1
|
Ahiawodzi P, Buzkova P, Lichtenstein A, Matthan N, Ix J, Kizer J, Tracy R, Arnold A, Newman A, Siscovick D, Djousse L, Mukamal K. The Associations of Individual and Subclasses of Nonesterified Fatty Acids With Disability, and Mobility Limitation in Older Adults: The Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 2023; 78:1155-1163. [PMID: 36156076 PMCID: PMC10329219 DOI: 10.1093/gerona/glac206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We sought to determine the associations between individual nonesterified fatty acids (NEFAs) and disability and mobility limitation. METHODS We studied 1 734 participants in the Cardiovascular Health Study (CHS), an ongoing population-based cohort study of community-living older American adults. We measured 35 individual NEFA species in fasting serum samples obtained at the 1996-1997 clinic visit. Using yearly assessments of activities of daily living and self-reported mobility, we identified participants with incident disability or mobility limitation during 15 years of follow-up. Cox proportional hazards regression models were used to determine the associations between per SD increment in the individual NEFAs and incident disability and mobility limitations with adjustment for potential confounding factors. RESULTS Higher concentrations of total and a broad range of individual NEFA species were associated with risk of disability and mobility limitation (disability: HR per SD of total NEFA [SD = 174.70] = 1.11, 95% CI = 1.04-1.18, p = .001; mobility limitation: HR per SD of total NEFA = 1.09, 95% CI = 1.02-1.16, p = .01). Among individual saturated NEFAs (SFAs), myristic (14:0) and palmitic (16:0) acids were significantly associated with higher risk of both disability and mobility limitations, but longer-chain FAs were not. Most individual monounsaturated (MUFA), n-6 polyunsaturated fatty acids (PUFAs), and trans FAs were positively significantly associated with higher risks of both disability and mobility limitation. In contrast, most n-3 PUFA species were not associated with disability or mobility limitation. CONCLUSIONS Higher risks of disability and mobility limitation were observed for proinflammatory intermediate-chain SFAs, MUFAs, n-6 PUFAs, and trans FAs. Our findings indicated no significant association for anti-inflammatory n-3 PUFAs.
Collapse
Affiliation(s)
- Peter D Ahiawodzi
- Department of Public Health, Campbell University College of Pharmacy and Health Sciences, Buies Creek, North Carolina, USA
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Joachim H Ix
- Divisions of Nephrology-Hypertension, University of California, San Diego, La Jolla, California, USA
| | - Jorge R Kizer
- Cardiology Section, San Francisco VA Health Care System, and Department of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California,USA
| | - Russell P Tracy
- Department of Pathology and Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Alice Arnold
- Department of a Biostatistics, University of Washington, Seattle, Washington, USA
| | - Anne B Newman
- Departments of Epidemiology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Siscovick
- Division of Research, Evaluation and Policy, The New York Academy of Medicine, New York, New York, USA
| | - Luc Djousse
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Ahiawodzi PD, Buzkova P, Djousse L, Ix JH, Kizer JR, Mukamal KJ. Nonesterified Fatty Acids and Hospitalizations Among Older Adults: The Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 2021; 76:1326-1332. [PMID: 32914181 DOI: 10.1093/gerona/glaa228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We sought to determine associations between total serum concentrations of nonesterified fatty acids (NEFAs) and incident total and cause-specific hospitalizations in a community-living cohort of older adults. METHODS We included 4715 participants in the Cardiovascular Health Study who had fasting total serum NEFA measured at the 1992/1993 clinic visit and were followed for a median of 12 years. We identified all inpatient admissions requiring at least an overnight hospitalization and used primary diagnostic codes to categorize cause-specific hospitalizations. We used Cox proportional hazards regression models to determine associations with time-to-first hospitalization and Poisson regression for the rate ratios (RRs) of hospitalizations and days hospitalized. RESULTS We identified 21 339 hospitalizations during follow-up. In fully adjusted models, higher total NEFAs were significantly associated with higher risk of incident hospitalization (hazard ratio [HR] per SD [0.2 mEq/L] = 1.07, 95% confidence interval [CI] = 1.03-1.10, p < .001), number of hospitalizations (RR per SD = 1.04, 95% CI = 1.01-1.07, p = .01), and total number of days hospitalized (RR per SD = 1.06, 95% CI = 1.01-1.10, p = .01). Among hospitalization subtypes, higher NEFA was associated with higher likelihood of mental, neurologic, respiratory, and musculoskeletal causes of hospitalization. Among specific causes of hospitalization, higher NEFA was associated with diabetes, pneumonia, and gastrointestinal hemorrhage. CONCLUSIONS Higher fasting total serum NEFAs are associated with a broad array of causes of hospitalization among older adults. While some of these were expected, our results illustrate a possible utility of NEFAs as biomarkers for risk of hospitalization, and total days hospitalized, in older adults. Further research is needed to determine whether interventions based on NEFAs might be feasible.
