1
|
Jiang L, Guo K, Chen Y, Xiang N. Droplet Microfluidics for Current Cancer Research: From Single-Cell Analysis to 3D Cell Culture. ACS Biomater Sci Eng 2024; 10:1335-1354. [PMID: 38420753 DOI: 10.1021/acsbiomaterials.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cancer is the second leading cause of death worldwide. Differences in drug resistance and treatment response caused by the heterogeneity of cancer cells are the primary reasons for poor cancer therapy outcomes in patients. In addition, current in vitro anticancer drug-screening methods rely on two-dimensional monolayer-cultured cancer cells, which cannot accurately predict drug behavior in vivo. Therefore, a powerful tool to study the heterogeneity of cancer cells and produce effective in vitro tumor models is warranted to leverage cancer research. Droplet microfluidics has become a powerful platform for the single-cell analysis of cancer cells and three-dimensional cell culture of in vitro tumor spheroids. In this review, we discuss the use of droplet microfluidics in cancer research. Droplet microfluidic technologies, including single- or double-emulsion droplet generation and passive- or active-droplet manipulation, are concisely discussed. Recent advances in droplet microfluidics for single-cell analysis of cancer cells, circulating tumor cells, and scaffold-free/based 3D cell culture of tumor spheroids have been systematically introduced. Finally, the challenges that must be overcome for the further application of droplet microfluidics in cancer research are discussed.
Collapse
Affiliation(s)
- Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Rybak E, Kowalczyk P, Czarnocka-Śniadała S, Wojasiński M, Trzciński J, Ciach T. Microfluidic-Assisted Formulation of ε-Polycaprolactone Nanoparticles and Evaluation of Their Properties and In Vitro Cell Uptake. Polymers (Basel) 2023; 15:4375. [PMID: 38006099 PMCID: PMC10674307 DOI: 10.3390/polym15224375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The nanoprecipitation method was used to formulate ε-polycaprolactone (PCL) into fluorescent nanoparticles. Two methods of mixing the phases were evaluated: introducing the organic phase into the aqueous phase dropwise and via a specially designed microfluidic device. As a result of the nanoprecipitation process, fluorescein-loaded nanoparticles (NPs) with a mean diameter of 127 ± 3 nm and polydispersity index (PDI) of 0.180 ± 0.009 were obtained. The profiles of dye release were determined in vitro using dialysis membrane tubing, and the results showed a controlled release of the dye from NPs. In addition, the cytotoxicity of the NPs was assessed using an MTT assay. The PCL NPs were shown to be safe and non-toxic to L929 and MG63 cells. The results of the present study have revealed that PCL NPs represent a promising system for developing new drug delivery systems.
Collapse
Affiliation(s)
- Ewa Rybak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (P.K.); (M.W.); (J.T.); (T.C.)
| | - Piotr Kowalczyk
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (P.K.); (M.W.); (J.T.); (T.C.)
| | | | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (P.K.); (M.W.); (J.T.); (T.C.)
| | - Jakub Trzciński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (P.K.); (M.W.); (J.T.); (T.C.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (P.K.); (M.W.); (J.T.); (T.C.)
- Nanosanguis S.A., Rakowiecka 36, 02-532 Warsaw, Poland;
| |
Collapse
|
3
|
Brzeziński M, Gonciarz W, Kost B, Mikołajczyk-Chmiela M. Can histamine cause an enhancement of the cellular uptake and cytotoxicity of doxorubicin-loaded polylactide nanoparticles? Eur J Pharm Sci 2023; 185:106438. [PMID: 37001569 DOI: 10.1016/j.ejps.2023.106438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Histamine (His) in humans is physiologically involved in neurotransmission and increases vascular permeability during the development of inflammatory response and immunity. It could be used to enhance drug-loaded nanoparticles (NPs) distribution. However, it cannot be freely delivered due to the risk of His-dose-dependent deleterious effects. His can be attached to the polymeric backbone during polymerization to overcome this limitation. In this study, His was used as an initiator of lactide polymerization, and the obtained macromolecules were subsequently used to prepare doxorubicin (DOX)-loaded NPs by nanoprecipitation and microfluidics for examination of anti-cancer properties. Notably, the in vitro activity towards gastric cancer cells (AGS) of the NPs composed of histamine-functionalized polylactides (PLAs) was greatly enhanced compared to control NPs built from hydroxy‑functionalized PLAs. Furthermore, Zonula occludens-1 (ZO-1) tight junction protein production was significantly diminished after treating cells with DOX-loaded NPs assembled with PLAs with histamine residues. These results demonstrate the synergistic effect in cytotoxicity towards gastric cancer cells of DOX and the histamine that are carried by NPs. It is believed that His-DOX NPs strategy may lead to effective, targeted, and low-toxic delivery of drugs into cancer cells.
