1
|
Liu W, Liu Z, Fan X, Li D, Zhao T, Niu Y, Baima Y, Wen D, Li B, Huang X. Brassica rapa L. polysaccharide mitigates hypobaric hypoxia-induced oxidation and intestinal damage via microbiome modulation. NPJ Sci Food 2024; 8:112. [PMID: 39730362 DOI: 10.1038/s41538-024-00365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The high-altitude, low-pressure, and hypoxia environment poses a significant threat to human health, particularly causing intestinal damage and disrupting gut microbiota. This study investigates the protective effects of Brassica rapa L. crude polysaccharides (BRP) on intestinal damage in mice exposed to hypobaric hypoxic conditions. Results showed that oxidative stress and inflammation levels were elevated in the hypoxia group, while BRP intervention significantly increased antioxidant enzyme activities (SOD, GSH-Px, T-AOC) and reduced inflammatory markers (IL-6, IL-1β, TNF-α). BRP also restored intestinal barrier function by enhancing claudin-1, occludin, and ZO-1 expression. Notably Chromatographic and metagenomic analyses revealed that BRP enriched butyrate levels, promoted beneficial bacteria like Akkermansia muciniphila and Leuconostoc lactis, and upregulated L-arginine biosynthesis II and L-methionine biosynthesis III pathways to enhance antioxidant activity. Fecal microbiota transfer experiments confirmed the role of gut microbiota in mediating BRP's protective effects, providing valuable insights into prebiotic-based therapeutic strategies for hypobaric hypoxia-induced intestinal damage.
Collapse
Affiliation(s)
- Wei Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Xueni Fan
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Diantong Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Yuanlin Niu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Yangjin Baima
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China.
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850000, China.
| |
Collapse
|
2
|
Wang D, Zhang H, Liao X, Li J, Zeng J, Wang Y, Zhang M, Ma X, Wang X, Ren F, Wang Y, Li M, Xu J, Jin P, Sheng J. Oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles attenuates gastric and small intestinal mucosal ferroptosis caused by hypoxia through inhibiting HIF-1α- and HIF-2α-mediated lipid peroxidation. J Nanobiotechnology 2024; 22:479. [PMID: 39134988 PMCID: PMC11321022 DOI: 10.1186/s12951-024-02663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
The prevention and treatment of gastrointestinal mucosal injury caused by a plateau hypoxic environment is a clinical conundrum due to the unclear mechanism of this syndrome; however, oxidative stress and microbiota dysbiosis may be involved. The Robinia pseudoacacia L. flower, homologous to a functional food, exhibits various pharmacological effects, such as antioxidant, antibacterial, and hemostatic activities. An increasing number of studies have revealed that plant exosome-like nanoparticles (PELNs) can improve the intestinal microbiota and exert antioxidant effects. In this study, the oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles (RFELNs) significantly ameliorated hypoxia-induced gastric and small intestinal mucosal injury in mice by downregulating hypoxia-inducible factor-1α (HIF-1α) and HIF-2α expression and inhibiting hypoxia-mediated ferroptosis. In addition, oral RFELNs partially improved hypoxia-induced microbial and metabolic disorders of the stomach and small intestine. Notably, RFELNs displayed specific targeting to the gastrointestinal tract. In vitro experiments using gastric and small intestinal epithelial cell lines showed that cell death caused by elevated HIF-1α and HIF-2α under 1% O2 mainly occurred via ferroptosis. RFELNs obviously inhibited HIF-1α and HIF-2α expression and downregulated the expression of NOX4 and ALOX5, which drive reactive oxygen species production and lipid peroxidation, respectively, suppressing ferroptosis under hypoxia. In conclusion, our findings underscore the potential of oral RFELNs as novel, naturally derived agents targeting the gastrointestinal tract, providing a promising therapeutic approach for hypoxia-induced gastric and small intestinal mucosal ferroptosis.