Collapse
Affiliation(s)
- Peter D Ahiawodzi
- Department of Public Health, Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle
| | - Luc Djousse
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joachim H Ix
- Divisions of Nephrology and Preventive Medicine, University of California, San Diego
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, and Departments of Medicine, Epidemiology and Biostatistics, University of California
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
4
|
Ahiawodzi P, Djousse L, Ix JH, Kizer JR, Tracy RP, Arnold A, Newman A, Mukamal KJ. Non-Esterified Fatty Acids and Risks of Frailty, Disability, and Mobility Limitation in Older Adults: The Cardiovascular Health Study. J Am Geriatr Soc 2020; 68:2890-2897. [PMID: 32964434 DOI: 10.1111/jgs.16793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Non-esterified fatty acids (NEFAs) play central roles in the relationship between adiposity and glucose metabolism, and they have been implicated in the pathogenesis of cardiovascular disease, but few studies have assessed their effects on complex geriatric syndromes like frailty that cross multiple organ systems. We sought to determine the relationships between NEFAs and incident frailty, disability, and mobility limitation in a population-based cohort of older persons. METHODS We analyzed 4,710 Cardiovascular Health Study (CHS) participants who underwent measurement of circulating total fasting NEFAs in 1992-1993 and were assessed for frailty in 1996-1997 and for disability and mobility limitation annually. We used ordinal logistic regression to model incident frailty, linear regression to model components of frailty, and Cox regression to model disability and mobility limitation in relation to baseline NEFAs. To ensure proportional hazards, we truncated follow-up at 9 years for disability and 6.5 years for mobility limitation. RESULTS A total of 42 participants became frail and 510 became pre-frail over a 4-year period, and we documented 1,720 cases of disability and 1,225 cases of mobility limitation during follow-up. NEFAs were positively associated in a dose-dependent manner with higher risks of incident frailty, disability, and mobility limitation. The adjusted odds ratios for frailty were 1.37 (95% confidence interval [CI] = 1.01-1.86; P = .04) across extreme tertiles and 1.17 (95% CI = 1.03-1.33; P = .01) per standard deviation increment. The corresponding hazard ratios for incident disability were 1.14 (95% CI = 1.01-1.30; P = .04) and 1.11 (95% CI = 1.06-1.17; P < .0001); those for incident mobility limitation were 1.23 (95% CI = 1.06-1.43; P = .006) and 1.15 (95% CI = 1.08-1.22; P < .0001). Results were largely consistent among both men and women. Among individual components of frailty, NEFAs were significantly associated with self-reported exhaustion (β = .07; standard error = .03; P = .02). CONCLUSION Circulating NEFAs are significantly associated with frailty, disability, and mobility limitation among older adults. These results highlight the broad spectrum of adverse health issues associated with NEFA in older adults.
