1
|
Noori E, Hashemi N, Rezaee D, Maleki R, Shams F, Kazemi B, Bandepour M, Rahimi F. Potential therapeutic options for celiac Disease: An update on Current evidence from Gluten-Free diet to cell therapy. Int Immunopharmacol 2024; 133:112020. [PMID: 38608449 DOI: 10.1016/j.intimp.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.
Collapse
Affiliation(s)
- Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandepour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
2
|
Besser HA, Khosla C. Celiac disease: mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44:949-962. [PMID: 37839914 PMCID: PMC10843302 DOI: 10.1016/j.tips.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Celiac disease (CeD) is a widespread, gluten-induced, autoimmune disorder that lacks any medicinal therapy. Towards the goal of developing non-dietary treatments for CeD, research has focused on elucidating its molecular and cellular etiology. A model of pathogenesis has emerged centered on interactions between three molecular families: specific class II MHC proteins on antigen-presenting cells (APCs), deamidated gluten-derived peptides, and T cell receptors (TCRs) on inflammatory CD4+ T cells. Growing evidence suggests that this pathogenic axis can be pharmacologically targeted to protect patients from some of the adverse effects of dietary gluten. Further studies have revealed the existence of additional host and environmental contributors to disease initiation and tissue damage. This review summarizes our current understanding of CeD pathogenesis and how it is being harnessed for therapeutic design and development.
Collapse
Affiliation(s)
- Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H (Chemistry, Engineering and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Mamone G, Di Stasio L, Vitale S, Picascia S, Gianfrani C. Analytical and functional approaches to assess the immunogenicity of gluten proteins. Front Nutr 2023; 9:1049623. [PMID: 36741992 PMCID: PMC9890883 DOI: 10.3389/fnut.2022.1049623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Luigia Di Stasio
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy,*Correspondence: Carmen Gianfrani,
| |
Collapse
|
4
|
Harringer EOS, Durack J, Piceno Y, Andersen V, Lynch SV. Gluten Degradation by the Gut Microbiota of Ulcerative Colitis Patients. Microorganisms 2022; 11:microorganisms11010012. [PMID: 36677307 PMCID: PMC9867242 DOI: 10.3390/microorganisms11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Several studies have reported improved disease symptomatology in ulcerative colitis (UC) patients consuming a gluten free diet. This observation coupled with diversity depletion in the gut microbiota of UC patients led us to hypothesize that UC-associated enteric microbes differentially metabolize dietary gluten to produce immunogenic products that promote inflammation. Gluten concentration in stool was determined using gluten-specific ELISA, and gluten intake was assessed by food frequency questionnaire (FFQ) in UC (n = 12) and healthy controls (HC; n = 13). Gluten-metabolizing bacteria were isolated on minimal media supplemented with 1% gluten from UC and HC and identified by 16S rRNA profiling. Cell-free culture media from gluten metabolizing gut bacterial isolates was assessed for immunogenicity in vitro using HT29 colonocytes. Compared to HC, UC patients did not consume gluten differently (Mann−Whitney; p > 0.10) and exhibited equivalent levels of gluten in their feces (Mann−Whitney; p = 0.163). The profile of gluten-degrading bacteria isolated from UC stool was distinct (Chi-square; p ≤ 0.0001). Compared with Enterococcus isolates, products of gluten degradation by Bacillus strains induced higher IL8 and lower occludin (Mann−Whitney; p = 0.002 and p = 0.059, respectively) gene expression in colonocytes irrespective of whether they originated from UC or healthy gut. Members of HC and UC microbiota exhibit gluten-degrading ability, metabolites of which influence genes involved in inflammation and barrier function in enteric colonocyte cultures. Preliminary findings of this study warrant further investigations into the mechanisms by which gut microbiota contribute to UC pathogenesis through gluten degradation.
Collapse
Affiliation(s)
- Emma Olivia Schultz Harringer
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA 94143, USA
- Molecular Diagnostics and Clinical Research Unit, IRS-Centre Soenderjylland, University Hospital of Southern Denmark, 6200 Aabenraa, Denmark
| | - Juliana Durack
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yvette Piceno
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vibeke Andersen
- Molecular Diagnostics and Clinical Research Unit, IRS-Centre Soenderjylland, University Hospital of Southern Denmark, 6200 Aabenraa, Denmark
- Institute of Regional Research, University of Southern Denmark, 5000 Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Susan V. Lynch
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence: ; Tel.: +1-415-476-6784
| |
Collapse
|
5
|
Molecular and in vivo studies of a glutamate-class prolyl-endopeptidase for coeliac disease therapy. Nat Commun 2022; 13:4446. [PMID: 35915115 PMCID: PMC9343461 DOI: 10.1038/s41467-022-32215-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The digestion of gluten generates toxic peptides, among which a highly immunogenic proline-rich 33-mer from wheat α-gliadin, that trigger coeliac disease. Neprosin from the pitcher plant is a reported prolyl endopeptidase. Here, we produce recombinant neprosin and its mutants, and find that full-length neprosin is a zymogen, which is self-activated at gastric pH by the release of an all-β pro-domain via a pH-switch mechanism featuring a lysine plug. The catalytic domain is an atypical 7+8-stranded β-sandwich with an extended active-site cleft containing an unprecedented pair of catalytic glutamates. Neprosin efficiently degrades both gliadin and the 33-mer in vitro under gastric conditions and is reversibly inactivated at pH > 5. Moreover, co-administration of gliadin and the neprosin zymogen at the ratio 500:1 reduces the abundance of the 33-mer in the small intestine of mice by up to 90%. Neprosin therefore founds a family of eukaryotic glutamate endopeptidases that fulfils requisites for a therapeutic glutenase. Celiac disease is characterized by intolerance to gluten, a cereal protein. Here, the authors show that neprosin, a glutamate peptidase from the pitcher plant, efficiently cleaves gluten components under physiological conditions in vitro and in the gut of mice.
Collapse
|
6
|
Sharma K, Bhawanani S, Sharma D, Goel G. Selection of indigenous Lacticaseibacillus paracasei CD 4 for production of gluten-free traditional fermented product Bhaturu. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2021.2007395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kritika Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Sarita Bhawanani
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Deepak Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Gunjan Goel
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
7
|
Arya R, Gunashree BS. Screening of gluten hydrolyzing strains for food applications. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raj Arya
- Department of Studies and Research in Microbiology Mangalore University Post Graduate Centre Kodagu India
| | - B. Shivanna Gunashree
- Department of Studies and Research in Microbiology Mangalore University Post Graduate Centre Kodagu India
| |
Collapse
|
8
|
D'Avino P, Serena G, Kenyon V, Fasano A. An updated overview on celiac disease: from immuno-pathogenesis and immuno-genetics to therapeutic implications. Expert Rev Clin Immunol 2021; 17:269-284. [PMID: 33472447 DOI: 10.1080/1744666x.2021.1880320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Celiac disease (CD) is an autoimmune enteropathy triggered by ingestion of gluten. While presenting many similarities with other autoimmune diseases, celiac disease is unique in that the external trigger, gluten, and the genetic background necessary for disease development (HLA DQ2/DQ8) are well described. The prevalence of celiac disease is dramatically increasing over the years and new epidemiologic data show changes regarding age of onset and symptoms. A better understanding of CD-pathogenesis is fundamental to highlight the reasons of this rise of celiac diagnoses. AREAS COVERED In this review we describe CD-pathogenesis by dissecting all the components necessary to lose tolerance to gluten (ingestion of gluten, genetic predisposition, loss of barrier function and immune response). Additionally, we also highlight the role that microbiome plays in celiac disease as well as new proposed therapies and experimental tools. EXPERT OPINION Prevalence of autoimmune diseases is increasing around the world. As a result, modern society is strongly impacted by a social and economic burden. Given the unique characteristics of celiac disease, a better understanding of its pathogenesis and the factors that contribute to it may shed light on other autoimmune diseases for which external trigger and genetic background are not known.