Collapse
Affiliation(s)
- Dezhi Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Heng Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xingchen Liao
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Jun Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Jie Zeng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yilin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Mingjie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xianzong Ma
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Meng Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
| | - Peng Jin
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
| | - Jianqiu Sheng
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
| |
Collapse
|
3
|
Chen Y, Tang X, Zeng X, Han B, Xie H, Wang W, Sun L, Hu M, Gao Y, Xiao W. Gastrointestinal syndrome encountered during a train voyage to high altitudes: A 14-day survey of 69 passengers in China. Travel Med Infect Dis 2024; 59:102718. [PMID: 38582488 DOI: 10.1016/j.tmaid.2024.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The diagnosis and evaluation of the severity of acute mountain sickness (AMS) continue to be problematic due to a lack of consensus on the inclusion of symptoms in a scoring system. Recent investigations highlight the significance of gastrointestinal symptoms in identifying this condition. However, the specific gastrointestinal symptoms associated with AMS have not been thoroughly elucidated in previous studies, and the underlying risk factors remain inadequately comprehended. METHODS This study aimed to investigate the characteristics, trends, and risk factors related to gastrointestinal symptoms encountered during train travel to high altitude. A total of 69 passengers, specifically all with medical backgrounds, were surveyed 6 times over a period of 14 days. RESULTS The daily incidence of abdominal discomfort was higher than non-gastrointestinal symptoms within 14 days. Gastrointestinal symptoms demonstrated a greater prevalence, longer duration, and increased risk compared to non-gastrointestinal symptoms, such as headaches. The symptoms of abdominal distension and bowel sound hyperaction were found to be prevalent and persistent among patients diagnosed with AMS, exhibiting a high incidence rate. Gender, age, body mass index (BMI), smoking habits, and alcohol consumption were identified as risk factors associated with the occurrence and duration of gastrointestinal symptoms. CONCLUSION This study suggests that gastrointestinal symptoms are more common and persistent when traveling to the plateau by train. These symptoms should be taken into consideration in the further diagnosis and prevention of AMS. Therefore, this study provides a significant theoretical foundation for the prevention and treatment of AMS.
Collapse
Affiliation(s)
- Yihui Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiong Zeng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Ben Han
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Huichao Xie
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Mingdong Hu
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
4
|
Kumar P, Bharti VK, Kumar K. Effect of short-term exposure to high-altitude hypoxic climate on feed-intake, blood glucose level and physiological responses of native and non-native goat. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:795-806. [PMID: 38374293 DOI: 10.1007/s00484-024-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
The exposure to high altitude and cold stress poses challenges in maintaining normal physiological standards and body homeostasis in non-native animals. To enhance our understanding of the physiology of native and non-native goats in high-altitude environments, we conducted a comparative study to examine the impact of natural hypoxic and cold stress conditions on their feed intake (FIT) and associated changes in physiological responses, including plasma glucose concentration (PGC). The study took place at an altitude of 3505.2 m above mean sea level and involved twenty-two healthy females from two different breeds of goats. This study was conducted over a period of 56 days after the arrival of non-native Black Bengal goats (BBN) and compared with native Changthangi (CHAN) goats. Both groups were extensively reared in a natural high-altitude and cold-stress environment in Leh, India, and were subjected to defined housing and management practices. The parameters evaluated included FIT, PGC, respiration rate, heart rate, pulse rate, and rectal temperature. High altitudes had a significant (p < 0.05) impact on FIT, PGC, respiration rate, heart rate, pulse rate, and rectal temperature in BBN, whereas these parameters remained stable in CHAN throughout the study period. Additionally, the detrimental effects of high-altitude stress were more pronounced in non-native goats compared to native goats. These findings suggest that physiological responses in non-native goats tend to stabilize after an initial period of adverse effects in high-altitude environments. Based on the physiological responses and glucose concentration, it is recommended to pay special attention to the nutrition of non-native goats for up to the third week (21 days) after their arrival in high-altitude areas.
Collapse
Affiliation(s)
- Prabhat Kumar
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India.
- Indira Gandhi Institute of Medical Sciences (IGIMS), Patna, Bihar, India.
