1
|
Teixeira GM, Cordeiro Montanari GC, Nicoletto MLA, da Silva DV, Noriler SA, de Oliveira JP, da Silva Rodrigues MV, Sipoli Sanches D, de Padua Pereira U, Nunes da Rocha U, de Oliveira AG. Draft genome of Bacillus velezensis CMRP6330, a suitable biocontrol agent for disease management in crops. Microbiol Resour Announc 2024; 13:e0065724. [PMID: 39503489 PMCID: PMC11636092 DOI: 10.1128/mra.00657-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/10/2024] [Indexed: 12/13/2024] Open
Abstract
As a biological alternative to managing diseases in crop production, we highlight the Bacillus velezensis strain LABIM41 (CMRP6330). Its genome, composed of 3,970,959 bp, possesses a rich metabolic machinery and a wide range of molecules with different biological activities and roles in its symbiotic relationship with its plant hosts.
Collapse
Affiliation(s)
| | | | | | | | | | - João Paulo de Oliveira
- Computer Science Department, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, Brazil
| | | | - Danilo Sipoli Sanches
- Computer Science Department, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, Brazil
| | - Ulisses de Padua Pereira
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ulisses Nunes da Rocha
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research–UFZ GmbH, Leipzig, Germany
| | | |
Collapse
|
2
|
Jian X, Wang C, Wu S, Sun G, Huang C, Qiu C, Liu Y, Leadlay PF, Liu D, Deng Z, Zhou F, Sun Y. Glycodiversification of gentamicins through in vivo glycosyltransferase swapping enabled the creation of novel hybrid aminoglycoside antibiotics with potent activity and low ototoxicity. Acta Pharm Sin B 2024; 14:4149-4163. [PMID: 39309510 PMCID: PMC11413697 DOI: 10.1016/j.apsb.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 09/25/2024] Open
Abstract
Aminoglycosides (AGs) are a class of antibiotics with a broad spectrum of activity. However, their use is limited by safety concerns associated with nephrotoxicity and ototoxicity, as well as drug resistance. To address these issues, semi-synthetic approaches for modifying natural AGs have generated new generations of AGs, however, with limited types of modification due to significant challenges in synthesis. This study explores a novel approach that harness the bacterial biosynthetic machinery of gentamicins and kanamycins to create hybrid AGs. This was achieved by glycodiversification of gentamicins via swapping the glycosyltransferase (GT) in their producer with the GT from kanamycins biosynthetic pathway and resulted in the creation of a series of novel AGs, therefore referred to as genkamicins (GKs). The manipulation of the hybrid biosynthetic pathway enabled the targeted accumulation of different GK species and the isolation and characterization of six GK components. These compounds display retained antimicrobial activity against a panel of World Health Organization (WHO) critical priority pathogens, and GK-C2a, in particular, demonstrates low ototoxicity compared to clinical drugs in zebrafish embryos. This study provides a new strategy for diversifying the structure of AGs and a potential avenue for developing less toxic AG drugs to combat infectious diseases.
Collapse
Affiliation(s)
- Xinyun Jian
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
- ARC Centre of Excellence for Innovations in Protein and Peptide Science, Monash University, Clayton VIC 3800, Australia
| | - Cheng Wang
- School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, China
| | - Shijuan Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China
| | - Chuan Huang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China
| | - Chengbing Qiu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China
| | - Yuanzheng Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China
| | - Peter F. Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Dong Liu
- School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430071, China
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Nguyen N, Forstater JH, McIntosh JA. Decarboxylation in Natural Products Biosynthesis. JACS AU 2024; 4:2715-2745. [PMID: 39211618 PMCID: PMC11350588 DOI: 10.1021/jacsau.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Decarboxylation reactions are frequently found in the biosynthesis of primary and secondary metabolites. Decarboxylase enzymes responsible for these transformations operate via diverse mechanisms and act on a large variety of substrates, making them appealing in terms of biotechnological applications. This Perspective focuses on the occurrence of decarboxylation reactions in natural product biosynthesis and provides a perspective on their applications in biocatalysis for fine chemicals and pharmaceuticals.