Collapse
Affiliation(s)
- Paolo D'Avino
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Vita-Salute San Raffaele University, Milan, Italy
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Victoria Kenyon
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
9
|
Serena G, D'Avino P, Fasano A. Celiac Disease and Non-celiac Wheat Sensitivity: State of Art of Non-dietary Therapies. Front Nutr 2020; 7:152. [PMID: 33015123 PMCID: PMC7506149 DOI: 10.3389/fnut.2020.00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Gluten related disorders (GRD), which include celiac disease, non-celiac wheat sensitivity and wheat allergy are heterogeneous conditions triggered by ingestion of gluten-containing grains. Together, their prevalence is estimated to be ~5% in the general population, however, in the last years the number of diagnoses has been rapidly increasing. To this day, the gold standard treatment for these disorders is the complete removal of gluten-containing grains from the diet. Although this therapy results effective in the majority of patients, up to 30% of individuals affected by GRD continue to present persistent symptoms. In addition, gluten-free diet has been shown to have poor nutritional quality and to cause a socio-economic burden in patients' quality of life. In order to respond to these issues, the scientific community has been focusing on finding additional and adjuvant non-dietary therapies. In this review, we focus on two main gluten related disorders, celiac disease and non-celiac wheat sensitivity. We delineate the actual knowledge about potential treatments and their relative efficacy in pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Paolo D'Avino
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
10
|
Gluten Degrading Enzymes for Treatment of Celiac Disease. Nutrients 2020; 12:nu12072095. [PMID: 32679754 PMCID: PMC7400306 DOI: 10.3390/nu12072095] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CeD) affects about 1% of most world populations. It presents a wide spectrum of clinical manifestations, ranging from minor symptoms to mild or severe malabsorption, and it may be associated with a wide variety of autoimmune diseases. CeD is triggered and maintained by the ingestion of gluten proteins from wheat and related grains. Gluten peptides that resist gastrointestinal digestion are antigenically presented to gluten specific T cells in the intestinal mucosa via HLA-DQ2 or HLA-DQ8, the necessary genetic predisposition for CeD. To date, there is no effective or approved treatment for CeD other than a strict adherence to a gluten-free diet, which is difficult to maintain in professional or social environments. Moreover, many patients with CeD have active disease despite diet adherence due to a high sensitivity to traces of gluten. Therefore, safe pharmacological treatments that complement the gluten-free diet are urgently needed. Oral enzyme therapy, employing gluten-degrading enzymes, is a promising therapeutic approach. A prerequisite is that such enzymes are active under gastro-duodenal conditions, quickly neutralize the T cell activating gluten peptides and are safe for human consumption. Several enzymes including prolyl endopeptidases, cysteine proteases and subtilisins can cleave the human digestion-resistant gluten peptides in vitro and in vivo. Examples are several prolyl endopeptidases from bacterial sources, subtilisins from Rothia bacteria that are natural oral colonizers and synthetic enzymes with optimized gluten-degrading activities. Without exception, these enzymes must cleave the otherwise unusual glutamine and proline-rich domains characteristic of antigenic gluten peptides. Moreover, they should be stable and active in both the acidic environment of the stomach and under near neutral pH in the duodenum. This review focuses on those enzymes that have been characterized and evaluated for the treatment of CeD, discussing their origin and activities, their clinical evaluation and challenges for therapeutic application. Novel developments include strategies like enteric coating and genetic modification to increase enzyme stability in the digestive tract.
Collapse
|
11
|
A. Gabr G, M. El-Saye S, Abd El-Ham HM. Novel Prolyl-endopeptidase from Rhynchophorus ferrugineus of Gluten-degrading: Potential Use to Reduce Gluten Immunogenic Peptides in Celiac Disease. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.282.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Ali M, Ishqi HM, Husain Q. Enzyme engineering: Reshaping the biocatalytic functions. Biotechnol Bioeng 2020; 117:1877-1894. [DOI: 10.1002/bit.27329] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Misha Ali
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| | | | - Qayyum Husain
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| |
Collapse
|
13
|
Osorio CE, Wen N, Mejías JH, Mitchell S, von Wettstein D, Rustgi S. Directed-Mutagenesis of Flavobacterium meningosepticum Prolyl-Oligopeptidase and a Glutamine-Specific Endopeptidase From Barley. Front Nutr 2020; 7:11. [PMID: 32133368 PMCID: PMC7040222 DOI: 10.3389/fnut.2020.00011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Wheat gluten proteins are the known cause of celiac disease. The repetitive tracts of proline and glutamine residues in these proteins make them exceptionally resilient to digestion in the gastrointestinal tract. These indigested peptides trigger immune reactions in susceptible individuals, which could be either an allergic reaction or celiac disease. Gluten exclusion diet is the only approved remedy for such disorders. Recently, a combination of a glutamine specific endoprotease from barley (EP-B2), and a prolyl endopeptidase from Flavobacterium meningosepticum (Fm-PEP), when expressed in the wheat endosperm, were shown to reasonably detoxify immunogenic gluten peptides under simulated gastrointestinal conditions. However useful, these "glutenases" are limited in application due to their denaturation at high temperatures, which most of the food processes require. Variants of these enzymes from thermophilic organisms exist, but cannot be applied directly due to their optimum activity at temperatures higher than 37°C. Though, these enzymes can serve as a reference to guide the evolution of peptidases of mesophilic origin toward thermostability. Therefore, a sequence guided site-saturation mutagenesis approach was used here to introduce mutations in the genes encoding Fm-PEP and EP-B2. A thermostable variant of Fm-PEP capable of surviving temperatures up to 90°C and EP-B2 variant with a thermostability of up 60°C were identified using this approach. However, the level of thermostability achieved is not sufficient; the present study has provided evidence that the thermostability of glutenases can be improved. And this pilot study has paved the way for more detailed structural studies in the future to obtain variants of Fm-PEP and EP-B2 that can survive temperatures ~100°C to allow their packing in grains and use of such grains in the food industry.
Collapse
Affiliation(s)
- Claudia E. Osorio
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Agriaquaculture Nutritional Genomic Center, Temuco, Chile
| | - Nuan Wen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Jaime H. Mejías
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Temuco, Chile
| | - Shannon Mitchell
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| |
Collapse
|
14
|
E40, a novel microbial protease efficiently detoxifying gluten proteins, for the dietary management of gluten intolerance. Sci Rep 2019; 9:13147. [PMID: 31511534 PMCID: PMC6739405 DOI: 10.1038/s41598-019-48299-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Gluten proteins are the causative agent of Celiac Disease (CD), a life-long food intolerance characterized by an autoimmune enteropathy. Inadvertent gluten exposure is frequent even in celiac patients complying with a gluten-free diet, and the supplementation of exogenous gluten-digestive enzymes (glutenases) is indeed a promising approach to reduce the risk of dietary gluten boost. Here we describe Endopeptidase 40, a novel glutenase discovered as secreted protein from the soil actinomycete Actinoallomurus A8, and its recombinant active form produced by Streptomyces lividans TK24. E40 is resistant to pepsin and trypsin, and active in the acidic pH range 3 to 6. E40 efficiently degrades the most immunogenic 33-mer as well as the whole gliadin proteins, as demonstrated by SDS-PAGE, HPLC, LC-MS/MS, and ELISA. T lymphocytes from duodenal biopsies of celiac patients showed a strongly reduced or absent release of IFN-γ when exposed to gluten digested with E40. Data in gastrointestinal simulated conditions suggest that no toxic peptides are freed during gluten digestion by E40 into the stomach to enter the small intestine, thus counteracting the intestinal inflammatory cascade to occur in CD patients. E40 is proposed as a novel candidate in Oral Enzymatic Therapy for the dietary management of gluten toxicity.
Collapse
|
15
|
Alhassan E, Yadav A, Kelly CP, Mukherjee R. Novel Nondietary Therapies for Celiac Disease. Cell Mol Gastroenterol Hepatol 2019; 8:335-345. [PMID: 31146067 PMCID: PMC6713892 DOI: 10.1016/j.jcmgh.2019.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/07/2019] [Accepted: 04/22/2019] [Indexed: 02/08/2023]
Abstract
Celiac Disease (CeD) is defined as a chronic small intestinal immune-mediated enteropathy that is precipitated by exposure to dietary gluten in genetically predisposed individuals. CeD is one of the most common autoimmune disorders affecting around 1% of the population worldwide. Currently, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD) which can often present a challenging task. A GFD alone is not sufficient to control symptoms and prevent mucosal damage that can result from unintentional gluten exposure. Moreover, long-term complications can occur in many patients. Consequently, there is an unmet need for non-dietary therapies for the management of CeD. Such therapies could serve as an adjunct to the GFD but eventually may replace it. This review will focus on and discuss non-dietary therapies currently in clinical development for the management of CeD. METHODOLOGY: We searched clinicaltrials.gov and PubMed to extract articles about celiac disease. We used keywords including, but not limited to, "celiac disease," "non-dietary," "therapeutics," "pathophysiology," "Endopeptidases," "tight junction modulators," "vaccine," and "Nexvax2". We focused mainly on articles that conducted pathophysiologic and therapeutic research in human trials.
Collapse
Affiliation(s)
- Eaman Alhassan
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Abhijeet Yadav
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ciaran P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rupa Mukherjee
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
16
|
Chander AM, Yadav H, Jain S, Bhadada SK, Dhawan DK. Cross-Talk Between Gluten, Intestinal Microbiota and Intestinal Mucosa in Celiac Disease: Recent Advances and Basis of Autoimmunity. Front Microbiol 2018; 9:2597. [PMID: 30443241 PMCID: PMC6221985 DOI: 10.3389/fmicb.2018.02597] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Celiac disease (CD) is an autoimmune disorder of the small intestine, caused by gluten induced inflammation in some individuals susceptible to genetic and environmental influences. To date, pathophysiology of CD in relation to intestinal microbiota is not known well. This review relies on contribution of intestinal microbiome and oral microbiome in pathogenesis of CD based on their interactions with gluten, thereby highlighting the role of upper gastrointestinal microbiota. It has been hypothesized that CD might be triggered by additive effects of immunotoxic gluten peptides and intestinal dysbiosis (microbial imbalance) in the people with or without genetic susceptibilities, where antibiotics may be deriving dysbiotic agents. In contrast to the intestinal dysbiosis, genetic factors even seem secondary in disease outcome thus suggesting the importance of interaction between microbes and dietary factors in immune regulation at intestinal mucosa. Moreover, association of imbalanced counts of some commensal microbes in intestine of CD patients suggests the scope for probiotic therapies. Lactobacilli and specific intestinal and oral bacteria are potent source of gluten degrading enzymes (glutenases) that may contribute to commercialization of a novel glutenase therapy. In this review, we shall discuss advantages and disadvantages of food based therapies along with probiotic therapies where probiotic therapies are expected to emerge as the safest biotherapies among other in-process therapies. In addition, this review emphasizes on differential targets of probiotics that make them suitable to manage CD as along with glutenase activity, they also exhibit immunomodulatory and intestinal microbiome modulatory properties.