Collapse
Affiliation(s)
- Peter Ahiawodzi
- Department of Public Health, Campbell University College of Pharmacy and Health Sciences, Buies Creek, North Carolina, USA
| | - Luc Djousse
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joachim H Ix
- Divisions of Nephrology and Preventive Medicine, University of California, San Diego, San Diego, California, USA
| | - Jorge R Kizer
- Division of Cardiology, Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Russell P Tracy
- Department of Pathology and Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Alice Arnold
- Department of a Biostatistics, University of Washington, Seattle, Washington, USA
| | - Anne Newman
- Departments of Epidemiology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kopietz F, Berggreen C, Larsson S, Säll J, Ekelund M, Sakamoto K, Degerman E, Holm C, Göransson O. AMPK activation by A-769662 and 991 does not affect catecholamine-induced lipolysis in human adipocytes. Am J Physiol Endocrinol Metab 2018; 315:E1075-E1085. [PMID: 30253109 DOI: 10.1152/ajpendo.00110.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activation of AMP-activated protein kinase (AMPK) is considered an attractive strategy for the treatment of type 2 diabetes. Favorable metabolic effects of AMPK activation are mainly observed in skeletal muscle and liver tissue, whereas the effects in human adipose tissue are only poorly understood. Previous studies, which largely employed the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), suggest an antilipolytic role of AMPK in adipocytes. The aim of this work was to reinvestigate the role of AMPK in the regulation of lipolysis, using the novel allosteric small-molecule AMPK activators A-769662 and 991, with a focus on human adipocytes. For this purpose, human primary subcutaneous adipocytes were treated with A-769662, 991, or AICAR, as a control, before being stimulated with isoproterenol. AMPK activity status, glycerol release, and the phosphorylation of hormone-sensitive lipase (HSL), a key regulator of lipolysis, were then monitored. Our results show that both A-769662 and 991 activated AMPK to a level that was similar to, or greater than, that induced by AICAR. In contrast to AICAR, which as expected was antilipolytic, neither A-769662 nor 991 affected lipolysis in human adipocytes, although 991 treatment led to altered HSL phosphorylation. Furthermore, we suggest that HSL Ser660 is an important regulator of lipolytic activity in human adipocytes. These data suggest that the antilipolytic effect observed with AICAR in previous studies is, at least to some extent, AMPK independent.
Collapse
Affiliation(s)
- Franziska Kopietz
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | | | - Sara Larsson
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Johanna Säll
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Mikael Ekelund
- Surgery, Department of Clinical Sciences Malmö, Lund University , Malmö , Sweden
| | | | - Eva Degerman
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Olga Göransson
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| |
Collapse
|
6
|
Quiroga AD, Lehner R. Pharmacological intervention of liver triacylglycerol lipolysis: The good, the bad and the ugly. Biochem Pharmacol 2018; 155:233-241. [PMID: 30006193 DOI: 10.1016/j.bcp.2018.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
Excessive triacylglycerol (TG) accumulation is the distinctive feature of obesity. In the liver, sustained TG accretion leads to nonalcoholic fatty liver disease (NAFLD), eventually progressing to non-alcoholic steatohepatitis (NASH) and cirrhosis, which is associated with complications including hepatic failure, hepatocellular carcinoma and death. Pharmacological interventions are actively pursued to prevent lipid accumulation in hepatocytes and, therefore, to ameliorate the associated pathophysiological conditions. Here, we sought to provide an overview of the pharmacological approaches to up- or downregulate the expression and activities of the enzymes involved in hepatic TG hydrolysis. Fatty acids (FA) released by hydrolysis of hepatic TG can be used for β-oxidation, signaling, and for very low-density lipoprotein (VLDL)-TG synthesis. Originally, lipolysis was believed to be centered in the adipose and to be catalyzed by only two lipases, hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MAGL). However, genetic ablation of HSL expression in mice failed to erase TG hydrolysis in adipocytes leading to the identification of a third lipase termed adipose triglyceride lipase (ATGL). Although these three enzymes are considered to be the main players governing lipolysis in the adipocyte, other lipolytic enzymes have been described to contribute to hepatic TG metabolism. These include adiponutrin/patatin-like phospholipase domain containing 3 (PNPLA3), some members of the carboxylesterase family (CES/Ces), arylacetamide deacetylase (AADAC), lysosomal acid lipase (LAL) and hepatic lipase (HL). This review highlights the consequences of pharmacological interventions of liver lipases that degrade TG in cytosolic lipid droplets, in the endoplasmic reticulum, in the late endosomes/lysosomes and along the secretory route.
Collapse
Affiliation(s)
- Ariel D Quiroga
- Instituto de Fisiología Experimental (IFISE), Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina.