Collapse
|
4
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Amino acid (acyl carrier protein) ligase-associated biosynthetic gene clusters reveal unexplored biosynthetic potential. Mol Genet Genomics 2023; 298:49-65. [PMID: 36271918 DOI: 10.1007/s00438-022-01962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/09/2022] [Indexed: 01/10/2023]
Abstract
This study aimed to evaluate the postulated cellular function of a novel family of amino acid (acyl carrier protein) ligases (AALs) in natural product biosynthesis. Here, we analyzed the manually curated, putative, aal-associated natural product biosynthetic gene clusters (NP BGCs) using two computational platforms for NP prediction, antiSMASH-BiG-SCAPE-CORASON and DeepBGC. The detected BGCs included a diversity of type I polyketide/nonribosomal peptide (PKS/NRPS) hybrid BGCs, exemplified by the guadinomine BGC, which suggested a dedicated function of AALs in the biosynthesis of rare (2S)-aminomalonyl-ACP extension units. Besides modular PKS/NRPSs and NRPSs, AAL-associated BGCs were predicted to assemble arylpolyenes, ladderane lipids, phosphonates, aminoglycosides, β-lactones, and thioamides of both nonribosomal and ribosomal origins. Additionally, we revealed a frequent association of AALs with putative, seldom observed transglutaminase-like and BtrH-like transferases of the cysteine protease superfamily, which may form larger families of ACP-dependent amide bond catalysts used in NP synthesis. Our results disclosed an exceptional chemical novelty and biosynthetic potential of the AAL-associated BGCs in NP biosynthesis. The presented in silico evidence supports the initial hypothesis and provides an important foundation for future experimental studies aimed at discovering novel pharmaceutically relevant active compounds.
Collapse
|
6
|
Oxalactam A, a Novel Macrolactam with Potent Anti- Rhizoctonia solani Activity from the Endophytic Fungus Penicillium oxalicum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248811. [PMID: 36557941 PMCID: PMC9788486 DOI: 10.3390/molecules27248811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
A novel macrolactam named oxalactam A (1), three known dipeptides (2-4) as well as other known alkaloids (5-7) were obtained from the endophytic fungus Penicillium oxalicum, which was derived from the tuber of Icacina trichantha (Icacinaceae). All chemical structures were established based on spectroscopic data, chemical methods, ECD calculations, and 13C-DP4+ analysis. Among them, oxalactam A (1) is a 16-membered polyenic macrolactam bearing a new skeleton of 2,9-dimethyl-azacyclohexadecane core and exhibited potent anti-Rhizoctonia solani activity with a MIC value of 10 μg/mL in vitro. The plausible biosynthetic pathway of 1 was also proposed via the alanyl protecting mechanism. Notably, three dipeptides (2-4) were first identified from the endophytic fungus P. oxalicum and the NMR data of cyclo(L-Trp-L-Glu) (2) was reported for the first time. In addition, the binding interactions between compound 1 and the sterol 14α-demethylase enzyme (CYP51) were studied by molecular docking and dynamics technologies, and the results revealed that the 16-membered polyenic macrolactam could be a promising CYP51 inhibitor to develop as a new anti-Rhizoctonia solani fungicide.
Collapse
|
7
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
8
|
Crystal structure of BtrK, a decarboxylase involved in the (S)-4-amino-2-hydroxybutyrate (AHBA) formation during butirosin biosynthesis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Chen XW, Rao L, Chen JL, Zou Y. Unexpected assembly machinery for 4(3H)-quinazolinone scaffold synthesis. Nat Commun 2022; 13:6522. [PMID: 36316336 PMCID: PMC9622831 DOI: 10.1038/s41467-022-34340-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
4(3H)-quinazolinone is the core scaffold in more than 200 natural alkaloids and numerous drugs. Many chemosynthetic methodologies have been developed to generate it; however, investigation of its native enzymatic formation mechanism in fungi has been largely limited to fumiquinazolines, where the two nitrogen atoms come from anthranilate (N-1) and the α-NH2 of amino acids (N-3). Here, via biochemical investigation of the chrysogine pathway, unexpected assembly machinery for 4(3H)-quinazolinone is unveiled, which involves a fungal two-module nonribosomal peptide synthase ftChyA with an unusual terminal condensation domain catalysing tripeptide formation; reveals that N-3 originates from the inorganic ammonium ions or the amide of L-Gln; demonstrates an unusual α-ketoglutarate-dependent dioxygenase ftChyM catalysis of the C-N bond oxidative cleavage of a tripeptide to form a dipeptide. Our study uncovers a unique release and tailoring mechanism for nonribosomal peptides and an alternative route for the synthesis of 4(3H)-quinazolinone scaffolds.