Collapse
Affiliation(s)
- Atul Munish Chander
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.,Department of Biophysics, Panjab University, Chandigarh, India
| | - Hariom Yadav
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shalini Jain
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
17
|
Venditti M, Minucci S. Subcellular Localization of Prolyl Endopeptidase During the First Wave of Rat Spermatogenesis and in Rat and Human Sperm. J Histochem Cytochem 2018; 67:229-243. [PMID: 30380361 DOI: 10.1369/0022155418810064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Prolyl endopeptidase (PREP) is an enzyme which cleaves several peptide hormones and neuropeptides on the carboxyl side of proline residues and is involved in many biological processes, including cell proliferation and differentiation, glucose metabolism, learning, memory, and cognitive disorders. PREP has also been identified as a binding partner of tubulin, suggesting the involvement of endopeptidase in microtubule-associate processes, independent of its peptidase activity. Furthermore, several reports have implied PREP participation in both male and female reproduction-associated mechanism. We herein assess a potential association of PREP to the morphogenesis of rat testis, profiling its localization versus tubulin, during the first wave of spermatogenesis and in the adult gonad (from 7 to 60 dpp). We show that, in mitotic phases, PREP shares its localization with tubulin in Sertoli cells, gonocytes, and spermatogonia. Later, during meiosis, both proteins are found in spermatocytes, and in the cytoplasm of Sertoli cells protrusions, surrounding the germ cells, while, during spermiogenesis, they both localize in the cytoplasm of round and elongating spermatids. We also found that this enzyme has a peculiar nuclear localization, in the proliferating cells in all phases of analysis. Finally, they are expressed in the flagellum of mature gametes, as corroborated by additional immunolocalization analysis on both rat and human sperm. Our data support the hypothesis of the fundamental role of PREP in reproduction and in cytoskeletal organization during mammalian testis morphogenesis and gamete progression.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi," Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi," Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy
| |
Collapse
|
18
|
Development of wheat genotypes expressing a glutamine-specific endoprotease from barley and a prolyl endopeptidase from Flavobacterium meningosepticum or Pyrococcus furiosus as a potential remedy to celiac disease. Funct Integr Genomics 2018; 19:123-136. [PMID: 30159724 DOI: 10.1007/s10142-018-0632-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Ubiquitous nature of prolamin proteins dubbed gluten from wheat and allied cereals imposes a major challenge in the treatment of celiac disease, an autoimmune disorder with no known treatment other than abstinence diet. Administration of hydrolytic glutenases as food supplement is an alternative to deliver the therapeutic agents directly to the small intestine, where sensitization of immune system and downstream reactions take place. The aim of the present research was to evaluate the capacity of wheat grain to express and store hydrolytic enzymes capable of gluten detoxification. For this purpose, wheat scutellar calli were biolistically transformed to generate plants expressing a combination of glutenase genes for prolamin detoxification. Digestion of prolamins with barley endoprotease B2 (EP-HvB2) combined with Flavobacterium meningosepticum prolyl endopeptidase (PE-FmPep) or Pyrococcus furiosus prolyl endopeptidase (PE-PfuPep) significantly reduced (up to 67%) the amount of the indigestible gluten peptides of all prolamin families tested. Seven of the 168 generated lines showed inheritance of transgene to the T2 generation. Reversed phase high-performance liquid chromatography of gluten extracts under simulated gastrointestinal conditions allowed the identification of five T2 lines that contained significantly reduced amounts of immunogenic, celiac disease-provoking gliadin peptides. These findings were complemented by the R5 ELISA test results where up to 72% reduction was observed in the content of immunogenic peptides. The developed wheat genotypes open new horizons for treating celiac disease by an intraluminal enzyme therapy without compromising their agronomical performance.
Collapse
|
19
|
|
20
|
Herrán AR, Pérez-Andrés J, Caminero A, Nistal E, Vivas S, Ruiz de Morales JM, Casqueiro J. Gluten-degrading bacteria are present in the human small intestine of healthy volunteers and celiac patients. Res Microbiol 2017; 168:673-684. [PMID: 28526528 DOI: 10.1016/j.resmic.2017.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/04/2017] [Accepted: 04/27/2017] [Indexed: 12/16/2022]
Abstract
Gluten is the only known environmental factor that triggers celiac disease. Several studies have described an imbalance between the intestinal microbiota of different individuals based on diagnoses. Moreover, recent studies have suggested that human bacteria may play an important role in gluten hydrolysis. However, there has been no research focusing on the small intestine. This study aimed to characterize the adult small intestine microbiota possibly implicated in gluten hydrolysis. Duodenal biopsies from different diagnosed individuals were cultured in a gluten-containing medium, and the grown microbiota was analyzed by culture dependent/independent methods. Results showed that gluten-degrading bacteria can be found in the human small intestine. Indeed, 114 bacterial strains belonging to 32 species were isolated; 85 strains were able to grow in a medium containing gluten as the sole nitrogen source, 31 strains showed extracellular proteolytic activity against gluten protein and 27 strains showed peptidolytic activity towards the 33 mer peptide, an immunogenic peptide for celiac disease patients. We found that there are no differences based on the diagnosis, but each individual has its own population of gluten-hydrolyzing bacteria. These bacteria or their gluten-degrading enzymes could help to improve the quality of life of celiac disease patients'.
Collapse
Affiliation(s)
- Alexandra R Herrán
- Área de Microbiología, Facultad de Biología y Ciencias Ambientales, Universidad de León, 24071 León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Jénifer Pérez-Andrés
- Área de Microbiología, Facultad de Biología y Ciencias Ambientales, Universidad de León, 24071 León, Spain
| | - Alberto Caminero
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Esther Nistal
- Área de Microbiología, Facultad de Biología y Ciencias Ambientales, Universidad de León, 24071 León, Spain
| | - Santiago Vivas
- Departamento de Gastroenterología, Hospital de León, Altos de Nava s/n, 24071 León, Spain; Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
| | | | - Javier Casqueiro
- Área de Microbiología, Facultad de Biología y Ciencias Ambientales, Universidad de León, 24071 León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain.
| |
Collapse
|
21
|
Salivary Gluten Degradation and Oral Microbial Profiles in Healthy Individuals and Celiac Disease Patients. Appl Environ Microbiol 2017; 83:AEM.03330-16. [PMID: 28087531 DOI: 10.1128/aem.03330-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022] Open
Abstract
Celiac disease (CD) is a chronic immune-mediated enteropathy induced by dietary gluten in genetically predisposed individuals. Saliva harbors the second highest bacterial load of the gastrointestinal (GI) tract after the colon. We hypothesized that enzymes produced by oral bacteria may be involved in gluten processing in the intestine and susceptibility to celiac disease. The aim of this study was to investigate salivary enzymatic activities and oral microbial profiles in healthy subjects versus patients with classical and refractory CD. Stimulated whole saliva was collected from patients with CD in remission (n = 21) and refractory CD (RCD; n = 8) and was compared to healthy controls (HC; n = 20) and subjects with functional GI complaints (n = 12). Salivary gluten-degrading activities were monitored with the tripeptide substrate Z-Tyr-Pro-Gln-pNA and the α-gliadin-derived immunogenic 33-mer peptide. The oral microbiome was profiled by 16S rRNA-based MiSeq analysis. Salivary glutenase activities were higher in CD patients compared to controls, both before and after normalization for protein concentration or bacterial load. The oral microbiomes of CD and RCD patients showed significant differences from that of healthy subjects, e.g., higher salivary levels of lactobacilli (P < 0.05), which may partly explain the observed higher gluten-degrading activities. While the pathophysiological link between the oral and gut microbiomes in CD needs further exploration, the presented data suggest that oral microbe-derived enzyme activities are elevated in subjects with CD, which may impact gluten processing and the presentation of immunogenic gluten epitopes to the immune system in the small intestine.IMPORTANCE Ingested gluten proteins are the triggers of intestinal inflammation in celiac disease (CD). Certain immunogenic gluten domains are resistant to intestinal proteases but can be hydrolyzed by oral microbial enzymes. Very little is known about the endogenous proteolytic processing of gluten proteins in the oral cavity. Given that this occurs prior to gluten reaching the small intestine, such enzymes are likely to contribute to the composition of the gluten digest that ultimately reaches the small intestine and causes CD. We demonstrated that endogenous salivary protease activities are incomplete, likely liberating peptides from larger gluten proteins. The potentially responsible microbes were identified. The study included refractory CD patients, who have been studied less with regard to CD pathogenesis.