Collapse
|
4
|
PEGylated and functionalized polylactide-based nanocapsules: An overview. Int J Pharm 2023; 636:122760. [PMID: 36858134 DOI: 10.1016/j.ijpharm.2023.122760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Polymeric nanocapsules (NC) are versatile mixed vesicular nanocarriers, generally containing a lipid core with a polymeric wall. They have been first developed over four decades ago with outstanding applicability in the cosmetic and pharmaceutical fields. Biodegradable polyesters are frequently used in nanocapsule preparation and among them, polylactic acid (PLA) derivatives and copolymers, such as PLGA and amphiphilic block copolymers, are widely used and considered safe for different administration routes. PLA functionalization strategies have been developed to obtain more versatile polymers and to allow the conjugation with bioactive ligands for cell-targeted NC. This review intends to provide steps in the evolution of NC since its first report and the recent literature on PLA-based NC applications. PLA-based polymer synthesis and surface modifications are included, as well as the use of NC as a novel tool for combined treatment, diagnostics, and imaging in one delivery system. Furthermore, the use of NC to carry therapeutic and/or imaging agents for different diseases, mainly cancer, inflammation, and infections is presented and reviewed. Constraints that impair translation to the clinic are discussed to provide safe and reproducible PLA-based nanocapsules on the market. We reviewed the entire period in the literature where the term "nanocapsules" appears for the first time until the present day, selecting original scientific publications and the most relevant patent literature related to PLA-based NC. We presented to readers a historical overview of these Sui generis nanostructures.
Collapse
|
5
|
Meghana MC, Nandhini C, Benny L, George L, Varghese A. A road map on synthetic strategies and applications of biodegradable polymers. Polym Bull (Berl) 2022; 80:1-50. [PMID: 36530484 PMCID: PMC9735231 DOI: 10.1007/s00289-022-04565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have emerged as fascinating materials due to their non-toxicity, environmentally benign nature and good mechanical strength. The toxic effects of non-biodegradable plastics paved way for the development of sustainable and biodegradable polymers. The engineering of biodegradable polymers employing various strategies like radical ring opening polymerization, enzymatic ring opening polymerization, anionic ring opening polymerization, photo-initiated radical polymerization, chemoenzymatic method, enzymatic polymerization, ring opening polymerization and coordinative ring opening polymerization have been discussed in this review. The application of biodegradable polymeric nanoparticles in the biomedical field and cosmetic industry is considered to be an emerging field of interest. However, this review mainly highlights the applications of selected biodegradable polymers like polylactic acid, poly(ε-caprolactone), polyethylene glycol, polyhydroxyalkanoates, poly(lactide-co-glycolide) and polytrimethyl carbonate in various fields like agriculture, biomedical, biosensing, food packaging, automobiles, wastewater treatment, textile and hygiene, cosmetics and electronic devices.