Collapse
Affiliation(s)
- Xi-Wei Chen
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Li Rao
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Jia-Li Chen
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Yi Zou
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| |
Collapse
|
10
|
Kudo F, Eguchi T. Biosynthesis of cyclitols. Nat Prod Rep 2022; 39:1622-1642. [PMID: 35726901 DOI: 10.1039/d2np00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
11
|
Subba P, Saha P, Karthikkeyan G, Biswas M, Prasad TSK, Roy-Barman S. Metabolite profiling reveals overexpression of the global regulator, MoLAEA leads to increased synthesis of metabolites in Magnaporthe oryzae. J Appl Microbiol 2022; 132:3825-3838. [PMID: 35261134 DOI: 10.1111/jam.15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To study the altered metabolic pathways and metabolites produced in overexpression and knockdown mutants of a global regulator named MoLAEA, which was recently found to regulate the expression of the genes involved in secondary metabolism in one of the most destructive plant pathogens, Magnaporthe oryzae. METHODS AND RESULTS Mass spectrometry-based global untargeted metabolomic profiling was used to identify altered metabolites. Metabolites were extracted from the mutant strains of MoLAEA using two extraction methods viz., aqueous and organic extraction and data acquired using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive and negative polarities. Levels of metabolites involved in various biological pathways such as amino acid as well as polyamine biosynthesis, fatty acid and pyrimidine metabolism showed remarkable change in the mutant strains. Interestingly, metabolites involved in stress responses were produced in higher quantities in the overexpression strain whereas, certain overproduced metabolites were associated with distinctive phenotypic changes in the overexpression strain compared to the wild-type. Further, the expression of several genes involved in the stress responses was found to have higher expression in the overexpression strain. CONCLUSIONS The global regulator MoLAEA is involved in secondary metabolism in the plant pathogen M. oryzae such that the mutant strains showed altered level of several metabolites involved in the biosynthesis pathways compared to the wild-type. Also, metabolites involved in stress responses were overproduced in the overexpression strain and this can be seen in the higher growth in media amended with stress-inducing agents or higher expression of genes involved in stress response in the overexpression strain compared to the wild-type. SIGNIFICANCE AND IMPACT This is the first report of metabolite profiling relative to the global regulation of secondary metabolism in M. oryzae, where secondary metabolism is poorly understood. It opens up avenues for more relevant investigations on the genetic regulation of several of the metabolites found in the analysis, which have not been previously characterized in M. oryzae.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Pallabi Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Mousumi Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | | | |
Collapse
|
12
|
Li X, Zhang M, Qi D, Zhou D, Qi C, Li C, Liu S, Xiang D, Zhang L, Xie J, Wang W. Biocontrol Ability and Mechanism of a Broad-Spectrum Antifungal Strain Bacillus safensis sp. QN1NO-4 Against Strawberry Anthracnose Caused by Colletotrichum fragariae. Front Microbiol 2021; 12:735732. [PMID: 34603266 PMCID: PMC8486013 DOI: 10.3389/fmicb.2021.735732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Strawberry is a very popular fruit with a special taste, color, and nutritional value. Anthracnose caused by Colletotrichum fragariae severely limits fruit shelf life during post-harvest storage. Use of traditional chemical fungicides leads to serious environment pollution and threatens food safety. Biocontrol is considered as a promising strategy to manage the post-harvest fruit diseases. Here, strain QN1NO-4 isolated from noni (Morinda citrifolia L.) fruit exhibited a high antifungal activity against C. fragariae. Based on its physicochemical profiles and phylogenetic tree of the 16S rRNA sequence, strain QN1NO-4 belonged to the genus Bacillus. The average nucleotide identity (ANI) calculated by comparing two standard strain genomes was below 95-96%, suggesting that the strain might be a novel species of the genus Bacillus and named as Bacillus safensis sp. QN1NO-4. Its extract effectively reduced the incidence of strawberry anthracnose of harvested fruit. Fruit weight and TSS contents were also maintained significantly. The antifungal mechanism assays indicated that the extract of the test antagonist inhibited mycelial growth and spore germination of C. fragariae in vitro. Cells of strain QN1NO-4 demonstrated the cytoplasmic heterogeneity, disappeared organelles, and ruptured ultrastructure. Notably, the strain extract also had a broad-spectrum antifungal activity. Compared with the whole genome of strain QN1NO-4, several functional gene clusters involved in the biosynthesis of active secondary metabolites were observed. Fifteen compounds were identified by gas chromatography-mass spectrometry (GC-MS). Hence, the fruit endophyte B. safensis sp. QN1NO-4 is a potential bio-agent identified for the management of post-harvest disease of strawberry fruit.