Collapse
|
22
|
Murray JA, Kelly CP, Green PHR, Marcantonio A, Wu TT, Mäki M, Adelman DC. No Difference Between Latiglutenase and Placebo in Reducing Villous Atrophy or Improving Symptoms in Patients With Symptomatic Celiac Disease. Gastroenterology 2017; 152:787-798.e2. [PMID: 27864127 DOI: 10.1053/j.gastro.2016.11.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gluten ingestion leads to symptoms and small intestinal mucosal injury in patients with celiac disease. The only option is the strict lifelong exclusion of dietary gluten, which is difficult to accomplish. Many patients following a gluten-free diet continue to have symptoms and have small intestinal mucosal injury. Nondietary therapies are needed. We performed a phase 2 study of the ability of latiglutenase, an orally administered mixture of 2 recombinant gluten-targeting proteases, to reduce mucosal morphometric measures in biopsy specimens from patients with celiac disease. METHODS We performed a double-blind, placebo-controlled, dose-ranging study to assess the efficacy and safety of latiglutenase in 494 patients with celiac disease (with moderate or severe symptoms) in North America and Europe, from August 2013 until December 2014. Participants reported following a gluten-free diet for at least 1 year before the study began. Patients with documented moderate or severe symptoms and villous atrophy (villous height:crypt depth ratio of ≤2.0) were assigned randomly to groups given placebo or 100, 300, 450, 600, or 900 mg latiglutenase daily for 12 or 24 weeks. Subjects completed the Celiac Disease Symptom Diary each day for 28 days and underwent an upper gastrointestinal endoscopy with duodenal biopsy of the distal duodenum at baseline and at weeks 12 and 24. The primary end point was a change in the villous height:crypt depth ratio. Secondary end points included numbers of intraepithelial lymphocytes, serology test results (for levels of antibodies against tissue transglutaminase-2 and deamidated gliadin peptide), symptom frequencies, and safety. RESULTS In a modified intent-to-treat population, there were no differences between latiglutenase and placebo groups in change from baseline in villous height:crypt depth ratio, numbers of intraepithelial lymphocytes, or serologic markers of celiac disease. All groups had significant improvements in histologic and symptom scores. CONCLUSIONS In a phase 2 study of patients with symptomatic celiac disease and histologic evidence of significant duodenal mucosal injury, latiglutenase did not improve histologic and symptom scores when compared with placebo. There were no significant differences in change from baseline between groups. ClinicalTrials.gov no: NCT01917630.
Collapse
Affiliation(s)
- Joseph A Murray
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Ciarán P Kelly
- Celiac Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Peter H R Green
- Columbia University College of Physicians and Surgeons, New York, New York
| | | | - Tsung-Teh Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Markku Mäki
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | |
Collapse
|
23
|
Kumar J, Kumar M, Pandey R, Chauhan NS. Physiopathology and Management of Gluten-Induced Celiac Disease. J Food Sci 2017; 82:270-277. [PMID: 28140462 DOI: 10.1111/1750-3841.13612] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/21/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022]
Abstract
Proline- and glutamine-rich gluten proteins are one of the major constituents of cereal dietary proteins, which are largely resistant to complete cleavage by the human gastrointestinal (GI) digestive enzymes. Partial digestion of gluten generates approximately 35 amino acids (aa) immunomodulatory peptides which activate T-cell-mediated immune system, followed by immunological inflammation of mucosa leading to the onset of celiac disease (CD). CD is an autoimmune disease associated with HLA-DQ2/DQ8 polymorphism and dysbiosis of gut microbiota. CD is either diagnosed using duodenal mucosal biopsis or serological testing for transglutaminase 2 (TG2) specific antibodies (IgA and IgG). Current therapy for CD management is gluten-free diet, while other therapies like glutenase, probiotics, immunomodulation, jamming of HLA-DQ2, inhibition of TG2, and gluten tolerance aided by gluten tolerizing vaccines are being developed.
Collapse
Affiliation(s)
- Jitendra Kumar
- Dept. of Biochemistry, M.D. Univ., Rohtak, 124001, Haryana, India
| | - Manoj Kumar
- Dept. of Biochemistry, M.D. Univ., Rohtak, 124001, Haryana, India
| | - Rajesh Pandey
- Ayurgenomics Unit-TRISUTRA, Inst. of Genomics and Integrative Biology, Council of Scientific and Industrial Research, New Delhi, 110020, India
| | | |
Collapse
|
24
|
Scherf KA, Wieser H, Koehler P. Novel approaches for enzymatic gluten degradation to create high-quality gluten-free products. Food Res Int 2016; 110:62-72. [PMID: 30029707 DOI: 10.1016/j.foodres.2016.11.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 02/08/2023]
Abstract
Celiac disease (CD), a chronic enteropathy of the small intestine caused by ingestion of gluten, is one of the most prevalent food hypersensitivities worldwide. The essential treatment is a strict lifelong gluten-free diet based on the avoidance of gluten-containing products from wheat, rye, barley and, in rare cases, oats. Products made from naturally gluten-free raw materials often have inferior nutritional, textural and sensory properties compared to the corresponding gluten-containing products. Therefore, the incorporation of wheat, rye and barley flours after efficient removal of the harmful component gluten into gluten-free products would be beneficial. Gluten modification resulting in decreased CD-immunoreactivity may be achieved via the formation of crosslinks using microbial transglutaminase. To effectively eliminate CD-immunoreactivity, plant, fungal, bacterial, animal or engineered peptidases are capable of degrading gluten proteins and peptides into harmless fragments. The application of peptidases from germinated cereal grains, fungal peptidases and/or lactic acid bacteria during food processing yielded high-quality sourdough wheat breads, pasta, wheat starch and bran, rye products and beer, all with gluten contents below the Codex Alimentarius threshold of 20mg/kg for gluten-free products. As with all gluten-free products, the legislative compliance of such treated materials needs to be monitored closely. Provided that all safety requirements are met, gluten-containing raw materials treated in an adequate way to remove CD-active gluten fragments may be used together with naturally gluten-free ingredients to create an extended choice of high-quality gluten-free products.
Collapse
Affiliation(s)
- Katharina Anne Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Herbert Wieser
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
25
|
Wei G, Tian N, Siezen R, Schuppan D, Helmerhorst EJ. Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G571-80. [PMID: 27469368 PMCID: PMC5076000 DOI: 10.1152/ajpgi.00185.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
Gluten are proline- and glutamine-rich proteins present in wheat, barley, and rye and contain the immunogenic sequences that drive celiac disease (CD). Rothia mucilaginosa, an oral microbial colonizer, can cleave these gluten epitopes. The aim was to isolate and identify the enzymes and evaluate their potential as novel enzyme therapeutics for CD. The membrane-associated R. mucilaginosa proteins were extracted and separated by DEAE chromatography. Enzyme activities were monitored with paranitroanilide-derivatized and fluorescence resonance energy transfer (FRET) peptide substrates, and by gliadin zymography. Epitope elimination was determined in R5 and G12 ELISAs. The gliadin-degrading Rothia enzymes were identified by LC-ESI-MS/MS as hypothetical proteins ROTMU0001_0241 (C6R5V9_9MICC), ROTMU0001_0243 (C6R5W1_9MICC), and ROTMU0001_240 (C6R5V8_9MICC). A search with the Basic Local Alignment Search Tool revealed that these are subtilisin-like serine proteases belonging to the peptidase S8 family. Alignment of the major Rothia subtilisins indicated that all contain the catalytic triad with Asp (D), His (H), and Ser (S) in the D-H-S order. They cleaved succinyl-Ala-Ala-Pro-Phe-paranitroanilide, a substrate for subtilisin with Pro in the P2 position, as in Tyr-Pro-Gln and Leu-Pro-Tyr in gluten, which are also cleaved. Consistently, FRET substrates of gliadin immunogenic epitopes comprising Xaa-Pro-Xaa motives were rapidly hydrolyzed. The Rothia subtilisins and two subtilisins from Bacillus licheniformis, subtilisin A and the food-grade Nattokinase, efficiently degraded the immunogenic gliadin-derived 33-mer peptide and the immunodominant epitopes recognized by the R5 and G12 antibodies. This study identified Rothia and food-grade Bacillus subtilisins as promising new candidates for enzyme therapeutics in CD.
Collapse
Affiliation(s)
- Guoxian Wei
- 1Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Na Tian
- 1Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Roland Siezen
- 2Bacterial Genomics Group, Center for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, the Netherlands;
| | - Detlef Schuppan
- 3Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and ,4Institute of Translational Immunology and Research Center for Immunology, University Medical Center, Johannes-Gutenberg-University, Mainz, Germany
| | - Eva J. Helmerhorst
- 1Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| |
Collapse
|
26
|
Mickowska B, Socha P, Urminská D. Immunochemical evaluation of proteolysis of cereal proteins causing celiac disease by microbial proteases. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1148665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
27
|
|
28
|
Eugster PJ, Grouzmann E, Salamin K, Monod M. Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin. Microbiology (Reading) 2015; 161:2277-88. [DOI: 10.1099/mic.0.000198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Wolf C, Siegel JB, Tinberg C, Camarca A, Gianfrani C, Paski S, Guan R, Montelione G, Baker D, Pultz IS. Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades Immunogenic Gliadin Peptides in Gastric Conditions. J Am Chem Soc 2015; 137:13106-13. [PMID: 26374198 PMCID: PMC4958374 DOI: 10.1021/jacs.5b08325] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Celiac disease is characterized by intestinal inflammation triggered by gliadin, a component of dietary gluten. Oral administration of proteases that can rapidly degrade gliadin in the gastric compartment has been proposed as a treatment for celiac disease; however, no protease has been shown to specifically reduce the immunogenic gliadin content, in gastric conditions, to below the threshold shown to be toxic for celiac patients. Here, we used the Rosetta Molecular Modeling Suite to redesign the active site of the acid-active gliadin endopeptidase KumaMax. The resulting protease, Kuma030, specifically recognizes tripeptide sequences that are found throughout the immunogenic regions of gliadin, as well as in homologous proteins in barley and rye. Indeed, treatment of gliadin with Kuma030 eliminates the ability of gliadin to stimulate a T cell response. Kuma030 is capable of degrading >99% of the immunogenic gliadin fraction in laboratory-simulated gastric digestions within physiologically relevant time frames, to a level below the toxic threshold for celiac patients, suggesting great potential for this enzyme as an oral therapeutic for celiac disease.