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India.
| | - Krishna Kumar
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India
| |
Collapse
|
5
|
Xu Y, Sa Y, Zhang C, Wang J, Shao Q, Liu J, Wang S, Zhou J. A preventative role of nitrate for hypoxia-induced intestinal injury. Free Radic Biol Med 2024; 213:457-469. [PMID: 38281627 DOI: 10.1016/j.freeradbiomed.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Studying effective interventions for hypoxia-induced injury is crucial, particularly in high-altitude areas. Symptoms stemming from intestinal injuries have a significant impact on the health of individuals transitioning from plains to plateau regions. This research explores the effects and mechanisms of nitrate supplementation in preventing hypoxia-induced intestinal injury. METHODS A hypoxia survival mouse model was established using 7% O2 conditions. The intervention with 4 mM sodium nitrate (NaNO3) in drinking water commenced 7 days prior to hypoxia exposure. Weight monitoring, hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and intestinal permeability assays were employed for physiological, histological, and functional analyses. Quantitative PCR (qPCR), Western blot, and immunofluorescence were utilized to analyze the levels of tight junction (TJ) proteins and hypoxia-inducible factor 1α (Hif 1α). RNA sequencing (RNA-seq) identified nitrate's target, and chromatin immunoprecipitation (ChIP) verified the transcriptional impact of Hif 1α on TJ proteins. Villin-cre mice infected with AAV9-FLEX-EGFP-Hif 1α were used for mechanism validation. RESULTS The results demonstrated that nitrate supplementation significantly alleviated small intestinal epithelial cell necrosis, intestinal permeability, disruption of TJs, and weight loss under hypoxia. Moreover, the nitrate-triggered enhancement of TJs is mediated by Hif 1α nuclear translocation and its subsequent transcriptional function. The effect of nitrate supplementation on TJs was largely attributed to the stimulation of the EGFR/PI3K/AKT/mTOR/Hif 1α signaling pathways. CONCLUSION Nitrate serves as a novel approach in preventing hypoxia-induced intestinal injury, acting through Hif 1α activation to promote the transcription of TJ proteins. Furthermore, our study provides new and compelling evidence for the protective effects of nitrate in hypoxic conditions, especially at high altitudes.
Collapse
Affiliation(s)
- Yifan Xu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Yunqiong Sa
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China
| | - Jinsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing China.
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
6
|
Zhao H, Sun L, Liu J, Shi B, Zhang Y, Qu-Zong CR, Dorji T, Wang T, Yuan H, Yang J. Meta-analysis identifying gut microbial biomarkers of Qinghai-Tibet Plateau populations and the functionality of microbiota-derived butyrate in high-altitude adaptation. Gut Microbes 2024; 16:2350151. [PMID: 38715346 PMCID: PMC11086029 DOI: 10.1080/19490976.2024.2350151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
The extreme environmental conditions of a plateau seriously threaten human health. The relationship between gut microbiota and human health at high altitudes has been extensively investigated. However, no universal gut microbiota biomarkers have been identified in the plateau population, limiting research into gut microbiota and high-altitude adaptation. 668 16s rRNA samples were analyzed using meta-analysis to reduce batch effects and uncover microbiota biomarkers in the plateau population. Furthermore, the robustness of these biomarkers was validated. Mendelian randomization (MR) results indicated that Tibetan gut microbiota may mediate a reduced erythropoietic response. Functional analysis and qPCR revealed that butyrate may be a functional metabolite in high-altitude adaptation. A high-altitude rat model showed that butyrate reduced intestinal damage caused by high altitudes. According to cell experiments, butyrate may downregulate hypoxia-inducible factor-1α (HIF-1α) expression and blunt cellular responses to hypoxic stress. Our research found universally applicable biomarkers and investigated their potential roles in promoting human health at high altitudes.
Collapse
Affiliation(s)
- Hongwen Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaopeng Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ci-Ren Qu-Zong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- College of Ecology and Environment, Tibet University, Tibet, China
| | - Tsechoe Dorji
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Cheng J, Sun Y, Zhao Y, Guo Q, Wang Z, Wang R. Research Progress on the Mechanism of Intestinal Barrier Damage and Drug Therapy in a High Altitude Environment. Curr Drug Deliv 2024; 21:807-816. [PMID: 36892115 DOI: 10.2174/1567201820666230309090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 03/10/2023]
Abstract
The plateau is a typical extreme environment with low temperature, low oxygen and high ultraviolet rays. The integrity of the intestinal barrier is the basis for the functioning of the intestine, which plays an important role in absorbing nutrients, maintaining the balance of intestinal flora, and blocking the invasion of toxins. Currently, there is increasing evidence that high altitude environment can enhance intestinal permeability and disrupt intestinal barrier integrity. This article mainly focuses on the regulation of the expression of HIF and tight junction proteins in the high altitude environment, which promotes the release of pro-inflammatory factors, especially the imbalance of intestinal flora caused by the high altitude environment. The mechanism of intestinal barrier damage and the drugs to protect the intestinal barrier are reviewed. Studying the mechanism of intestinal barrier damage in high altitude environment is not only conducive to understanding the mechanism of high altitude environment affecting intestinal barrier function, but also provides a more scientific medicine treatment method for intestinal damage caused by the special high altitude environment.