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, Department of Pediatrics, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Ogiyama T, Yamaguchi M, Kurikawa N, Honzumi S, Yamamoto Y, Sugiyama D, Inoue S. Identification of a novel boronic acid as a potent, selective, and orally active hormone sensitive lipase inhibitor. Bioorg Med Chem 2016; 24:3801-7. [DOI: 10.1016/j.bmc.2016.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
|
8
|
Arner P, Langin D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol Metab 2014; 25:255-62. [PMID: 24731595 DOI: 10.1016/j.tem.2014.03.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/19/2014] [Accepted: 03/04/2014] [Indexed: 12/14/2022]
Abstract
Triglycerides in adipose tissue are rapidly mobilized during times of energy needs via lipolysis, a catabolic process that plays important role in whole body triglyceride turnover. Lipolysis is regulated through cell surface receptors via neurotransmitters, hormones, and paracrine factors that activate various intracellular pathways. These pathways converge on the lipid droplet, the site of action of lipases and cofactors. Fat cell lipolysis is also involved in the pathogenesis of metabolic disorders, and recent human studies have underscored its role in disease states such as cancer cachexia and obesity-induced insulin resistance. We highlight here topics and findings with physiological and clinical relevance, namely lipid turnover in human fat cells and the role of lipolysis in cancer cachexia and obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Peter Arner
- Karolinska Institutet, Department of Medicine at Karolinska University Hospital, 141 86 Stockholm, Sweden.
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; University of Toulouse, UMR 1048, Paul Sabatier University, 31432 Toulouse, France; Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, France
| |
Collapse
|
9
|
Abstract
Niacin (nicotinic acid) has been used for decades as a lipid-lowering drug. The clinical use of niacin to treat dyslipidemic conditions is limited by its side effects. Niacin, along with fibrates, are the only approved drugs which elevate high density lipoprotein cholesterol (HDLc) along with its effects on low density lipoprotein cholesterol (LDLc) and triglycerides. Whether niacin has a beneficial role in lowering cardiovascular risk on the background of well-controlled LDLc has not been established. In fact, it remains unclear whether niacin, either in the setting of well-controlled LDLc or in combination with other lipid-lowering agents, confers any therapeutic benefit and if so, by which mechanism. The results of recent trials reject the hypothesis that simply raising HDLc is cardioprotective. However, in the case of the clinical trials, structural limitations of trial design complicate their interpretation. This is also true of the most recent Heart Protection Study 2-Treatment of HDLc to Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial in which niacin is combined with an antagonist of the D prostanoid (DP) receptor. Human genetic studies have also questioned the relationship between cardiovascular benefit and HDLc. It remains to be determined whether niacin may have clinical utility in particular subgroups, such as statin intolerant patients with hypercholesterolemia or those who cannot achieve a sufficient reduction in LDLc. It also is unclear whether a potentially beneficial effect of niacin is confounded by DP antagonism in HPS2-THRIVE.
Collapse
Affiliation(s)
- Wen-Liang Song
- Institute for Translational Medicine and Therapeutics, Departments of Pharmacology and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | |
Collapse
|
10
|
Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol 2013; 11:e1001485. [PMID: 23431266 PMCID: PMC3576369 DOI: 10.1371/journal.pbio.1001485] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/08/2013] [Indexed: 02/08/2023] Open
Abstract
Partial inhibition of adipose tissue lipolysis does not increase fat mass but improves glucose metabolism and insulin sensitivity through modulation of fatty acid turnover and induction of fat cell de novo lipogenesis. When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet–fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. In periods of energy demand, mobilization of fat stores in mammals (i.e., adipose tissue lipolysis) is essential to provide energy in the form of fatty acids. In excess, however, fatty acids induce resistance to the action of insulin, which serves to regulate glucose metabolism in skeletal muscle and liver. Insulin resistance (or low insulin sensitivity) is believed to be a cornerstone of the complications of obesity such as type 2 diabetes and cardiovascular diseases. In this study, our clinical observation of natural variation in fat cell lipolysis in individuals reveals that a high lipolytic rate is associated with low insulin sensitivity. Furthermore, partial genetic and pharmacologic inhibition of hormone-sensitive lipase, one of the enzymes involved in the breakdown of white adipose tissue lipids, results in improvement of insulin sensitivity in mice without gain in body weight and fat mass. We undertake a series of mechanistic studies in mice and in human fat cells to show that blunted lipolytic capacity increases the synthesis of new fatty acids from glucose in fat cells, a pathway that has recently been shown by others to be a major determinant of whole body insulin sensitivity. In conclusion, partial inhibition of adipose tissue lipolysis is a plausible strategy in the treatment of obesity-related insulin resistance.
