moved the focus towards resin separation methods, whose basic chemical principles are often similar to the LLE ones in terms of chelators and phases. However, the emerging field of flow chemistry allows LLE to be easily automated and operated in a continuous manner, resulting in an even improved efficiency and reliability. In this contribution, we will outline the fundamentals of LLE processes and their translation into flow-based apparatuses; in addition, we will provide examples of radioisotope separations that have been achieved using LLE methods. This article is intended to offer insights about the future potential of LLE to purify medically relevant radioisotopes.
Collapse
|
48
|
Nieves-Remacha MJ, Torres M, Ruiz-Abad M, Rincón JA, Cumming GR, Garcia-Losada P. Scale-up of N-alkylation reaction using phase-transfer catalysis with integrated separation in flow. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00203g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scaling-up phase-transfer catalysis in flow.
Collapse
Affiliation(s)
| | - Myriam Torres
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| | - María Ruiz-Abad
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| | - Juan A. Rincón
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| | - Graham R. Cumming
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| | - Pablo Garcia-Losada
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| |
Collapse
|
49
|
Abstract
This minireview offers an up-to-date overview of enabling tools for biphasic liquid–liquid reactions in flow.
Collapse
|
50
|
Karan D, Khan SA. Mesoscale triphasic flow reactors for metal catalyzed gas–liquid reactions. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00150f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design and operation of a mesoscale triphasic reactor for flow hydrogenations, capable of delivering kg per day productivity from a single channel.
Collapse
Affiliation(s)
- Dogancan Karan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 117576 Singapore
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 117576 Singapore
| |
Collapse
|