Collapse
Affiliation(s)
- Xiaojuan Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou, China.,College of Ecology and Environment, Hainan University, Haikou, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chunlin Qi
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Siwen Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dandan Xiang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
13
|
Setyati WA, Pringgenies D, Soenardjo N, Pramesti R. Actinomycetes of secondary metabolite producers from mangrove sediments, Central Java, Indonesia. Vet World 2021; 14:2620-2624. [PMID: 34903917 PMCID: PMC8654771 DOI: 10.14202/vetworld.2021.2620-2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/01/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIM Actinomycetes are a group of Gram-positive bacteria with a fungus-like morphology. Their natural habitat encompasses terrestrial and water areas, including mangrove ecosystems. This study aimed to assess the PKS and NRPS genes as the producers of secondary metabolites and to determine the target bacterial species using molecular DNA tests. MATERIALS AND METHODS In this study, we isolated bacteria from sediment samples from mangrove forests located on Karimunjawa Islands and in Semarang city, purified bacteria, screened for antibacterial activity, extracted bacterial DNA, amplified the NRPS gene, detected and amplified the PKS-I and PKS-II genes, amplified and sequenced the 16S rRNA, processed molecular data, and simulated a map of secondary metabolite producing genes. RESULTS Samples from the Karimunjawa Islands yielded 19 bacterial isolates, whereas samples from Semarang yielded 11 bacterial isolates after culture in different media. Further experiments identified three active isolates, which were termed PN.SB.6.2, S.SK.6.3, and S.SK.7.1, against pathogenic species of Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. Isolate PN.SB.6.2 was determined to possess three biosynthetic gene clusters (BGCs), whereas the remaining two isolates, S.SK.6.3 and S.SK.7.1, only possessed two BGCs, namely, NRPS and PKS II. CONCLUSION Products were estimated to be in the NRPS, thiopeptide, RiPP-like, siderophore, betalactone, terpene, Type III PKS, CDPS, and lassopeptide groups. DNA identification of the isolates found three species of actinomycetes with antibacterial potential, namely, Virgibacillus salaries, Bacillus licheniformis, and Priestia flexa.
Collapse
Affiliation(s)
- Wilis Ari Setyati
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Delianis Pringgenies
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Nirwani Soenardjo
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Rini Pramesti
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| |
Collapse
|
14
|
Ban YH, Song MC, Jeong JH, Kwun MS, Kim CR, Ryu HS, Kim E, Park JW, Lee DG, Yoon YJ. Microbial Enzymatic Synthesis of Amikacin Analogs With Antibacterial Activity Against Multidrug-Resistant Pathogens. Front Microbiol 2021; 12:725916. [PMID: 34512603 PMCID: PMC8430323 DOI: 10.3389/fmicb.2021.725916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
With the constant emergence of multidrug-resistant gram-negative bacteria, interest in the development of new aminoglycoside (AG) antibiotics for clinical use has increased. The regioselective modification of AG scaffolds could be an efficient approach for the development of new antibiotics with improved therapeutic potency. We enzymatically synthesized three amikacin analogs containing structural modifications in the amino groups and evaluated their antibacterial activity and cytotoxicity. Among them, 6′-N-acyl-3″-N-methylated analogs showed improved antibacterial activity against the multidrug-resistant gram-negative bacteria tested, while exhibiting reduced in vitro nephrotoxicity compared to amikacin. This study demonstrated that the modifications of the 6′-amino group as well as the 3″-amino group have noteworthy advantages for circumventing the AG-resistance mechanism. The regiospecific enzymatic modification could be exploited to develop novel antibacterial agents with improved pharmacological potential.