Collapse
|
11
|
Girousse A, Langin D. Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models. Int J Obes (Lond) 2011; 36:581-94. [PMID: 21673652 DOI: 10.1038/ijo.2011.113] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adipose tissue lipolysis is the catabolic process whereby stored triacylglycerol (TAG) is broken down by lipases into fatty acids and glycerol. Here, we review recent insights from transgenic mouse models. Genetic manipulations affecting lipases are considered first, followed by transgenic models of lipase co-factors and lastly non-lipase lipid droplet (LD)-associated proteins. The central role of hormone-sensitive lipase (HSL), long considered to be the sole rate-limiting enzyme of TAG hydrolysis, has been revised since the discovery of adipose triglyceride lipase (ATGL). It is now accepted that ATGL initiates TAG breakdown producing diacylglycerol, which is subsequently hydrolyzed by HSL. Furthermore, lipase activities are modulated by co-factors whose deletion causes severe metabolic disturbances. Another major advance has come from the description of the involvement of non-lipase proteins in the regulation of lipolysis. The role of perilipins has been extensively investigated. Other newly discovered LD-associated proteins have also been shown to regulate lipolysis.
Collapse
Affiliation(s)
- A Girousse
- Laboratoire de Recherche sur les Obésités, INSERM U1048-I2MC, Equipe 4, Toulouse, France
| | | |
Collapse
|
12
|
Piña-Zentella G, de la Rosa-Cuevas G, Vázquez-Meza H, Piña E, de Piña MZ. Taurine in adipocytes prevents insulin-mediated H2O2 generation and activates Pka and lipolysis. Amino Acids 2011; 42:1927-35. [PMID: 21537880 DOI: 10.1007/s00726-011-0919-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Among many actions assigned to taurine (Tau), the most abundant amino acid in numerous mammalian tissues, it prevents high-fat diet-induced obesity with increasing resting energy expenditure. To sustain this Tau action, the goal of the present study was to explore the acute effects of Tau on baseline and on adrenaline, insulin and their second messengers to modulate lipolysis in white adipose tissue (WAT) cells from rat epididymis. The Tau effects in this topic were compared with those recorded with Gly, Cys and Met. Tau on its own did not modify baseline lipolysis. Tau raised isoproterenol- and dibutyryl-cAMP (Bt2cAMP)-activated glycerol release. Gly diminished Bt2cAMP-activated glycerol release, and Cys and Met had no effect. Cyclic AMP-dependent activation of protein kinase A (PKA) in cell-free extracts decreased slightly by Gly and was unaltered by Cys, Met, and Tau. PKA catalytic activity in cell-free extracts was stimulated by Tau and unchanged by Cys, Gly and Met. Gly and Tau effects on PKA disappeared when these amino acids were withdrawn by gel filtration. Insulin-mediated NADPH-oxidase (NOX) raises H2O2 pool, which promotes PKA subunit oxidation, and precludes its cAMP activation; thus, lipolysis is diminished. Tau, but not Cys, Gly and Met, inhibited, by as much as 70%, insulin-mediated H2O2 pool increase. These data suggested that Tau raised lipolysis in adipocytes by two mechanisms: stimulating cAMP-dependent PKA catalytic activity and favoring PKA activation by cAMP as a consequence of lowering the H2O2 pool.