Collapse
Affiliation(s)
- Clancey Wolf
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Justin B Siegel
- Departments of Chemistry, Biochemistry, and Molecular Medicine, University of California-Davis , Davis, California 95616, United States
| | - Christine Tinberg
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | - Shirley Paski
- Department of Gastroenterology, University of Washington Medical Center , Seattle, Washington 98195, United States
| | - Rongjin Guan
- Department of Molecular Biology & Biochemistry, Rutgers University , Piscataway, New Jersey 08901, United States
| | - Gaetano Montelione
- Department of Molecular Biology & Biochemistry, Rutgers University , Piscataway, New Jersey 08901, United States
| | - David Baker
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Ingrid S Pultz
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
30
|
Dotolo R, Kim JD, Pariante P, Minucci S, Diano S. Prolyl Endopeptidase (PREP) is Associated With Male Reproductive Functions and Gamete Physiology in Mice. J Cell Physiol 2015; 231:551-7. [PMID: 26332268 DOI: 10.1002/jcp.25178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Prolyl endopeptidase (PREP) is a serine protease which has been implicated in many biological processes, such as the maturation and degradation of peptide hormones and neuropeptides, learning and memory, cell proliferation and differentiation, and glucose metabolism. A small number of reports have also suggested PREP participation in both male and female reproduction-associated processes. In the present work, we examined PREP distribution in male germ cells and studied the effects of its knockdown (Prep(gt/gt)) on testis and sperm in adult mice. The protein is expressed and localized in elongating spermatids and luminal spermatozoa of wild type (wt) mice, as well as Sertoli, Leydig, and peritubular cells. PREP is also expressed in the head and midpiece of epididymal spermatozoa, whereas the remaining tail region shows a weaker signal. Furthermore, testis weight, histology of seminiferous tubules, and epididymal sperm parameters were assessed in wt and Prep(gt/gt) mice: wild type testes have larger average tubule and lumen diameter; in addition, lumenal composition of seminiferous tubules is dissimilar between wt and Prep(gt/gt), as the percentage of spermiated tubules is much higher in wt. Finally, total sperm count, sperm motility, and normal morphology are also higher in wt than in Prep(gt/gt). These results show for the first time that the expression of PREP could be necessary for a correct reproductive function, and suggest that the enzyme may play a role in mouse spermatogenesis and sperm physiology.
Collapse
Affiliation(s)
- Raffaele Dotolo
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy.,Departments of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, Connecticut
| | - Jung Dae Kim
- Departments of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, Connecticut
| | - Paolo Pariante
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Sabrina Diano
- Departments of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
31
|
Freeman HJ. Celiac disease: a disorder emerging from antiquity, its evolving classification and risk, and potential new treatment paradigms. Gut Liver 2015; 9:28-37. [PMID: 25547088 PMCID: PMC4282854 DOI: 10.5009/gnl14288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Celiac disease is a chronic genetically based gluten-sensitive immune-mediated enteropathic process primarily affecting the small intestinal mucosa. The disorder classically presents with diarrhea and weight loss; however, more recently, it has been characterized by subclinical occult or latent disease associated with few or no intestinal symptoms. Diagnosis depends on the detection of typical histopathological biopsy changes followed by a gluten-free diet response. A broad range of clinical disorders may mimic celiac disease, along with a wide range of drugs and other therapeutic agents. Recent and intriguing archeological data, largely from the Gobleki Tepe region of the Fertile Crescent, indicate that celiac disease probably emerged as humans transitioned from hunter-gatherer groups to societies dependent on agriculture to secure a stable food supply. Longitudinal studies performed over several decades have suggested that changes in the prevalence of the disease, even apparent epidemic disease, may be due to superimposed or novel environmental factors that may precipitate its appearance. Recent therapeutic approaches are being explored that may supplement, rather than replace, gluten-free diet therapy and permit more nutritional options for future management.
Collapse
Affiliation(s)
- Hugh J Freeman
- Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Di Stefano M, Carnevale Maffè G, Bergonzi M, Mengoli C, Formagnana P, Di Sabatino A, Corazza GR. The effect of gluten on intestinal fermentation, gastric and gallbladder emptying in healthy volunteers. Dig Liver Dis 2015; 47:751-6. [PMID: 26071788 DOI: 10.1016/j.dld.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/05/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The relationship between gluten ingestion and gastrointestinal tract function is a matter of debate. AIM We analysed the effect of gluten on gastric and gallbladder emptying and intestinal fermentation in healthy volunteers. METHODS Ultrasound measurement of gastric and gallbladder emptying after both gluten-containing and gluten-free meals was performed in 18 volunteers (8 women, age 25.0±2.5 years; BMI 22±1.9). Breath hydrogen excretion after a gluten-containing meal, a gluten-free meal and a gluten-free meal with added gluten powder was measured in 16 volunteers (10 women, age 25.2±2.7 years; BMI 22±1.8). The severity of symptoms was monitored. RESULTS Gluten presence in the meals was not recognised. Gastric emptying time was 81.6±13.8min after gluten-containing and 73.9±21.6min after gluten-free meals (p=0.11). Percentage ejection fraction after gluten-containing meals was 60±9% and 60.6±6% after gluten-free meals (p=0.68). Peak and cumulative hydrogen excretion were significantly higher after gluten-containing than after gluten-free meals (peak: 12.5±7.3 vs 6.5±5.1 parts-per-million, p<0.01; and cumulative: 2319±1720 vs 989±680 parts-per-million/minute, respectively; p<0.01). Adding gluten powder to the gluten-free meal did not modify fermentation. Symptoms were mild and not different after the meals. CONCLUSIONS In healthy volunteers, gluten may induce gastrointestinal alterations. Further studies are needed to clarify which patients could benefit from dietary modification.
Collapse
Affiliation(s)
- Michele Di Stefano
- 1st Department of Internal Medicine, University of Pavia, IRCCS "S. Matteo" Hospital Foundation, Pavia, Italy.
| | - Gabriella Carnevale Maffè
- 1st Department of Internal Medicine, University of Pavia, IRCCS "S. Matteo" Hospital Foundation, Pavia, Italy
| | - Manuela Bergonzi
- 1st Department of Internal Medicine, University of Pavia, IRCCS "S. Matteo" Hospital Foundation, Pavia, Italy
| | - Caterina Mengoli
- 1st Department of Internal Medicine, University of Pavia, IRCCS "S. Matteo" Hospital Foundation, Pavia, Italy
| | - Pietro Formagnana
- 1st Department of Internal Medicine, University of Pavia, IRCCS "S. Matteo" Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- 1st Department of Internal Medicine, University of Pavia, IRCCS "S. Matteo" Hospital Foundation, Pavia, Italy
| | - Gino Roberto Corazza
- 1st Department of Internal Medicine, University of Pavia, IRCCS "S. Matteo" Hospital Foundation, Pavia, Italy
| |
Collapse
|
33
|
Veeraraghavan G, Leffler DA, Kaswala DH, Mukherjee R. Celiac disease 2015 update: new therapies. Expert Rev Gastroenterol Hepatol 2015; 9:913-27. [PMID: 25864708 DOI: 10.1586/17474124.2015.1033399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celiac disease (CD) is a chronic, small intestinal, immune-mediated enteropathy triggered by exposure to dietary gluten in genetically susceptible individuals. Currently, lifelong adherence to a gluten-free diet (GFD) is the only available treatment. However, GFD alone is not sufficient to relieve symptoms, control small intestinal inflammation and prevent long-term complications in many patients. The GFD has its challenges including issues related to adherence, lifestyle restrictions and cost. As a result, there is growing interest in and a need for non-dietary therapies to manage this condition. In recent years, different targets in the immune-mediated cascade of CD have been identified in clinical and pre-clinical trials for potential therapies. This review will discuss the latest non-dietary therapies in CD, including endopeptidases, modulators of enterocyte tight junctions and agents involved in gluten tolerization and immunomodulation. We will also discuss the potential implications of approved therapeutics on CD clinical practice.