Collapse
Affiliation(s)
- Junfei Cheng
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuemei Sun
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - Yilan Zhao
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianwen Guo
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - ZiHan Wang
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - Rong Wang
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
8
|
Xie H, Zeng X, Wang W, Wang W, Han B, Tan Q, Hu Q, Liu X, Chen S, Chen J, Sun L, Chen Y, Xiao W. Enteric glial cells aggravate the intestinal epithelial barrier damage by secreting S100β under high-altitude conditions. MOLECULAR BIOMEDICINE 2023; 4:31. [PMID: 37779161 PMCID: PMC10542628 DOI: 10.1186/s43556-023-00143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Damage to the intestinal epithelial barrier (IEB) has been reported under high-altitude (HA) conditions and may be responsible for HA-associated gastrointestinal (GI) disorders. However, this pathogenetic mechanism does not fully explain the GI stress symptoms, such as flatulence and motility diarrhea, which accompany the IEB damage under HA conditions, especially for the people exposed to HA acutely. In the present study, we collected the blood samples from the people who lived at HA and found the concentration of enteric glial cells (EGCs)-associated biomarkers increased significantly. HA mouse model was then established and the results revealed that EGCs were involved in IEB damage. Zona occludens (ZO)-1, occludin, and claudin-1 expression was negatively correlated with that of glial fibrillary acidic protein (GFAP) and S100β under HA conditions. In order to learn more about how EGCs influence IEB, the in vitro EGC and MODE-K hypoxia experiments that used hypoxic stimulation for simulating in vivo exposure to HA was performed. We found that hypoxia increased S100β secretion in EGCs. And MODE-K cells cultured in medium conditioned by hypoxic EGCs showed low ZO-1, occludin, and claudin-1 levels of expression. Furthermore, treatment of MODE-K cells with recombinant mouse S100β resulted in diminished levels of ZO-1, occludin, and claudin-1 expression. Thus, HA exposure induces greater S100β secretion by EGCs, which aggravates the damage to the IEB. This study has revealed a novel mechanism of IEB damage under HA conditions, and suggest that EGCs may constitute a fresh avenue for the avoidance of GI disorders at HA.
Collapse
Affiliation(s)
- Huichao Xie
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiong Zeng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Ben Han
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - QianShan Tan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiu Hu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xingyu Liu
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shuaishuai Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jun Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yihui Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
9
|
McKenna ZJ, Bellovary BN, Ducharme JB, Deyhle MR, Wells AD, Fennel ZJ, Specht JW, Houck JM, Mayschak TJ, Mermier CM. Circulating markers of intestinal barrier injury and inflammation following exertion in hypobaric hypoxia. Eur J Sport Sci 2023; 23:2002-2010. [PMID: 37051668 DOI: 10.1080/17461391.2023.2203107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hypoxia induced intestinal barrier injury, microbial translocation, and local/systemic inflammation may contribute to high-altitude associated gastrointestinal complications or symptoms of acute mountain sickness (AMS). Therefore, we tested the hypothesis that six-hours of hypobaric hypoxia increases circulating markers of intestinal barrier injury and inflammation. A secondary aim was to determine if the changes in these markers were different between those with and without AMS. Thirteen participants were exposed to six hours of hypobaric hypoxia, simulating an altitude of 4572 m. Participants completed two 30-minute bouts of exercise during the early hours of hypoxic exposure to mimic typical activity