Collapse
Affiliation(s)
- Yeon Hee Ban
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, South Korea
| | - Myoung Chong Song
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, South Korea
| | - Joong Ho Jeong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, South Korea
| | - Min Seok Kwun
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Chang Rae Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, South Korea
| | - Hwi So Ryu
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, South Korea
| | - Eunji Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, South Korea
| | - Je Won Park
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, South Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
16
|
Draelos MM, Thanapipatsiri A, Sucipto H, Yokoyama K. Cryptic phosphorylation in nucleoside natural product biosynthesis. Nat Chem Biol 2020; 17:213-221. [PMID: 33257873 PMCID: PMC7855722 DOI: 10.1038/s41589-020-00656-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/20/2020] [Indexed: 11/11/2022]
Abstract
Kinases are annotated in many nucleoside biosynthetic gene clusters (BGCs) but generally are considered responsible only for self-resistance. Here, we report an unexpected 2’-phosphorylation of nucleoside biosynthetic intermediates in the nikkomycin and polyoxin pathways. This phosphorylation is a unique cryptic modification as it is introduced in the third of seven steps during aminohexuronic acid (AHA) nucleoside biosynthesis, retained throughout the pathway’s duration, and is removed in the last step of the pathway. Bioinformatic analysis of reported nucleoside BGCs suggests the presence of cryptic phosphorylation in other pathways and the importance of functional characterization of kinases in nucleoside biosynthetic pathways in general. This study also functionally characterized all of the enzymes responsible for AHA biosynthesis and revealed that AHA is constructed via a unique oxidative C-C bond cleavage reaction. The results suggest a divergent biosynthetic mechanism for three classes of antifungal nucleoside natural products.
Collapse
Affiliation(s)
| | | | - Hilda Sucipto
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Kenichi Yokoyama
- Department of Chemistry, Duke University, Durham, NC, USA. .,Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
17
|
Development of 6'- N-Acylated Isepamicin Analogs with Improved Antibacterial Activity Against Isepamicin-Resistant Pathogens. Biomolecules 2020; 10:biom10060893. [PMID: 32545254 PMCID: PMC7356214 DOI: 10.3390/biom10060893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 01/24/2023] Open
Abstract
The development of new aminoglycoside (AG) antibiotics has been required to overcome the resistance mechanism of AG-modifying enzymes (AMEs) of AG-resistant pathogens. The AG acetyltransferase, AAC(6′)-APH(2″), one of the most typical AMEs, exhibiting substrate promiscuity towards a variety of AGs and acyl-CoAs, was employed to enzymatically synthesize new 6′-N-acylated isepamicin (ISP) analogs, 6′-N-acetyl/-propionyl/-malonyl ISPs. They were all active against the ISP-resistant Gram-negative bacteria tested, and the 6′-N-acetyl ISP displayed reduced toxicity compared to ISP in vitro. This study demonstrated the importance of the modification of the 6′-amino group in circumventing AG-resistance and the potential of regioselective enzymatic modification of AG scaffolds for the development of more robust AG antibiotics.
Collapse
|
18
|
Sigrist R, Luhavaya H, McKinnie SMK, Ferreira da Silva A, Jurberg ID, Moore BS, Gonzaga de Oliveira L. Nonlinear Biosynthetic Assembly of Alpiniamide by a Hybrid cis/ trans-AT PKS-NRPS. ACS Chem Biol 2020; 15:1067-1077. [PMID: 32195572 DOI: 10.1021/acschembio.0c00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpiniamide A is a linear polyketide produced by Streptomyces endophytic bacteria. Despite its relatively simple chemical structure suggestive of a linear assembly line biosynthetic construction involving a hybrid polyketide synthase-nonribosomal peptide synthetase enzymatic protein machine, we report an unexpected nonlinear synthesis of this bacterial natural product. Using a combination of genomics, heterologous expression, mutagenesis, isotope-labeling, and chain terminator experiments, we propose that alpiniamide A is assembled in two halves and then ligated into the mature molecule. We show that each polyketide half is constructed using orthogonal biosynthetic strategies, employing either cis- or trans-acyl transferase mechanisms, thus prompting an alternative proposal for the operation of this PKS-NRPS.