Collapse
Affiliation(s)
- Gopal Veeraraghavan
- Department of Medicine, Celiac Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Currently, the only effective treatment for celiac disease is a strict lifelong gluten-free diet. However, gluten-free dieting is restrictive, difficult to maintain and nutritionally less than optimal. The improved knowledge on celiac disease pathogenesis has enabled researchers to suggest alternative strategies to treat the disorder. The drug development poses a challenge as any novel drug for celiac disease should be simultaneously effective and as safe as the gluten-free diet. The rationale behind enzyme supplementation therapy as a future treatment option for celiac patients lies in the fact that gluten is only poorly digested by gastrointestinal proteases. Due to incomplete degradation in the gastrointestinal tract, fairly long gluten peptides enter the small-intestinal lumen and come into contact with the mucosal epithelium, and in celiac disease patients this encounter launches deleterious downstream effects. Enzyme supplement therapy using either bacterial or fungal endopeptidases or proteases from germinating cereals has been proposed to promote complete digestion of prolamins and destroy disease-inducing gluten peptides. A major advantage of these glutenases is that they work in the lumen of the small intestine and do not themselves take part in the immunological cascade of events in the lamina propria, thus being unlikely to cause harmful side effects to the host. Studies to test this rationale, e.g. with Aspergillus niger prolyl endoprotease and a combination enzyme product ALV003, are already ongoing. The development of a novel medication for celiac disease is still in its early days, and thus the conventional dietary treatment will hold its place for the time being.
Collapse
|
35
|
Savvateeva LV, Gorokhovets NV, Makarov VA, Serebryakova MV, Solovyev AG, Morozov SY, Reddy VP, Zernii EY, Zamyatnin AA, Aliev G. Glutenase and collagenase activities of wheat cysteine protease Triticain-α: feasibility for enzymatic therapy assays. Int J Biochem Cell Biol 2015; 62:115-24. [PMID: 25765959 DOI: 10.1016/j.biocel.2015.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Insufficient and/or improper protein degradation is associated with the development of various human pathologies. Enzymatic therapy with proteolytic enzymes aimed to improve insufficient proteolytic activity was suggested as a treatment of protease deficiency-induced disorders. Since in many cases human degradome is incapable of degrading the entire target protein(s), other organisms can be used as a source of proteases exhibiting activities distinct from human enzymes, and plants are perspective candidates for this source. In this study recombinant wheat cysteine protease Triticain-α was shown to refold in vitro into an autocatalytically activated proteolytic enzyme possessing glutenase and collagenase activities at acidic (or close to neutral) pH levels at the temperature of human body. Mass-spectrometry analysis of the products of Triticain-α-catalyzed gluten hydrolysis revealed multiple cleavage sites within the sequences of gliadin toxic peptides, in particular, in the major toxic 33-mer α-gliadin-derived peptide initiating inflammatory responses to gluten in celiac disease (CD) patients. Triticain-α was found to be relatively stable in the conditions simulating stomach environment. We conclude that Triticain-α can be exploited as a basic compound for development of (i) pharmaceuticals for oral administration aimed at release of the active enzyme into the gastric lumen for CD treatment, and (ii) topically active pharmaceuticals for wound debridement applications.
Collapse
Affiliation(s)
- Lyudmila V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russia
| | - Neonila V Gorokhovets
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russia
| | - Vladimir A Makarov
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russia
| | - Marina V Serebryakova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119991, Moscow, Russia
| | - Andrey G Solovyev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119991, Moscow, Russia
| | - Sergey Yu Morozov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119991, Moscow, Russia
| | - V Prakash Reddy
- Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Evgeni Yu Zernii
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119991, Moscow, Russia
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russia; Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119991, Moscow, Russia.
| | - Gjumrakch Aliev
- "GALLY" International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA; School of Health Science and Healthcare Administration, The University of Atlanta, Johns Creek, GA, 30097, USA.
| |
Collapse
|
36
|
Berger M, Sarantopoulos C, Ongchangco D, Sry J, Cesario T. Rapid isolation of gluten-digesting bacteria from human stool and saliva by using gliadin-containing plates. Exp Biol Med (Maywood) 2014; 240:917-24. [PMID: 25519429 DOI: 10.1177/1535370214564748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/04/2014] [Indexed: 12/20/2022] Open
Abstract
The number of individuals with gluten intolerance has increased dramatically over the last years. To date, the only therapy for gluten intolerance is the complete avoidance of dietary gluten. To sustain a strictly gluten-free diet, however, is very challenging. Therefore, there is need for a non-dietary therapy. Any such treatment must appreciate that the immunogenic part of gluten are gliadin peptides which are poorly degraded by the enzymes of the gastrointestinal tract. Probiotic therapy and oral enzyme therapy containing gluten-degrading bacteria (GDB) and their gliadin-digesting enzymes are possible new approaches for the treatment of gluten intolerance, however effectively isolating GDB for these treatments is problematic. The goal of this study was to develop an easy technique to isolate GDB rapidly and efficiently with the hope it might lead to newer ways of developing either probiotics or traditional medicines to treat gluten intolerance. Several researchers have already isolated successfully GDB by using gluten minimal or limited agar plates. Although these plates can be used to isolate bacteria which can tolerate gluten, further assays are needed to investigate if the same bacteria can also digest gluten. The agar plates we developed can detect bacteria which cannot only tolerate gluten but are able to digest it as well. Therefore, we were able to combine two steps into one step. Using such technologies, we were able to isolate five GDB from saliva and stool, and identified three bacterial reference strains with gluten-degrading activity. The technique we developed to isolate bacteria with gluten-degrading activity is fast, effective, and easy to use. The GDB isolated by our technology could have potential as part of a probiotic or enzymatic therapy for people with gluten intolerance.
Collapse
Affiliation(s)
| | | | | | - Jeremy Sry
- University of California, Orange, CA 92868, USA
| | | |
Collapse
|
37
|
Duar RM, Clark KJ, Patil PB, Hernández C, Brüning S, Burkey TE, Madayiputhiya N, Taylor SL, Walter J. Identification and characterization of intestinal lactobacilli strains capable of degrading immunotoxic peptides present in gluten. J Appl Microbiol 2014; 118:515-27. [PMID: 25376327 DOI: 10.1111/jam.12687] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 01/17/2023]
Abstract
AIM Identify and characterize bacteria from the proximal gastrointestinal tract of pigs capable of degrading immunogenic gluten peptides. METHODS AND RESULTS Bacteria were cultured from the small intestine of pigs fed a 20% gluten diet and from an enrichment media with the 18-mer peptide LQLQPFPQPQLPYPQPQL. Isolates were screened for the production of specialized proteolytic enzymes and the ability to degrade and remove metastable peptides from α-gliadin (16-mer and 33-mer) and ω-gliadin (17-mer), with established roles in the aetiology of coeliac disease. Degradation was determined by ELISA and mass spectrometry (UHPLC-MS/MS in MRM mode), and hydrolysis fragments were characterized by LC-MS/MS. Four strains from the species Lactobacillus ruminis, Lactobacillus johnsonii, Lactobacillus amylovorus and Lactobacillus salivarius showed the highest peptide-degrading activities. Strains displayed different degradation rates and cleavage patterns that resulted in reduction but not complete removal of immunotoxic epitopes. CONCLUSIONS We employed a unique enrichment process to select for bacteria adapted to the conditions of the proximal gastrointestinal tract with the ability to partially detoxify well-characterized peptides involved in coeliac disease. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a basis for the selection of Lactobacillus strains for probiotic applications aimed to reduce epitope-containing gluten peptides before reaching the epithelium of the small intestine of patients with coeliac disease.
Collapse
Affiliation(s)
- R M Duar
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA; Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
INTRODUCTION Celiac disease is an immune-mediated gluten-dependent disorder, primarily affecting the small intestine in genetically predisposed individuals. The disorder has a very heterogeneous clinical and histopathological spectrum. Current treatment with a gluten-free diet is very effective, but the diet is difficult to maintain and remains costly. AREAS COVERED Alternatives to the gluten-free diet have been proposed to either replace this current treatment, or at least, to supplement use of the gluten-free diet. Studies in the published English language literature relevant to this review were examined for this report. EXPERT OPINION Most recent published double-blind, placebo-controlled clinical trials have focused on an orally administered recombinant glutenase (ALV003) showing significant but limited benefit to celiac disease patients already compliant with a gluten-free diet. Other studies have addressed other immune mechanisms that may play a role in its pathogenesis and have not been so positive. Added investigations, particularly over the long-term, in other larger and more heterogeneous populations are needed.
Collapse
Affiliation(s)
- Hugh James Freeman
- University of British Columbia, Department of Medicine (Gastroenterology) , Vancouver, BC , Canada
| |
Collapse
|
39
|
Influence of dietary components on Aspergillus niger prolyl endoprotease mediated gluten degradation. Food Chem 2014; 174:440-5. [PMID: 25529703 DOI: 10.1016/j.foodchem.2014.11.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/05/2014] [Accepted: 11/09/2014] [Indexed: 01/14/2023]
Abstract
Celiac disease (CD) is caused by intolerance to gluten. Oral supplementation with enzymes like Aspergillus niger propyl-endoprotease (AN-PEP), which can hydrolyse gluten, has been proposed to prevent the harmful effects of ingestion of gluten. The influence of meal composition on AN-PEP activity was investigated using an in vitro model that simulates stomach-like conditions. AN-PEP optimal dosage was 20 proline protease units (PPU)/g gluten. The addition of a carbonated drink strongly enhanced AN-PEP activity because of its acidifying effect. While fat did not affect gluten degradation by AN-PEP, the presence of food proteins slowed down gluten detoxification. Moreover, raw gluten was degraded more efficiently by AN-PEP than baked gluten. We conclude that the meal composition influences the amount of AN-PEP needed for gluten elimination. Therefore, AN-PEP should not be used to replace a gluten free diet, but rather to support digestion of occasional and/or inadvertent gluten consumption.