required by those at high altitude. Pre- and post-exposure blood samples were assessed for circulating markers of intestinal barrier injury and inflammation. Data below are presented as mean ± standard deviation or median [interquartile range]. Intestinal fatty acid binding protein (Δ251 [103-410] pg•mL-1; p = 0.002, d = 0.32), lipopolysaccharide binding protein (Δ2 ± 2.4 μg•mL-1; p = 0.011; d = 0.48), tumor necrosis factor-α (Δ10.2 [3-42.2] pg•mL-1; p = 0.005; d = 0.25), interleukin-1β (Δ1.5 [0-6.7] pg•mL-1 p = 0.042; d = 0.18), and interleukin-1 receptor agonist (Δ3.4 [0.4-5.2] pg•mL-1p = 0.002; d = 0.23) increased from pre- to post-hypoxia. Six of the 13 participants developed AMS; however, the pre- to post-hypoxia changes for each marker were not different between those with and without AMS (p > 0.05 for all indices). These data provide evidence that high altitude exposures can lead to intestinal barrier injury, which may be an important consideration for mountaineers, military personnel, wildland firefighters, and athletes who travel to high altitudes to perform physical work or exercise.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Bryanne N Bellovary
- Kinesiology Departments, State University of New York at Cortland, Cortland, New York
| | - Jeremy B Ducharme
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Andrew D Wells
- Department of Health & Exercise, Wake Forest University, Winston-Salem, NC, USA
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Jonathan W Specht
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Trevor J Mayschak
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
10
|
POLAT E, İNANÇ İH, ŞABANOĞLU C. The effect of altitude difference on gastrointestinal bleeding in the chronic period. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1033697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Strunz PP, Vuille-Dit-Bille RN, R Fox M, Geier A, Maggiorini M, Gassmann M, Fruehauf H, Lutz TA, Goetze O. Effect of high altitude on human postprandial 13 C-octanoate metabolism, intermediary metabolites, gastrointestinal peptides, and visceral perception. Neurogastroenterol Motil 2022; 34:e14225. [PMID: 34342373 DOI: 10.1111/nmo.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE At high altitude (HA), acute mountain sickness (AMS) is accompanied by neurologic and upper gastrointestinal symptoms (UGS). The primary aim of this study was to test the hypothesis that delayed gastric emptying (GE), assessed by 13 C-octanoate breath testing (OBT), causes UGS in AMS. The secondary aim was to assess post-gastric mechanisms of OBT, which could confound results under these conditions, by determination of intermediary metabolites, gastrointestinal peptides, and basal metabolic rate. METHODS A prospective trial was performed in 25 healthy participants (15 male) at 4559 m (HA) and at 490 m (Zurich). GE was assessed by OBT (428 kcal solid meal) and UGS by visual analogue scales (VAS). Blood sampling of metabolites (glucose, free fatty acids (FFA), triglycerides (TG), beta-hydroxyl butyrate (BHB), L-lactate) and gastrointestinal peptides (insulin, amylin, PYY, etc.) was performed as well as blood gas analysis and spirometry. STATISTICAL ANALYSIS variance analyses, bivariate correlation, and multilinear regression analysis. RESULTS After 24 h under hypoxic conditions at HA, participants developed AMS (p < 0.001). 13 CO2 exhalation kinetics increased (p < 0.05) resulting in reduced estimates of gastric half-emptying times (p < 0.01). However, median resting respiratory quotients and plasma profiles of TG indicated that augmented beta-oxidation was the main predictor of accelerated 13 CO2 -generation under these conditions. CONCLUSION Quantification of 13 C-octanoate oxidation by a breath test is sensitive to variation in metabolic (liver) function under hypoxic conditions. 13 C-breath testing using short-chain fatty acids is not reliable for measurement of gastric function at HA and should be considered critically in other severe hypoxic conditions, like sepsis or chronic lung disease.