Collapse
Affiliation(s)
- M. C. Meghana
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - C. Nandhini
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Libina Benny
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| |
Collapse
|
6
|
Mu R, Bu N, Pang J, Wang L, Zhang Y. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods 2022; 11:3727. [PMID: 36429319 PMCID: PMC9689895 DOI: 10.3390/foods11223727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The development of novel materials with microstructures is now a trend in food science and technology. These microscale materials may be applied across all steps in food manufacturing, from raw materials to the final food products, as well as in the packaging, transport, and storage processes. Microfluidics is an advanced technology for controlling fluids in a microscale channel (1~100 μm), which integrates engineering, physics, chemistry, nanotechnology, etc. This technology allows unit operations to occur in devices that are closer in size to the expected structural elements. Therefore, microfluidics is considered a promising technology to develop micro/nanostructures for delivery purposes to improve the quality and safety of foods. This review concentrates on the recent developments of microfluidic systems and their novel applications in food science and technology, including microfibers/films via microfluidic spinning technology for food packaging, droplet microfluidics for food micro-/nanoemulsifications and encapsulations, etc.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
8
|
Samy M, Abdallah HM, Awad HM, Ayoub MMH. In vitro release and cytotoxicity activity of 5-fluorouracil entrapped polycaprolactone nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03804-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Zhang W, Ye W, Wang Y, Yan Y. Microfluidic fabrication of tunable alginate-based microfibers for the stable immobilization of enzymes. Biotechnol J 2022; 17:e2200098. [PMID: 35544361 DOI: 10.1002/biot.202200098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 05/07/2022] [Indexed: 11/11/2022]
Abstract
Immobilized enzymes have drawn extensive attention due to their enhanced stability, easy separation from reaction mixture, and prominent recyclability. Nevertheless, it is still an ongoing challenge to develop potent immobilization techniques which are capable of stable enzyme encapsulation, minimal loss of activity, and modulability for various enzymes and applications. Here, microfibers with tunable size and composition were fabricated using a home-made microfluidic device. These microfibers were able to efficiently encapsulate bovine serum albumin (BSA), glucose oxidase (GOx), and horseradish peroxidase (HRP). But the physically adsorbed enzymes readily diffused into the catalytic reaction system. The leakage of enzymes could be substantially inhibited by conjugating to polyacrylic acid (PAA) and incorporating into alginate-based microfibers, enabling stable immobilization, improved recyclability, and enhanced thermostability. In addition, GOx and HRP-loaded microfibers were fabricated under the optimized conditions for the visual detection of glucose using the cascade reaction of these enzymes, showing sensitive color change to glucose with concentration range of 0-2 mM. Due to the tunability and versatility, this microfluidic-based microfiber platform may provide a valuable approach to the enzyme immobilization for the cascade catalysis and diagnoses with multiple clinical markers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wen Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310034, China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310034, China
| | - Yajun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310034, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310034, China
| |
Collapse
|
10
|
Brzeziński M, Socka M, Makowski T, Kost B, Cieślak M, Królewska-Golińska K. Microfluidic-assisted nanoprecipitation of biodegradable nanoparticles composed of PTMC/PCL (co)polymers, tannic acid and doxorubicin for cancer treatment. Colloids Surf B Biointerfaces 2021; 201:111598. [PMID: 33618081 DOI: 10.1016/j.colsurfb.2021.111598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
This study was aimed towards the development of a novel microfluidic approach for the preparation of (co)polymeric and hybrid nanoparticles (NPs) composed of (co)polymers/tannic acid (TA) in the microfluidic flow-focusing glass-capillary device. The MiliQ water was used as water phase, whereas the organic phase was composed of poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) homopolymers and (co)polymers with different proportion of comonomers which were prepared via enzymatic polymerization that allows avoiding the usage of potentially toxic catalyst. To prepare hybrid NPs, TA was additionally added to the organic phase. Subsequently, as a result of mixing between these distinct phases in microfluidic channels, the nanoprecipitation in the form of spherical NPs occurs. The size of NPs was tuned over the range of 140-230 nm by controlling phase flow rates and the composition of NPs. Moreover, the release studies of the encapsulated anticancer drug doxorubicin (DOX) demonstrated that the drug release is greatly influenced by the (co)polymers composition, their molecular weight, NPs size, and the presence of TA. The antitumor activities of the (co)polymeric and hybrid NPs toward breast cancer cells (MCF-7) were tested in vitro. Among all tested formulation, the NPs composed of PCL/TA most efficiently inhibit the cell proliferation of MCF-7 cells, most importantly, their efficiency was higher than free DOX. The proposed strategy may provide an efficient alternative for the construction of nanocarriers with great potential in anticancer therapy.