Collapse
|
40
|
Tian N, Wei G, Schuppan D, Helmerhorst EJ. Effect of Rothia mucilaginosa enzymes on gliadin (gluten) structure, deamidation, and immunogenic epitopes relevant to celiac disease. Am J Physiol Gastrointest Liver Physiol 2014; 307:G769-76. [PMID: 25147233 PMCID: PMC4200315 DOI: 10.1152/ajpgi.00144.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rothia mucilaginosa, a natural microbial inhabitant of the oral cavity, cleaves gluten (gliadin) proteins at regions that are resistant to degradation by mammalian enzymes. The aim of this study was to investigate to what extent the R. mucilaginosa cell-associated enzymes abolish gliadin immunogenic properties. Degradation of total gliadins and highly immunogenic gliadin 33-mer or 26-mer peptides was monitored by SDS-PAGE and RP-HPLC, and fragments were sequenced by liquid chromatography and electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). Peptide deamidation by tissue transglutaminase (TG2), a critical step in rendering the fragments more immunogenic, was assessed by TG2-mediated cross-linking to monodansyl cadaverine (MDC), and by a +1-Da mass difference by LC-ESI-MS. Survival of potential immunogenic gliadin epitopes was determined by use of the R5 antibody-based ELISA. R. mucilaginosa-associated enzymes cleaved gliadins, 33-mer and 26-mer peptides into smaller fragments. TG2-mediated cross-linking showed a perfect inverse relationship with intact 33-mer and 26-mer peptide levels, and major degradation fragments showed a slow rate of MDC cross-linking of 6.18 ± 2.20 AU/min compared with 97.75 ± 10.72 and 84.17 ± 3.25 AU/min for the intact 33-mer and 26-mer, respectively, which was confirmed by reduced TG2-mediated deamidation of the fragments in mass spectrometry. Incubation of gliadins with Rothia cells reduced R5 antibody binding by 20, 82, and 97% after 30 min, 2 h, and 5 h, respectively, which was paralleled by reduced reactivity of enzyme-treated 33-mer and 26-mer peptides in the R5 competitive ELISA. Our broad complementary approach to validate gluten degrading activities qualifies R. mucilaginosa-associated enzymes as promising tools to neutralize T cell immunogenic properties for treatment of celiac disease.
Collapse
Affiliation(s)
- Na Tian
- 1Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Guoxian Wei
- 1Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Detlef Schuppan
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and ,3Institute of Translational Immunology and Research Center for Immunology (FZI), University Medical Center, Johannes-Gutenberg-University, Mainz, Germany
| | - Eva J. Helmerhorst
- 1Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| |
Collapse
|
41
|
Mooney PD, Hadjivassiliou M, Sanders DS. Emerging drugs for coeliac disease. Expert Opin Emerg Drugs 2014; 19:533-44. [DOI: 10.1517/14728214.2014.959490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Toft-Hansen H, Rasmussen KS, Staal A, Roggen EL, Sollid LM, Lillevang ST, Barington T, Husby S. Treatment of both native and deamidated gluten peptides with an endo-peptidase from Aspergillus niger prevents stimulation of gut-derived gluten-reactive T cells from either children or adults with celiac disease. Clin Immunol 2014; 153:323-31. [PMID: 24905137 DOI: 10.1016/j.clim.2014.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023]
Abstract
Celiac disease (CD) is characterized by an inappropriate immunological reaction against gluten driven by gluten-specific CD4+ T cells. We screened 25 proteases and tested 10 for their potential to degrade gluten in vitro. Five proteases were further tested for their ability to prevent the proliferative response by a gluten-specific CD4+ T cell clone and seven gluten-reactive T cell lines to protease-digested gluten peptides. A proline-specific endo-peptidase from Aspergillus niger (AnP2) was particularly efficient at diminishing proliferation after stimulation with cleaved antigen, and could completely block the response against both native and deamidated gluten peptides. We found that AnP2 was efficient down to a 1:64 protease:substrate ratio (w:w). When AnP2 was tested in assays using seven gluten-reactive T cell lines from individual CD patients (three adults and four children), the response to gluten was diminished in all cases. Our study indicates a therapeutic benefit of AnP2 to CD patients.
Collapse
Affiliation(s)
- Henrik Toft-Hansen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, University of Southern Denmark, Denmark; Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Denmark.
| | - Karina S Rasmussen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, University of Southern Denmark, Denmark; Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Denmark
| | - Anne Staal
- Hans Christian Andersen Children's Hospital, Odense University Hospital, University of Southern Denmark, Denmark; Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Denmark
| | | | | | - Søren T Lillevang
- Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children's Hospital, Odense University Hospital, University of Southern Denmark, Denmark
| |
Collapse
|
43
|
Lähdeaho ML, Kaukinen K, Laurila K, Vuotikka P, Koivurova OP, Kärjä-Lahdensuu T, Marcantonio A, Adelman DC, Mäki M. Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology 2014; 146:1649-58. [PMID: 24583059 DOI: 10.1053/j.gastro.2014.02.031] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/15/2014] [Accepted: 02/19/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Gluten ingestion leads to small intestinal mucosal injury in patients with celiac disease, necessitating strict life-long exclusion of dietary gluten. Despite adherence to a gluten-free diet, many patients remain symptomatic and still have small intestinal inflammation. In this case, nondietary therapies are needed. We investigated the ability of ALV003, a mixture of 2 recombinant gluten-specific proteases given orally, to protect patients with celiac disease from gluten-induced mucosal injury in a phase 2 trial. METHODS We established the optimal daily dose of gluten to be used in a 6-week challenge study. Then, in the intervention study, adults with biopsy-proven celiac disease were randomly assigned to groups given ALV003 (n = 20) or placebo (n = 21) together with the daily gluten challenge. Duodenal biopsies were collected at baseline and after gluten challenge. The ratio of villus height to crypt depth and densities of intraepithelial lymphocytes were the primary end points. RESULTS A daily dose of 2 g gluten was selected for the intervention study. Sixteen patients given ALV003 and 18 given placebo were eligible for efficacy evaluation. Biopsies from subjects in the placebo group showed evidence of mucosal injury after gluten challenge (mean villus height to crypt depth ratio changed from 2.8 before challenge to 2.0 afterward; P = .0007; density of CD3(+) intraepithelial lymphocytes changed from 61 to 91 cells/mm after challenge; P = .0003). However, no significant mucosal deterioration was observed in biopsies from the ALV003 group. Between groups, morphologic changes and CD3(+) intraepithelial lymphocyte counts differed significantly from baseline to week 6 (P = .0133 and P = .0123, respectively). There were no statistically significant differences in symptoms between groups. CONCLUSIONS Based on a phase 2 trial, the glutenase ALV003 appears to attenuate gluten-induced small intestinal mucosal injury in patients with celiac disease in the context of an everyday gluten-free diet containing daily up to 2 g gluten. Clinicaltrial.gov, NUMBERS NCT00959114 and NCT01255696.
Collapse
Affiliation(s)
- Marja-Leena Lähdeaho
- School of Medicine, University of Tampere, Tampere University Hospital, Tampere, Finland
| | - Katri Kaukinen
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland; Department of Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Kaija Laurila
- School of Medicine, University of Tampere, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | - Markku Mäki
- School of Medicine, University of Tampere, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
44
|
Kurppa K, Hietikko M, Sulic AM, Kaukinen K, Lindfors K. Current status of drugs in development for celiac disease. Expert Opin Investig Drugs 2014; 23:1079-91. [PMID: 24806736 DOI: 10.1517/13543784.2014.916274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Gluten is the main trigger for celiac disease, and the current treatment is based on its elimination from the diet. Although the symptoms usually disappear during the diet, it is restrictive and difficult to maintain. Further, despite a strict treatment the small-bowel mucosal damage does now always heal. Consequently, adherence is often poor and new treatment approaches are needed. With an increased understanding of the disease pathogenesis, several novel treatments have been suggested, and some of them have already entered Phase II clinical trials. AREAS COVERED This article reviews the latest status of the drugs in development for celiac disease. The article focuses mainly on synthetic drugs currently entering in clinical trials. EXPERT OPINION It is anticipated that some of the treatments under investigation will soon enter Phase III clinical trials, although challenges remain. For instance, histological studies are problematic in wide-scale clinical studies. On the other hand, the existing non-invasive serological methods and clinical outcome measures might be too insensitive for monitoring responses to the possible drug candidates. There is also no animal model which would accurately reflect celiac disease. Well-conducted basic and clinical research is required to develop better non-invasive surrogate markers and patient-related outcomes for future pharmacological studies.