Collapse
Affiliation(s)
- Guadalupe Piña-Zentella
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, P.O. Box 70159, 04510, Mexico, D.F, Mexico
| | | | | | | | | |
Collapse
|
13
|
Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ. The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene 2011; 477:1-11. [PMID: 21241784 DOI: 10.1016/j.gene.2011.01.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/22/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022]
Abstract
The ability to store energy in the form of energy-dense triacylglycerol and to mobilize these stores rapidly during periods of low carbohydrate availability or throughout the strong metabolic demand is a highly conserved process, absolutely essential for survival. In the industrialized world the regulation of this pathway is viewed as an important therapeutic target for disease prevention. Adipose tissue lipolysis is a catabolic process leading to the breakdown of triacylglycerols stored in fat cells, and release of fatty acids and glycerol. Mobilization of adipose tissue fat is mediated by the MGL, HSL and ATGL, similarly functioning enzymes. ATGL initiates lipolysis followed by the actions of HSL on diacylglycerol, and MGL on monoacylglycerol. HSL is regulated by reversible phosphorylation on five critical residues. Phosphorylation alone, however, is not enough to activate HSL. Probably, conformational alterations and a translocation from the cytoplasm to lipid droplets are also involved. In accordance, Perilipin functions as a master regulator of lipolysis, protecting or exposing the triacylglycerol core of a lipid droplet to lipases. The prototype processes of hormonal lipolytic control are the β-adrenergic stimulation and suppression by insulin, both of which affect cytoplasmic cyclic AMP levels. Lipolysis in adipocytes is an important process in the management of body energy reserves. Its deregulation may contribute to the symptoms of type 2 diabetes mellitus and other pathological situations. We, herein, discuss the metabolic regulation and function of lipases mediating mammalian lipolysis with a focus on HSL, quoting newly identified members of the lipolytic proteome.
Collapse
Affiliation(s)
- Antonis D Lampidonis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece
| | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Adipose tissue lipolysis is a critical pathway for the maintenance of energy homeostasis through the degradation of triglycerides and the release of fatty acids into the circulation. The understanding of the cellular factors regulating triglyceride hydrolysis and the metabolic function of lipases has considerably expanded in the last few years, revealing an unexpected complexity. This review aims at describing recent discoveries related to the lipolytic pathway and its regulatory mechanisms. RECENT FINDINGS Considerable progress has been made in understanding the role and the mechanisms of activation of the lipolytic enzymes. Recent discoveries have dramatically altered the view of adipose tissue lipolysis and highlighted the importance of additional molecular actors in regulating this process. Catecholamines, natriuretic peptides, and insulin are considered to be the major regulators of lipolysis in humans. However, autocrine/paracrine factors such as metabolites and prostaglandins may also participate in its regulation. SUMMARY The manipulation of lipolysis has therapeutic potential in the metabolic disorders frequently associated with obesity. Unraveling the molecular events occurring during regulation of lipolysis may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Catherine-Ines Kolditz
- Inserm, Unité 858, Obesity Research Laboratory, Rangueil Institute of Molecular Medicine (I2MR), IFR150, Toulouse, France
| | | |
Collapse
|
15
|
Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 2009; 48:275-97. [PMID: 19464318 DOI: 10.1016/j.plipres.2009.05.001] [Citation(s) in RCA: 518] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/04/2009] [Accepted: 05/08/2009] [Indexed: 01/04/2023]
Abstract
Triacylglycerol (TAG) stored in adipose tissue (AT) can be rapidly mobilized by the hydrolytic action of the three main lipases of the adipocyte. The non-esterified fatty acids (NEFA) released are used by other tissues during times of energy deprivation. Until recently hormone-sensitive lipase (HSL) was considered to be the key rate-limiting enzyme responsible for regulating TAG mobilization. A novel lipase named adipose triglyceride lipase/desnutrin (ATGL) has been identified as playing an important role in the control of fat cell lipolysis. Additionally perilipin and other proteins of the surface of the lipid droplets protecting or exposing the TAG core of the droplets to lipases are also potent regulators of lipolysis. Considerable progress has been made in understanding the mechanisms of activation of the various lipases. Lipolysis is under tight hormonal regulation. The best understood hormonal effects on AT lipolysis concern the opposing regulation by insulin and catecholamines. Heart-derived natriuretic peptides (i.e., stored in granules in the atrial and ventricle cardiomyocytes and exerting stimulating effects on diuresis and natriuresis) and numerous autocrine/paracrine factors originating from adipocytes and other cells of the stroma-vascular fraction may also participate in the regulation of lipolysis. Endocrine and autocrine/paracrine factors cooperate and lead to a fine regulation of lipolysis in adipocytes. Age, anatomical site, sex, genotype and species differences all play a part in the regulation of lipolysis. The manipulation of lipolysis has therapeutic potential in the metabolic disorders frequently associated with obesity and probably in several inborn errors of metabolism.