Collapse
Affiliation(s)
- Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Marta Socka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marcin Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
11
|
Al Nuumani R, Smoukov SK, Bolognesi G, Vladisavljević GT. Highly Porous Magnetic Janus Microparticles with Asymmetric Surface Topology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12702-12711. [PMID: 33105997 DOI: 10.1021/acs.langmuir.0c02315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monodispersed magnetic Janus particles composed of a porous polystyrene portion and a nonporous poly(vinyl acetate) portion with embedded oleic acid-coated magnetic nanoparticles were generated using microfluidic emulsification followed by two distinct phase separation events triggered by solvent evaporation. The template droplets were composed of 2 wt % polystyrene, 2 wt % poly(vinyl acetate), and 0.5-2 wt % n-heptane-based magnetic fluid dissolved in dichloromethane (DCM). The porosity of polystyrene compartments was the result of phase separation between a nonvolatile nonsolvent (n-heptane) and a volatile solvent (DCM) within polystyrene-rich phase. The focused ion beam cross-sectioning and scanning electron microscopy (SEM) imaging revealed high surface porosity of polystyrene compartments with negligible porosity of poly(vinyl acetate) parts, which can be exploited to increase the wettability contrast between the two polymers and enhance bubble generation in bubble-driven micromotors. The porosity of the polystyrene portion was controlled by varying the fraction of n-heptane in the dispersed phase. The particle composition was confirmed by scanning electron microscopy-energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The fabricated particles were successfully magnetized when subjected to an external magnetic field, which led to their aggregation into regular 2D assemblies. The particle clusters composed of two to four individual particles could be rotated with a rotating magnetic field. Microfluidic generation of highly porous Janus particles with compositional, topological, and magnetic asymmetry provides a cost-effective, easy-to-implement yet highly robust and versatile strategy for the manufacturing of multifunctional smart particles.
Collapse
Affiliation(s)
- Ruqaiya Al Nuumani
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Stoyan K Smoukov
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Guido Bolognesi
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Goran T Vladisavljević
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
12
|
Microfluidic-assisted production of poly(ɛ-caprolactone) and cellulose acetate nanoparticles: effects of polymers, surfactants, and flow rate ratios. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03367-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Moreira ACG, Manrique YA, Martins IM, Fernandes IP, Rodrigues AE, Lopes JCB, Dias MM. Continuous Production of Melamine-Formaldehyde Microcapsules Using a Mesostructured Reactor. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana C. G. Moreira
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Yaidelin A. Manrique
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Isabel M. Martins
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
- Devan Chemicals, Parque da Ciência e Tecnologia, Rua Eng. Frederico Ulrich, No. 2650, Moreira da Maia 4470-605, Portugal
| | - Isabel P. Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - José C. B. Lopes
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Madalena M. Dias
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
14
|
Tian Y, Lipke EA. Microfluidic Production of Cell-Laden Microspheroidal Hydrogels with Different Geometric Shapes. ACS Biomater Sci Eng 2020; 6:6435-6444. [DOI: 10.1021/acsbiomaterials.0c00980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan Tian
- Auburn University, 212 Ross Hall, Auburn, Alabama 36849, United States
| | | |
Collapse
|
15
|
Heshmatnezhad F, Nazar ARS. Synthesis of Polycaprolactone Nanoparticles through Flow‐Focusing Microfluidic‐Assisted Nanoprecipitation. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Fazlollah Heshmatnezhad
- University of Isfahan Department of Chemical Engineering Faculty of Engineering Hezar-Jerib Ave 817467344 Isfahan Iran
| | - Ali Reza Solaimany Nazar
- University of Isfahan Department of Chemical Engineering Faculty of Engineering Hezar-Jerib Ave 817467344 Isfahan Iran
| |
Collapse
|
16
|
Shrimal P, Jadeja G, Patel S. Microfluidics nanoprecipitation of telmisartan nanoparticles: effect of process and formulation parameters. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01289-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Samy M, Abd El-Alim SH, Rabia AEG, Amin A, Ayoub MMH. Formulation, characterization and in vitro release study of 5-fluorouracil loaded chitosan nanoparticles. Int J Biol Macromol 2020; 156:783-791. [PMID: 32320805 DOI: 10.1016/j.ijbiomac.2020.04.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/05/2023]
Abstract
The main objective of this study was to evaluate the most suitable conditions to prepare 5-fluorouracil (5-FU) loaded chitosan nanoparticles (CSNPs). 5-FU loaded CSNPs were prepared employing the ionic gelation technique using three different molecular weights of CS with the polyanion sodium tripolyphosphate (STPP) as cross-linking agent. The preparation was based on the ionic interaction of positively charged CS and negatively charged STPP. The entrapment efficiency (EE%) of CSNPs was in the range of 3.86-21.82% EE% exhibited a clear increase with increasing CS concentration. The averge particles size was in the nanosize range and monodisperse in nature whereas transmission electron microscope micrographs showed that the prepared nanoparticles have a spherical shape. Fourier transform infrared (FTIR), X- ray differaction (XRD) and differential scanning calorimetry (DSC) confirmed successful incorporation of 5-FU in prepared CSNPs. In vitro release of 5-FU from selected formulations exhibited sustained release from the nanoparticles where slower release was observed when higher molecular weight CS was used. The study of drug release kinetics revealed that the release of 5-FU from CSNPs followed a diffusion controlled pattern.