Collapse
Affiliation(s)
- Kalle Kurppa
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital , Finn Medi 3, Biokatu 10, 33520 Tampere , Finland +358 3 3551 8403 ; +358 3 3551 8402 ;
| | | | | | | | | |
Collapse
|
45
|
Hassan K, A-Kader H. Celiac disease: the search for adjunctive or alternative therapies. Expert Rev Gastroenterol Hepatol 2014; 8:313-21. [PMID: 24490653 DOI: 10.1586/17474124.2014.882769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Celiac disease is a widespread disorder caused by intolerance to gluten, a common protein in food. Currently, a life-long gluten-free diet is the only available treatment for patients with celiac disease. However, adherence to gluten-free diet is difficult due to the widespread use of wheat-derived gluten in the food industry. Therefore, there is a pressing need for the development of novel non-dietary therapies. In this article, we will review several promising strategies focusing on reducing gluten immunogenicity or sequestering to gluten prevent its uptake by the intestinal epithelium. Other possible treatment strategies that will be reviewed include the suppression of the adaptive immune response, permeability modulation and the use of systemic T-cell or cytokine blockers.
Collapse
Affiliation(s)
- Kareem Hassan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The University of Arizona, Tucson AZ, USA
| | | |
Collapse
|
46
|
Abstract
Coeliac disease is a common and fairly well-characterized systemic disorder that mainly affects the small intestine, but also has extraintestinal manifestations. The environmental trigger (gluten derived from wheat, rye and barley), the genetic predisposition conferred by the HLA-DQ2 and HLA-DQ8 haplotypes and many steps in the disease pathogenesis are known. This knowledge has enabled researchers to suggest novel alternative treatments or adjunctive therapies to the gluten-free diet, which is currently the only available and effective treatment for the condition. This Review focuses on emerging and potential treatment strategies that are based on the current concept of the disease pathophysiology. The search for novel future treatment modes, including nonpharmacological and pharmacological approaches, is also outlined. The potential pitfalls associated with the various research avenues are also discussed.
Collapse
|
47
|
Fernandez-Feo M, Wei G, Blumenkranz G, Dewhirst FE, Schuppan D, Oppenheim FG, Helmerhorst EJ. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity. CLINICAL MICROBIOLOGY AND INFECTION : THE OFFICIAL PUBLICATION OF THE EUROPEAN SOCIETY OF CLINICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2013. [PMID: 23714165 DOI: 10.1111/1469-0691.12249.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coeliac disease is characterized by intestinal inflammation caused by gluten, proteins which are widely contained in the Western diet. Mammalian digestive enzymes are only partly capable of cleaving gluten, and fragments remain that induce toxic responses in patients with coeliac disease. We found that the oral microbiome is a novel and rich source of gluten-degrading organisms. Here we report on the isolation and characterization of the cultivable resident oral microbes that are capable of cleaving gluten, with special emphasis on the immunogenic domains. Bacteria were obtained by a selective culturing approach and enzyme activities were characterized by: (i) hydrolysis of paranitroanilide-derivatized gliadin-derived tripeptide substrates; (ii) gliadin degradation in-gel (gliadin zymography); (iii) gliadin degradation in solution; (iv) proteolysis of the highly immunogenic α-gliadin-derived 33-mer peptide. For selected strains pH activity profiles were determined. The culturing strategy yielded 87 aerobic and 63 anaerobic strains. Species with activity in at least two of the four assays were typed as: Rothia mucilaginosa HOT-681, Rothia aeria HOT-188, Actinomyces odontolyticus HOT-701, Streptococcus mitis HOT-677, Streptococcus sp. HOT-071, Neisseria mucosa HOT-682 and Capnocytophaga sputigena HOT-775, with Rothia species being active in all four assays. Cleavage specificities and substrate preferences differed among the strains identified. The approximate molecular weights of the enzymes were ~75 kD (Rothia spp.), ~60 kD (A. odontolyticus) and ~150 kD (Streptococcus spp.). In conclusion, this study identified new gluten-degrading microorganisms in the upper gastrointestinal tract. A cocktail of the most active oral bacteria, or their isolated enzymes, may offer promising new treatment modalities for coeliac disease.
Collapse
Affiliation(s)
- M Fernandez-Feo
- Department of Periodontology and Oral Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Fernandez-Feo M, Wei G, Blumenkranz G, Dewhirst FE, Schuppan D, Oppenheim FG, Helmerhorst EJ. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity. Clin Microbiol Infect 2013; 19:E386-94. [PMID: 23714165 DOI: 10.1111/1469-0691.12249] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 01/11/2023]
Abstract
Coeliac disease is characterized by intestinal inflammation caused by gluten, proteins which are widely contained in the Western diet. Mammalian digestive enzymes are only partly capable of cleaving gluten, and fragments remain that induce toxic responses in patients with coeliac disease. We found that the oral microbiome is a novel and rich source of gluten-degrading organisms. Here we report on the isolation and characterization of the cultivable resident oral microbes that are capable of cleaving gluten, with special emphasis on the immunogenic domains. Bacteria were obtained by a selective culturing approach and enzyme activities were characterized by: (i) hydrolysis of paranitroanilide-derivatized gliadin-derived tripeptide substrates; (ii) gliadin degradation in-gel (gliadin zymography); (iii) gliadin degradation in solution; (iv) proteolysis of the highly immunogenic α-gliadin-derived 33-mer peptide. For selected strains pH activity profiles were determined. The culturing strategy yielded 87 aerobic and 63 anaerobic strains. Species with activity in at least two of the four assays were typed as: Rothia mucilaginosa HOT-681, Rothia aeria HOT-188, Actinomyces odontolyticus HOT-701, Streptococcus mitis HOT-677, Streptococcus sp. HOT-071, Neisseria mucosa HOT-682 and Capnocytophaga sputigena HOT-775, with Rothia species being active in all four assays. Cleavage specificities and substrate preferences differed among the strains identified. The approximate molecular weights of the enzymes were ~75 kD (Rothia spp.), ~60 kD (A. odontolyticus) and ~150 kD (Streptococcus spp.). In conclusion, this study identified new gluten-degrading microorganisms in the upper gastrointestinal tract. A cocktail of the most active oral bacteria, or their isolated enzymes, may offer promising new treatment modalities for coeliac disease.
Collapse
Affiliation(s)
- M Fernandez-Feo
- Department of Periodontology and Oral Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Gordon SR, Stanley EJ, Wolf S, Toland A, Wu SJ, Hadidi D, Mills JH, Baker D, Pultz IS, Siegel JB. Computational design of an α-gliadin peptidase. J Am Chem Soc 2012; 134:20513-20. [PMID: 23153249 PMCID: PMC3526107 DOI: 10.1021/ja3094795] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to rationally modify enzymes to perform novel chemical transformations is essential for the rapid production of next-generation protein therapeutics. Here we describe the use of chemical principles to identify a naturally occurring acid-active peptidase, and the subsequent use of computational protein design tools to reengineer its specificity toward immunogenic elements found in gluten that are the proposed cause of celiac disease. The engineered enzyme exhibits a k(cat)/K(M) of 568 M(-1) s(-1), representing a 116-fold greater proteolytic activity for a model gluten tetrapeptide than the native template enzyme, as well as an over 800-fold switch in substrate specificity toward immunogenic portions of gluten peptides. The computationally engineered enzyme is resistant to proteolysis by digestive proteases and degrades over 95% of an immunogenic peptide implicated in celiac disease in under an hour. Thus, through identification of a natural enzyme with the pre-existing qualities relevant to an ultimate goal and redefinition of its substrate specificity using computational modeling, we were able to generate an enzyme with potential as a therapeutic for celiac disease.
Collapse
Affiliation(s)
- Sydney R Gordon
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lähdeaho ML, Lindfors K, Airaksinen L, Kaukinen K, Mäki M. Recent advances in the development of new treatments for celiac disease. Expert Opin Biol Ther 2012; 12:1589-600. [PMID: 22928821 DOI: 10.1517/14712598.2012.721766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Celiac disease is a common autoimmune condition induced by dietary gluten in genetically susceptible individuals. So far, the only available treatment for the disorder is a lifelong strict gluten-free diet, because of which small intestinal histological changes recover and symptoms disappear. However, gluten-free dieting is restrictive, and nutritionally less than optimal, and gluten is difficult to avoid. AREAS COVERED With improving insight into the pathogenesis of celiac disease, several possible drug targets have been suggested. The new strategies include degradation of gluten intraluminally, reduction of mucosal permeability, inhibition of the transglutaminase 2 enzyme, blocking antigen presentation by HLA-DQ2 or HLA-DQ8, modulation of the immune responses of many cytokines, and vaccination. EXPERT OPINION Non-dietary treatment options are warranted either as adjunctive therapy together with dieting or to replace the gluten-free diet. The key question is whether the envisaged novel drug is able to prevent gluten-induced small intestinal mucosal injury as efficiently as a strict gluten-free diet, alleviating symptoms and signs of the disease. Furthermore, the gluten dose that can be detoxified, if at all, must be established. The new drug should also be as safe as dietary treatment. Several novel treatment options are under development.
Collapse
Affiliation(s)
- Marja-Leena Lähdeaho
- University of Tampere, Tampere University Hospital, Pediatric Research Centre, Tampere, Finland.
| | | | | | | | | |
Collapse
|