Collapse
|
16
|
Bezaire V, Mairal A, Ribet C, Lefort C, Girousse A, Jocken J, Laurencikiene J, Anesia R, Rodriguez AM, Ryden M, Stenson BM, Dani C, Ailhaud G, Arner P, Langin D. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem 2009; 284:18282-91. [PMID: 19433586 DOI: 10.1074/jbc.m109.008631] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes.
Collapse
Affiliation(s)
- Véronic Bezaire
- INSERM U858, Laboratoire de Recherches sur les Obésités, F-31432 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Miller CL, Dulay JR. The high-affinity niacin receptor HM74A is decreased in the anterior cingulate cortex of individuals with schizophrenia. Brain Res Bull 2008; 77:33-41. [PMID: 18639743 DOI: 10.1016/j.brainresbull.2008.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
Abstract
The pathway for de novo synthesis of the suite of niacin congeners, the kynurenine pathway, has been shown to be upregulated in prior studies of postmortem brain tissue from individuals with schizophrenia. The cause of the upregulation is unknown, but one factor may be a defect in feedback regulation via receptors responsive to niacin. A high-affinity and low-affinity receptor for niacin have been identified, HM74A and HM74, respectively. We used RT-QPCR and Western blots to quantify expression of HM74A and HM74 receptors in brain tissue obtained postmortem from patients with schizophrenia (N=12) or bipolar disorder (N=14) and from normal controls (N=14). Although the protein for the HM74 receptor was unchanged, the protein for HM74A was significantly decreased in the schizophrenia group, both when normalized to GAPDH protein or to HM74 as an internal control for degradation and gel-loading error (0.56-fold+/-0.36, p=0.016 and 0.58-fold+/-0.19 the mean control value, p=0.001, respectively). In contrast, the transcript for HM74A was significantly increased, revealing a striking dysregulation between gene transcription and final protein product. No significant differences in HM74A were found for the bipolar group relative to controls. These results are consistent with the blunted niacin flush response reported for individuals with schizophrenia and may be relevant to different rates of comorbid disease.
Collapse
Affiliation(s)
- Christine L Miller
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | |
Collapse
|
18
|
Gille A, Bodor ET, Ahmed K, Offermanns S. Nicotinic acid: pharmacological effects and mechanisms of action. Annu Rev Pharmacol Toxicol 2008; 48:79-106. [PMID: 17705685 DOI: 10.1146/annurev.pharmtox.48.113006.094746] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacological doses of nicotinic acid induce a profound change in the plasma levels of various lipids and lipoproteins. The ability of nicotinic acid to strongly increase the plasma concentration of high-density lipoprotein (HDL) cholesterol has in recent years led to an increased interest in the pharmacological potential of nicotinic acid. There is increasing evidence that nicotinic acid alone or in addition to LDL cholesterol-lowering drugs can reduce the progression of atherosclerosis and reduce the risk of cardiovascular events. The clinical use of nicotinic acid is, however, hindered by harmless but unpleasant side effects, especially by a strong cutaneous vasodilation called flushing. The recent discovery of the G protein-coupled receptor GPR109A (HM74A or PUMA-G) as a receptor for nicotinic acid has allowed for better understanding of the mechanisms underlying the metabolic and vascular effects of nicotinic acid. On the basis of recent progress in understanding the pharmacological effects of nicotinic acid, new strategies are in development to better exploit the pharmacological potential of nicotinic acid. New drugs acting via the nicotinic acid receptor or related receptors, as well as new co-medications that suppress unwanted effects of nicotinic acid, will most likely be introduced as new therapeutic options in the treatment of dyslipidemia and the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Andreas Gille
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
19
|