Collapse
Affiliation(s)
- Renata Sigrist
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Hanna Luhavaya
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Shaun M. K. McKinnie
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Amanda Ferreira da Silva
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Igor D. Jurberg
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Luciana Gonzaga de Oliveira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
19
|
Reconstitution of polythioamide antibiotic backbone formation reveals unusual thiotemplated assembly strategy. Proc Natl Acad Sci U S A 2020; 117:8850-8858. [PMID: 32265283 PMCID: PMC7183216 DOI: 10.1073/pnas.1918759117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nonribosomal peptides (NRPs) are a vast class of natural products and an important source of therapeutics. Typically, these secondary metabolites are assembled by NRP synthetases (NRPSs) that function on substrates covalently linked to the enzyme by a thioester, in a process known as thiotemplated biosynthesis. Although NRPS-independent assembly pathways are known, all are nonthiotemplated. Here we report an NRPS-independent yet thiotemplated pathway for NRP biosynthesis and demonstrate that members of the ATP-grasp and cysteine protease families form the β-peptide backbone of an antibiotic. Armed with this knowledge, we provide genomic evidence that this noncanonical assembly pathway is widespread in bacteria. Our results will inspire future genome mining efforts for the discovery of potential therapeutics that otherwise would be overlooked. Closthioamide (CTA) is a rare example of a thioamide-containing nonribosomal peptide and is one of only a handful of secondary metabolites described from obligately anaerobic bacteria. Although the biosynthetic gene cluster responsible for CTA production and the thioamide synthetase that catalyzes sulfur incorporation were recently discovered, the logic for peptide backbone assembly has remained a mystery. Here, through the use of in vitro biochemical assays, we demonstrate that the amide backbone of CTA is assembled in an unusual thiotemplated pathway involving the cooperation of a transacylating member of the papain-like cysteine protease family and an iteratively acting ATP-grasp protein. Using the ATP-grasp protein as a bioinformatic handle, we identified hundreds of such thiotemplated yet nonribosomal peptide synthetase (NRPS)-independent biosynthetic gene clusters across diverse bacterial phyla. The data presented herein not only clarify the pathway for the biosynthesis of CTA, but also provide a foundation for the discovery of additional secondary metabolites produced by noncanonical biosynthetic pathways.
Collapse
|
20
|
Mechanism of Antibacterial Activity of Bacillus amyloliquefaciens C-1 Lipopeptide toward Anaerobic Clostridium difficile. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3104613. [PMID: 32190658 PMCID: PMC7073505 DOI: 10.1155/2020/3104613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Probiotics may offer an attractive alternative for standard antibiotic therapy to treat Clostridium difficile infections (CDI). In this study, the antibacterial mechanism in vitro of newly isolated B. amyloliquefaciens C-1 against C. difficile was investigated. The lipopeptides surfactin, iturin, and fengycin produced by C-1 strongly inhibited C. difficile growth and viability. Systematic research of the bacteriostatic mechanism showed that the C-1 lipopeptides damage the integrity of the C. difficile cell wall and cell membrane. In addition, the lipopeptide binds to C. difficile genomic DNA, leading to cell death. Genome resequencing revealed many important antimicrobial compound-encoding clusters, including six nonribosomal peptides (surfactins (srfABCD), iturins (ituABCD), fengycins (fenABCDE), bacillibactin (bmyABC), teichuronic, and bacilysin) and three polyketides (bacillaene (baeEDLMNJRS), difficidin (difABCDEFGHIJ), and macrolactin (mlnABCDEFGHI)). In addition, there were other beneficial genes, such as phospholipase and seven siderophore biosynthesis gene clusters, which may contribute synergistically to the antibacterial activity of B. amyloliquefaciens C-1. We suggest that proper application of antimicrobial peptides may be effective in C. difficile control.