Collapse
Affiliation(s)
- Moshera Samy
- Polymers and Pigments Department, National Research Centre, Dokki 12622, Giza, Egypt.
| | | | - Abd El Gawad Rabia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amal Amin
- Polymers and Pigments Department, National Research Centre, Dokki 12622, Giza, Egypt
| | - Magdy M H Ayoub
- Polymers and Pigments Department, National Research Centre, Dokki 12622, Giza, Egypt
| |
Collapse
|
18
|
On-chip controlled synthesis of polycaprolactone nanoparticles using continuous-flow microfluidic devices. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00092-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Xu Y, Hu B, Xu J, Wu J, Ye B. Preparation of Biodegradable Polymeric Nanocapsules for Treatment of Malignant Tumor Using Coaxial Capillary Microfluidic Device. Cancer Biother Radiopharm 2020; 35:570-580. [PMID: 32196366 DOI: 10.1089/cbr.2019.3412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: Nanocapsules play a role in the targeted delivery of chemotherapy drugs. However, the traditional technology for preparation of nanocapsules is relatively complex with poor controllability, leading to large differences batch to batch. This study aimed to evaluate the quality of drugs-loaded nanocapsules (Drugs-NCs) fabricated by coaxial capillary microfluidic device, and inhibitory effect on malignant tumors. Materials and Methods: In this study, oxaliplatin, irinotecan, and 5-fluorouracil were selected as chemotherapy drugs, and Drugs-NCs were prepared by coaxial glass capillary microfluidic device. Next, transmission electron microscope was utilized to characterize surface morphology and particle size distribution of Drugs-NCs. Then, high performance liquid chromatography was used to determine the drug loading and encapsulation efficiency. Dialysis method was performed to measure the drug release of Drugs-NCs in vitro. To study the effects of Drugs + NCs on tumor growth in vivo, BALB/c (nu/nu) nude mice were used in vivo experiments. Results: The Drugs-NCs were spherical and uniform in size (103.4 nm). Besides, the encapsulation efficiencies of oxaliplatin, irinotecan, and 5-fluorouracil were 97.0%, 95.7%, and 15.6%, respectively. Moreover, drugs encapsulated in the nanocapsules released less and was pH-dependent, with more rapid release being observed at pH 5.5 group compared with pH 7.4 group. MTT assay and in vivo experiments indicated the inhibitory effect of Drugs-NCs on malignant tumors. Conclusion: The prepared nanocapsules had potential tumor targeting. Furthermore, coaxial capillary microfluidic device could be used as a promising microfluidic technology to fabricate multiple Drug-NCs.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Bingren Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jiong Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jianzhang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, PR China
| | - Bailiang Ye
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
20
|
Aghaei H, Solaimany Nazar AR. Continuous Production of the Nanoscale Liposome in a Double Flow-Focusing Microfluidic Device. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Halimeh Aghaei
- Department of Chemical Engineering, University of Isfahan, Isfahan 81746-72441, Iran
| | | |
Collapse
|
21
|
Gao K, Liu J, Fan Y, Zhang Y. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation. Biomed Microdevices 2019; 21:83. [DOI: 10.1007/s10544-019-0433-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Droplet-based microfluidic method for robust preparation of gold nanoparticles in axisymmetric flow focusing device. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Brzeziński M, Socka M, Kost B. Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. POLYM INT 2019. [DOI: 10.1002/pi.5753] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marek Brzeziński
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Marta Socka
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Bartłomiej Kost
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| |
Collapse
|
24
|
De AK, Ghosh A, Debnath SC, Sarkar B, Saha I, Adak MK. Modulation of physiological responses with TiO 2 nano-particle in Azolla pinnata R.Br. under 2,4-D toxicity. Mol Biol Rep 2018; 45:663-673. [PMID: 29872937 DOI: 10.1007/s11033-018-4203-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 11/25/2022]