Ge H, Weiszmann J, Reagan JD, Gupte J, Baribault H, Gyuris T, Chen JL, Tian H, Li Y. Elucidation of signaling and functional activities of an orphan GPCR, GPR81. J Lipid Res 2008; 49:797-803. [PMID: 18174606 DOI: 10.1194/jlr.m700513-jlr200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GPR81 is an orphan G protein-coupled receptor (GPCR) that has a high degree of homology to the nicotinic acid receptor GPR109A. GPR81 expression is highly enriched and specific in adipocytes. However, the function and signaling properties of GPR81 are unknown because of the lack of natural or synthetic ligands. Using chimeric G proteins that convert Gi-coupled receptors to Gq-mediated inositol phosphate (IP) accumulation, we show that GPR81 can constitutively increase IP accumulation in HEK293 cells and suggest that GPR81 couples to the Gi signaling pathway. We also constructed a chimeric receptor that expresses the extracellular domains of cysteinyl leukotriene 2 receptor (CysLT2R) and the intracellular domains of GPR81. We show that the CysLT2R ligand, leukotriene D(4) (LTD4), is able to activate this chimeric receptor through activation of the Gi pathway. In addition, LTD4 is able to inhibit lipolysis in adipocytes expressing this chimeric receptor. These results suggest that GPR81 couples to the Gi signaling pathway and that activation of the receptor may regulate adipocyte function and metabolism. Hence, targeting GPR81 may lead to the development of a novel and effective therapy for dyslipidemia and a better side effect profile than nicotinic acid.
Collapse
Affiliation(s)
- Hongfei Ge
- Amgen, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Nicotinic acid has been used for decades to treat dyslipidaemic states. In particular its ability to raise the plasma HDL cholesterol concentration has led to an increased interest in its pharmacological potential. The clinical use of nicotinic acid is somewhat limited due to several harmless but unpleasant side effects, most notably a cutaneous flushing phenomenon. With the recent discovery of a nicotinic acid receptor, it has become possible to better understand the mechanisms underlying the metabolic and vascular effects of nicotinic acid. Based on these new insights into the action of nicotinic acid, novel strategies are currently under development to maximize the pharmacological potential of this drug. The generation of both flush-reducing co-medications of nicotinic acid and novel drugs targeting the nicotinic acid receptor will provide future therapeutic options for the treatment of dyslipidaemic disorders.
Collapse
|
21
|
Wertheimer SJ, Bolin D, Erickson S, Conde-Knape K, Belunis C, Konkar A, Taub R, Rondinone CM. Fatty acid modulators for the treatment of diabesity. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ddstr.2007.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Abstract
PURPOSE OF REVIEW The aim of this article is to describe the relative roles of hormone sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis. RECENT FINDINGS Until recently, only hormone sensitive lipase was considered important for the regulation of lipolysis within fat cells. Recent rodent studies have suggested that adipose triglyceride lipase may, however, be more important. The few human adipose triglyceride lipase studies that have been published point to species differences between humans and rodents. Selective inhibition of hormone sensitive lipase in human fat cells completely counteracts hormone-activated lipolysis, though there is a considerable (>>50%) residual nonhormonal (basal) lipolysis. In rodents, adipose triglyceride lipase enzyme activity is stimulated by a cofactor termed CGI-58. In the absence of CGI-58, lipase activity in fat cells is much higher for hormone sensitive lipase than adipose triglyceride lipase. Hormone sensitive lipase expression is regulated by obesity and body weight reduction (decreased and increased, respectively), but this is not the case for adipose triglyceride lipase. A role of adipose triglyceride lipase in human lipolysis is suggested by studies of gene polymorphisms. SUMMARY Two lipases the 'old' hormone sensitive lipase and the 'new' adipose triglyceride lipase are of importance for the regulation of lipolysis in rodent fat cells. In humans, adipose triglyceride lipase seems essential for maintaining basal lipolytic activity, while hormone sensitive lipase is the enzyme most responsive to stimulated lipolysis.
Collapse
Affiliation(s)
- Peter Arner
- Karolinska Institute at the Department of Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | | |
Collapse
|