Collapse
Affiliation(s)
- Patrick-Pascal Strunz
- Division of Rheumatology and Immunology, Department of Medicine II, University Hospital Wurzburg, Germany
| | | | - Mark R Fox
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Digestive Function: Basel, Laboratory and Clinic for Motility Disorders and Functional Digestive Diseases, Klinik Arlesheim, Arlesheim, Switzerland
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Wurzburg, Germany
| | - Marco Maggiorini
- Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Heiko Fruehauf
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zentrum für Gastroenterologie und Hepatologie, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Oliver Goetze
- Division of Hepatology, Department of Medicine II, University Hospital Wurzburg, Germany
| |
Collapse
|
12
|
Wang Y, Shi Y, Li W, Wang S, Zheng J, Xu G, Li G, Shen X, Yang J. Gut microbiota imbalance mediates intestinal barrier damage in high-altitude exposed mice. FEBS J 2022; 289:4850-4868. [PMID: 35188712 DOI: 10.1111/febs.16409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
The environmental conditions in high-altitude areas can induce gastrointestinal disorders and changes in gut microbiota. The gut microbiota is closely related to a variety of gastrointestinal diseases, although the underlying pathogenic mechanisms are not well-identified. The present study aimed to investigate the regulatory effect of high altitude on intestinal dysfunction via gut microbiota disturbance. Forty C57BL/6J mice were divided into four groups: one plain control group (CON) and three high-altitude exposure groups (HAE) (altitude: 4000 m a.s.l.; oxygen content: 12.7%; 1-, 2- and 4-week exposure). Another set of 40 mice was divided into two CON and two HAE subgroups. Antibiotic cocktails were administered to one CON and HAE groups and autoclaved water was administered to the second CON and HAE groups for 4 weeks, respectively. In the fecal microbiota transplantation experiment, there were four transplantation groups, which received, respectively: phosphate-buffered saline for 2 weeks, feces from CON for 2 weeks, feces from HAE-4W for 2 weeks, and HAE-4W for 4 weeks. Hematoxylin and eosin staining, periodic acid-Schiff staining, a terminal deoxynucleotidyl transferase dUTP nick end labeling assay and a quantitative reverse transcriptase-polymerase chain reaction were applied to detect changes in intestinal cellular structure, morphology, apoptosis and intestinal inflammatory response. Fecal microbiota was analyzed using 16S rDNA amplicon sequencing. A high-altitude environment changed the ecological balance of gut microbiota in mice and caused damage to the intestinal structure and mucosal barrier. Interestingly, similar damage, which was inhibited by antibiotic cocktails at high altitude, was observed in mice transplanted with fecal microbiota from HAE. A high-altitude environment contributes to dyshomeostasis of gut microbiota, thereby impairing the intestinal mucosal barrier, eventually inducing and exacerbating intestinal damage.
Collapse
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Shi
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wenhao Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Shu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiyang Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guanghui Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guixiang Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jianjun Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
McKenna ZJ, Gorini Pereira F, Gillum TL, Amorim FT, Deyhle MR, Mermier CM. High altitude exposures and intestinal barrier dysfunction. Am J Physiol Regul Integr Comp Physiol 2022; 322:R192-R203. [PMID: 35043679 DOI: 10.1152/ajpregu.00270.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrointestinal complaints are often reported during ascents to high altitude (> 2500 m), though their etiology is not known. One potential explanation is injury to the intestinal barrier which has been implicated in the pathophysiology of several diseases. High altitude exposures can reduce splanchnic perfusion and blood oxygen levels causing hypoxic and oxidative stress. These stressors might injure the intestinal barrier leading to consequences such as bacterial translocation and local/systemic inflammatory responses. The purpose of this mini review is to 1) discuss the impact of high-altitude exposures on intestinal barrier dysfunction, and 2) present medications and dietary supplements which may have relevant impacts on the intestinal barrier during high-altitude exposures. There is a small but growing body of evidence which shows that acute exposures to high altitudes can damage the intestinal barrier. Initial data also suggests that prolonged hypoxic exposures can compromise the intestinal barrier through alterations in immunological function, microbiota, or mucosal layers. Exertion may worsen high-altitude related intestinal injury via additional reductions in splanchnic circulation and greater hypoxemia. Collectively these responses can result in increased intestinal permeability and bacterial translocation causing local and systemic inflammation. More research is needed to determine the impact of various medications and dietary supplements on the intestinal barrier during high-altitude exposures.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Felipe Gorini Pereira