Abstract
The present work is emphasised with the herbicidal tolerance of Azolla pinnata R.Br. and its modulation with TiO2 nano-particle. Both carbohydrate and nitrogen metabolism were effected with 2,4-D as herbicide and in few cases TiO2-NP had recovered few detrimental effects. From the nutrient status in Azolla it recorded the recovery of nitrogen as well as potassium by TiO2-NP but not in case of phosphorus. However, a conversion of nitrate to ammonium was more induced by TiO2-NP under herbicidal toxicity. Similar results were obtained for inter-conversion of amino acid-nitrate pool, but no changes with glutamine synthase activity with TiO2-NP. Initially, the effects of 2,4-D was monitored with changes of chlorophyll content but had not been recovered with nanoparticle. Photosynthetic reserves expressed as both total and reducing sugar were insensitive to TiO2-NP interference but activity of soluble and wall bound invertase was in reverse trend as compared to control. The 2,4-D mediated changes of redox and its oxidative stress was ameliorated in plants with over expressed ADH activity. As a whole the Azolla bio system with TiO2 supplementation may be useful in sustenance against 2,4-D toxicity through recovery of nitrogen metabolism. Thus, Azolla-TiO2-NP bio system would be realised to monitor the herbicidal toxicity in soil and its possible bioremediation.
Collapse
Affiliation(s)
- Arnab Kumar De
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Subhas Chandra Debnath
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Bipul Sarkar
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Indraneel Saha
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
25
|
Zhang J, Luo X. Mixing Performance of a 3D Micro T-Mixer with Swirl-Inducing Inlets and Rectangular Constriction. MICROMACHINES 2018; 9:E199. [PMID: 30424132 PMCID: PMC6187579 DOI: 10.3390/mi9050199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
In this paper, three novel 3D micro T-mixers, namely, a micro T-mixer with swirl-inducing inlets (TMSI), a micro T-mixer with a rectangular constriction (TMRC), and a micro T-mixer with swirl-inducing inlets and a rectangular constriction (TMSC), were proposed on the basis of the original 3D micro T-mixer (OTM). The flow and mixing performance of these micromixers was numerically analyzed using COMSOL Multiphysics package at a range of Reynolds numbers from 10 to 70. Results show that the three proposed 3D micro T-mixers have achieved better mixing performance than OTM. Due to the coupling effect of two swirl-inducing inlets and a rectangular constriction, the maximum mixing index and pressure drop appeared in TMSC among the four micromixers especially; the mixing index of TMSC reaches 91.8% at Re = 70, indicating that TMSC can achieve effective mixing in a short channel length, but has a slightly higher pressure drop than TMSI and TMRC.
Collapse
Affiliation(s)
- Jinxin Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xiaoping Luo
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
26
|
Othman R, Vladisavljević GT, Simone E, Nagy ZK, Holdich RG. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays. CRYSTAL GROWTH & DESIGN 2017; 17:6692-6702. [PMID: 29234241 PMCID: PMC5722433 DOI: 10.1021/acs.cgd.7b01307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Indexed: 05/25/2023]
Abstract
Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L-1), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L-1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.
Collapse
Affiliation(s)
- Rahimah Othman
- Department
of Chemical Engineering, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K.
- School
of Bioprocess Engineering, Universiti Malaysia
Perlis, Kompleks Pusat
Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia
| | - Goran T. Vladisavljević
- Department
of Chemical Engineering, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Elena Simone
- Department
of Chemical Engineering, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K.
- School
of Food Science and Nutrition, University
of Leeds, Leeds, LS29JT, U.K.
| | - Zoltan K. Nagy
- Department
of Chemical Engineering, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K.
- School
of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2100, United States
| | - Richard G. Holdich
- Department
of Chemical Engineering, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K.
| |
Collapse
|
27
|
Amin A, Samy M, Abd El-Alim SH, Rabia AEG, Ayoub MMH. Assessment of formulation parameters needed for successful vitamin C entrapped polycaprolactone nanoparticles. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1393816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amal Amin
- Polymers and Pigments Department, National Research Centre, Giza, Egypt
| | - Moshera Samy
- Polymers and Pigments Department, National Research Centre, Giza, Egypt
| | | | - Abd El Gawad Rabia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Magdy M. H. Ayoub
- Polymers and Pigments Department, National Research Centre, Giza, Egypt
| |
Collapse
|
28
|
Continuous synthesis of PVP stabilized biocompatible gold nanoparticles with a controlled size using a 3D glass capillary microfluidic device. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.05.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Madni A, Rahem MA, Tahir N, Sarfraz M, Jabar A, Rehman M, Kashif PM, Badshah SF, Khan KU, Santos HA. Non-invasive strategies for targeting the posterior segment of eye. Int J Pharm 2017; 530:326-345. [PMID: 28755994 DOI: 10.1016/j.ijpharm.2017.07.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/02/2023]
Abstract
The safe and effective treatment of eye diseases has been remained a global myth. Several advancements have been done and various drug delivery and treatment techniques have been suggested. The Posterior segment disorders are the leading cause of visual impairments and blindness. Targeting the therapeutic agents to the anterior and posterior segments of the eye has attracted extensive attention from the scientific community. Significant key factors in the success of ocular therapy are the development of safe, effective, economic and non-invasive novel drug delivery systems. These specialized non-invasive ocular drug delivery systems revolutionized the drug delivery strategies by overcoming the limitations, provided targeted delivery to the ocular tissues by avoiding larger doses, and reducing the toxicity encountered by the conventional approaches. These non-invasive systems are fabricated by ingredients encompassing biodegradability, biocompatibility, mucoadhesion, solubility and permeability enhancement and stimuli responsiveness. The variety of routes are utilized to provide minimally invasive drug delivery to the patients without any discomfort and pain. This review is focused on the brief introduction, types, significance, preparation techniques, components and mechanism of drug release of non-invasive systems, including in situ gelling systems, microspheres, iontophoresis, nanoparticles, nanosuspensions and specialized novel emulsions.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| | - Muhammad Abdur Rahem
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Nayab Tahir
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Muhammad Sarfraz
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Abdul Jabar
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Prince Muhammad Kashif
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Kifayat Ullah Khan
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
30
|
|
31
|
Odetade DF, Vladisavljevic GT. Microfluidic Fabrication of Hydrocortisone Nanocrystals Coated with Polymeric Stabilisers. MICROMACHINES 2016; 7:mi7120236. [PMID: 30404408 PMCID: PMC6190127 DOI: 10.3390/mi7120236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 11/26/2022]
Abstract
Hydrocortisone (HC) nanocrystals intended for parenteral administration of HC were produced by anti-solvent crystallisation within coaxial assemblies of pulled borosilicate glass capillaries using either co-current flow of aqueous and organic phases or counter-current flow focusing. The organic phase was composed of 7 mg/mL of HC in a 60:40 (v/v) mixture of ethanol and water and the anti-solvent was milli-Q water. The microfluidic mixers were fabricated with an orifice diameter of the inner capillary ranging from 50 µm to 400 µm and operated at the aqueous to organic phase flow rate ratio ranging from 5 to 25. The size of the nanocrystals decreased with increasing aqueous to organic flow rate ratio. The counter-current flow microfluidic mixers provided smaller nanocrystals than the co-current flow devices under the same conditions and for the same geometry, due to smaller diameter of the organic phase stream in the mixing zone. The Z-average particle size of the drug nanocrystals increased from 210–280 nm to 320–400 nm after coating the nanocrystals with 0.2 wt % aqueous solution of hydroxypropyl methylcellulose (HPMC) in a stirred vial. The differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) analyses carried out on the dried nanocrystals stabilized with HPMC, polyvinyl pyrrolidone (PVP), and sodium lauryl sulfate (SLS) were investigated and reported. The degree of crystallinity for the processed sample was lowest for the sample stabilised with HPMC and the highest for the raw HC powder.