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, United States
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, United States
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
14
|
Tian L, Jia Z, Xu Z, Shi J, Zhao X, He K. Transcriptional landscape in rat intestines under hypobaric hypoxia. PeerJ 2021; 9:e11823. [PMID: 34395078 PMCID: PMC8325916 DOI: 10.7717/peerj.11823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oxygen metabolism is closely related to the intestinal homeostasis environment, and the occurrence of many intestinal diseases is as a result of the destruction of oxygen gradients. The hypobaric hypoxic environment of the plateau can cause dysfunction of the intestine for humans, such as inflammation. The compensatory response of the small intestine cells to the harsh environment definitely changes their gene expression. How the small intestine cells response the hypobaric hypoxic environment is still unclear. We studied the rat small intestine under hypobaric hypoxic conditions to explore the transcriptional changes in rats under acute/chronic hypobaric hypoxic conditions. We randomly divided rats into three groups: normal control group (S), acute hypobaric hypoxia group, exposing to hypobaric hypoxic condition for 2 weeks (W2S) and chronic hypobaric hypoxia group, exposing to hypobaric hypoxic condition for 4 weeks (W4S). The RNA sequencing was performed on the small intestine tissues of the three groups of rats. The results of principal component analysis showed that the W4S and W2S groups were quite different from the control group. We identified a total of 636 differentially expressed genes, such as ATP binding cassette, Ace2 and Fabp. KEGG pathway analysis identified several metabolic and digestive pathways, such as PPAR signaling pathway, glycerolipid metabolism, fat metabolism, mineral absorption and vitamin metabolism. Cogena analysis found that up-regulation of digestive and metabolic functions began from the second week of high altitude exposure. Our study highlights the critical role of metabolic and digestive pathways of the intestine in response to the hypobaric hypoxic environment, provides new aspects for the molecular effects of hypobaric hypoxic environment on intestine, and raises further questions about between the lipid metabolism disorders and inflammation.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Zhenguo Xu
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - XiaoJing Zhao
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Kucharzik T, Ellul P, Greuter T, Rahier JF, Verstockt B, Abreu C, Albuquerque A, Allocca M, Esteve M, Farraye FA, Gordon H, Karmiris K, Kopylov U, Kirchgesner J, MacMahon E, Magro F, Maaser C, de Ridder L, Taxonera C, Toruner M, Tremblay L, Scharl M, Viget N, Zabana Y, Vavricka S. ECCO Guidelines on the Prevention, Diagnosis, and Management of Infections in Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:879-913. [PMID: 33730753 DOI: 10.1093/ecco-jcc/jjab052] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- T Kucharzik
- Department of Gastroenterology, Klinikum Lüneburg, University of Hamburg, Lüneburg, Germany
| | - P Ellul
- Department of Medicine, Division of Gastroenterology, Mater Dei Hospital, Msida, Malta
| | - T Greuter
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland, and Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois CHUV, University Hospital Lausanne, Lausanne, Switzerland
| | - J F Rahier
- Department of Gastroenterology and Hepatology, CHU UCL Namur, Yvoir, Belgium
| | - B Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium, and Department of Chronic Diseases, Metabolism and Ageing, TARGID-IBD, KU Leuven, Leuven, Belgium
| | - C Abreu
- Infectious Diseases Service, Centro Hospitalar Universitário São João, Porto, Portugal.,Instituto de Inovação e Investigação em Saúde [I3s], Faculty of Medicine, Department of Medicine, University of Porto, Portugal
| | - A Albuquerque
- Gastroenterology Department, St James University Hospital, Leeds, UK
| | - M Allocca
- Humanitas Clinical and Research Center - IRCCS -, Rozzano [Mi], Italy.,Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - M Esteve
- Hospital Universitari Mútua Terrassa, Digestive Diseases Department, Terrassa, Catalonia, and Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas CIBERehd, Madrid, Spain
| | - F A Farraye
- Inflammatory Bowel Disease Center, Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - H Gordon
- Department of Gastroenterology, Barts Health NHS Trust, Royal London Hospital, London, UK
| | - K Karmiris
- Department of Gastroenterology, Venizeleio General Hospital, Heraklion, Greece
| | - U Kopylov
- Department of Gastroenterology, Sheba Medical Center, Ramat Gan, Israel, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - J Kirchgesner
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, Department of Gastroenterology, Paris, France
| | - E MacMahon
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - F Magro
- Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal.,Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal
| | - C Maaser
- Outpatient Department of Gastroenterology, Department of Geriatrics, Klinikum Lüneburg, University of Hamburg, Lüneburg, Germany
| | - L de Ridder
- Department of Paediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C Taxonera
- IBD Unit, Department of Gastroenterology, Hospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC], Madrid, Spain
| | - M Toruner
- Ankara University School of Medicine, Department of Gastroenterology, Ankara, Turkey
| | - L Tremblay
- Centre Hospitalier de l'Université de Montréal [CHUM] Pharmacy Department and Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - M Scharl
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland
| | - N Viget
- Department of Infectious Diseases, Tourcoing Hospital, Tourcoing, France
| | - Y Zabana
- Hospital Universitari Mútua Terrassa, Digestive Diseases Department, Terrassa, Catalonia, and Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas CIBERehd, Madrid, Spain
| | - S Vavricka
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland
| |
Collapse
|
16
|
Vahey GM, Marshall KE, McDonald E, Martin SW, Tate JE, Midgley CM, Killerby ME, Kawasaki B, Herlihy RK, Alden NB, Staples JE. Symptom Profiles and Progression in Hospitalized and Nonhospitalized Patients with Coronavirus Disease, Colorado, USA, 2020. Emerg Infect Dis 2021; 27:385-395. [PMID: 33496225 PMCID: PMC7853576 DOI: 10.3201/eid2702.203729] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To improve recognition of coronavirus disease (COVID-19) and inform clinical and public health guidance, we randomly selected 600 COVID-19 case-patients in Colorado. A telephone questionnaire captured symptoms experienced, when symptoms occurred, and how long each lasted. Among 128 hospitalized patients, commonly reported symptoms included fever (84%), fatigue (83%), cough (73%), and dyspnea (72%). Among 236 nonhospitalized patients, commonly reported symptoms included fatigue (90%), fever (83%), cough (83%), and myalgia (74%). The most commonly reported initial symptoms were cough (21%-25%) and fever (20%-25%). In multivariable analysis, vomiting, dyspnea, altered mental status, dehydration, and wheezing were significantly associated with hospitalization, whereas rhinorrhea, headache, sore throat, and anosmia or ageusia were significantly associated with nonhospitalization. General symptoms and upper respiratory symptoms occurred earlier in disease, and anosmia, ageusia, lower respiratory symptoms, and gastrointestinal symptoms occurred later. Symptoms should be considered alongside other epidemiologic factors in clinical and public health decisions regarding potential COVID-19 cases.
Collapse
Affiliation(s)
| | | | - Emily McDonald
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| | - Stacey W. Martin
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| | - Jacqueline E. Tate
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| | - Claire M. Midgley
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| | - Marie E. Killerby
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| | - Breanna Kawasaki
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| | - Rachel K. Herlihy
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| | - Nisha B. Alden
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| | - J. Erin Staples
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| | - on behalf of the Colorado Investigation Team2
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (G.M. Vahey, E. McDonald, S.W. Martin, J.E. Staples)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K.E. Marshall, J.E. Tate, C.M. Midgley, M.E. Killerby)
- Colorado Department of Public Health and Environment, Denver, Colorado, USA (K.E. Marshall, B. Kawasaki, R.K. Herlihy, N.B. Alden)
| |
Collapse
|
17
|
Hemoglobin concentration of young men at residential altitudes between 200 and 2000 m mirrors Switzerland's topography. Blood 2020; 135:1066-1069. [PMID: 32043119 DOI: 10.1182/blood.2019004135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
Melatonin Relations with Energy Metabolism as Possibly Involved in Fatal Mountain Road Traffic Accidents. Int J Mol Sci 2020; 21:ijms21062184. [PMID: 32235717 PMCID: PMC7139848 DOI: 10.3390/ijms21062184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Previous results evidenced acute exposure to high altitude (HA) weakening the relation between daily melatonin cycle and the respiratory quotient. This review deals with the threat extreme environments pose on body time order, particularly concerning energy metabolism. Working at HA, at poles, or in space challenge our ancestral inborn body timing system. This conflict may also mark many aspects of our current lifestyle, involving shift work, rapid time zone crossing, and even prolonged office work in closed buildings. Misalignments between external and internal rhythms, in the short term, traduce into risk of mental and physical performance shortfalls, mood changes, quarrels, drug and alcohol abuse, failure to accomplish with the mission and, finally, high rates of fatal accidents. Relations of melatonin with energy metabolism being altered under a condition of hypoxia focused our attention on interactions of the indoleamine with redox state, as well as, with autonomic regulations. Individual tolerance/susceptibility to such interactions may hint at adequately dealing with body timing disorders under extreme conditions.
Collapse
|