Collapse
Affiliation(s)
- David F Odetade
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK.
| | - Goran T Vladisavljevic
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
32
|
Armada-Moreira A, Taipaleenmäki E, Itel F, Zhang Y, Städler B. Droplet-microfluidics towards the assembly of advanced building blocks in cell mimicry. NANOSCALE 2016; 8:19510-19522. [PMID: 27858045 DOI: 10.1039/c6nr07807a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Therapeutic cell mimicry is an approach in nanomedicine aiming at substituting for missing or lost cellular functions employing nature-inspired concepts. Pioneered decades ago, only now is this technology empowered with the arsenal of nanotechnological tools and ready to provide radically new solutions such as assembling synthetic organelles and artificial cells. One of these tools is droplet microfluidics (D-μF), which provides the flexibility to generate cargo-loaded particles with tunable size and shape in a fast and reliable manner, an essential requirement in cell mimicry. This minireview aims at outlining the developments in D-μF from the past four years focusing on the assembly of nanoparticles, Janus-shaped and other non-spherical particles as well as their loading with biological payloads.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark. and Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal and Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| |
Collapse
|
33
|
Othman R, Vladisavljević GT, Nagy ZK, Holdich RG. Encapsulation and Controlled Release of Rapamycin from Polycaprolactone Nanoparticles Prepared by Membrane Micromixing Combined with Antisolvent Precipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10685-10693. [PMID: 27690454 DOI: 10.1021/acs.langmuir.6b03178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rapamycin-loaded polycaprolactone nanoparticles (RAPA-PCL NPs) with a polydispersity index of 0.006-0.073 were fabricated by antisolvent precipitation combined with micromixing using a ringed stainless steel membrane with 10 μm diameter laser-drilled pores. The organic phase composed of 6 g L-1 PCL and 0.6-3.0 g L-1 RAPA in acetone was injected through the membrane at 140 L m-2 h-1 into 0.2 wt % aqueous poly(vinyl alcohol) solution stirred at 1300 rpm, resulting in a Z-average mean of 189-218 nm, a drug encapsulation efficiency of 98.8-98.9%, and a drug loading in the NPs of 9-33%. The encapsulation of RAPA was confirmed by UV-vis spectroscopy, XRD, DSC, and ATR-FTIR. The disappearance of sharp characteristic peaks of crystalline RAPA in the XRD pattern of RAPA-PCL NPs revealed that the drug was molecularly dispersed in the polymer matrix or RAPA and PCL were present in individual amorphous domains. The rate of drug release in pure water was negligible due to low aqueous solubility of RAPA. RAPA-PCL NPs released more than 91% of their drug cargo after 2.5 h in the release medium composed of 0.78-1.5 M of the hydrotropic agent N,N-diethylnicotinamide, 10 vol % ethanol, and 2 vol % Tween 20 in phosphate buffered saline. The dissolution of RAPA was slower when the drug was embedded in the PCL matrix of the NPs than dispersed in the form of pure RAPA nanocrystals.
Collapse
Affiliation(s)
- Rahimah Othman
- Department of Chemical Engineering, Loughborough University , Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K
- School of Bioprocess Engineering, Universiti Malaysia Perlis , Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia
| | - Goran T Vladisavljević
- Department of Chemical Engineering, Loughborough University , Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K
| | - Zoltan K Nagy
- Department of Chemical Engineering, Loughborough University , Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K
- School of Chemical Engineering, Purdue University , West Lafayette, Indiana 47907-2100, United States
| | - R G Holdich
- Department of Chemical Engineering, Loughborough University , Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K
| |
Collapse
|
34
|
Lu Y, Chowdhury D, Vladisavljević GT, Koutroumanis K, Georgiadou S. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices. MEMBRANES 2016; 6:membranes6020029. [PMID: 27231945 PMCID: PMC4931524 DOI: 10.3390/membranes6020029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Abstract
Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF) or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.
Collapse
Affiliation(s)
- Yu Lu
- Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - Danial Chowdhury
- Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - Goran T Vladisavljević
- Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - Konstantinos Koutroumanis
- Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - Stella Georgiadou
- Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
35
|
Othman R, Vladisavljević GT, Thomas NL, Nagy ZK. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics. Colloids Surf B Biointerfaces 2016; 141:187-195. [DOI: 10.1016/j.colsurfb.2016.01.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/19/2016] [Accepted: 01/23/2016] [Indexed: 11/29/2022]
|