Collapse
|
21
|
Rebets Y, Nadmid S, Paulus C, Dahlem C, Herrmann J, Hübner H, Rückert C, Kiemer AK, Gmeiner P, Kalinowski J, Müller R, Luzhetskyy A. Perquinoline A–C: neuartige bakterielle Tetrahydroisochinoline mit einer bemerkenswerten Biosynthese. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuriy Rebets
- Department of Pharmacy Pharmaceutical Biotechnology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Suvd Nadmid
- Department of Pharmacy Pharmaceutical Biotechnology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Constanze Paulus
- Department of Pharmacy Pharmaceutical Biotechnology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Charlotte Dahlem
- Department of Pharmacy Pharmaceutical Biology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Jennifer Herrmann
- Department Microbial Natural Products Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus, Bld. 8 1 Saarbrucken 66123 Deutschland
| | - Harald Hübner
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Deutschland
| | - Christian Rückert
- Center for Biotechnology – CeBiTec University of Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Alexandra K. Kiemer
- Department of Pharmacy Pharmaceutical Biology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Deutschland
| | - Jörn Kalinowski
- Center for Biotechnology – CeBiTec University of Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Rolf Müller
- Department Microbial Natural Products Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus, Bld. 8 1 Saarbrucken 66123 Deutschland
| | - Andriy Luzhetskyy
- Department of Pharmacy Pharmaceutical Biotechnology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
- Department Microbial Natural Products Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus, Bld. 8 1 Saarbrucken 66123 Deutschland
| |
Collapse
|
22
|
Rebets Y, Nadmid S, Paulus C, Dahlem C, Herrmann J, Hübner H, Rückert C, Kiemer AK, Gmeiner P, Kalinowski J, Müller R, Luzhetskyy A. Perquinolines A-C: Unprecedented Bacterial Tetrahydroisoquinolines Involving an Intriguing Biosynthesis. Angew Chem Int Ed Engl 2019; 58:12930-12934. [PMID: 31310031 DOI: 10.1002/anie.201905538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 01/15/2023]
Abstract
Metabolic profiling of Streptomyces sp. IB2014/016-6 led to the identification of three new tetrahydroisoquinoline natural products, perquinolines A-C (1-3). Labelled precursor feeding studies and the cloning of the pqr biosynthetic gene cluster revealed that 1-3 are assembled by the action of several unusual enzymes. The biosynthesis starts with the condensation of succinyl-CoA and l-phenylalanine catalyzed by the amino-7-oxononanoate synthase-like enzyme PqrA, representing rare chemistry in natural product assembly. The second condensation and cyclization events are conducted by PqrG, an enzyme resembling an acyl-CoA ligase. Last, ATP-grasp RimK-type ligase PqrI completes the biosynthesis by transferring a γ-aminobutyric acid or β-alanine moiety. The discovered pathway represents a new route for assembling the tetrahydroisoquinoline cores of natural products.
Collapse
Affiliation(s)
- Yuriy Rebets
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Suvd Nadmid
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Constanze Paulus
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Jennifer Herrmann
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus, Bld. 8 1, Saarbrucken, 66123, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Christian Rückert
- Center for Biotechnology-CeBiTec, University of Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology-CeBiTec, University of Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus, Bld. 8 1, Saarbrucken, 66123, Germany
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany.,Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus, Bld. 8 1, Saarbrucken, 66123, Germany
| |
Collapse
|
23
|
Mahanta N, Szantai-Kis DM, Petersson EJ, Mitchell DA. Biosynthesis and Chemical Applications of Thioamides. ACS Chem Biol 2019; 14:142-163. [PMID: 30698414 PMCID: PMC6404778 DOI: 10.1021/acschembio.8b01022] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thioamidation as a posttranslational modification is exceptionally rare, with only a few reported natural products and exactly one known protein example (methyl-coenzyme M reductase from methane-metabolizing archaea). Recently, there has been significant progress in elucidating the biosynthesis and function of several thioamide-containing natural compounds. Separate developments in the chemical installation of thioamides into peptides and proteins have enabled cell biology and biophysical studies to advance the current understanding of natural thioamides. This review highlights the various strategies used by Nature to install thioamides in peptidic scaffolds and the potential functions of this rare but important modification. We also discuss synthetic methods used for the site-selective incorporation of thioamides into polypeptides with a brief discussion of the physicochemical implications. This account will serve as a foundation for the further study of thioamides in natural products and their various applications.
Collapse
Affiliation(s)
| | - D Miklos Szantai-Kis
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine , University of Pennsylvania , 3700 Hamilton Walk , Philadelphia , Pennsylvania 19104 , United States
| | - E James Petersson
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine , University of Pennsylvania , 3700 Hamilton Walk , Philadelphia , Pennsylvania 19104 , United States
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
24
|
Complete reconstitution of the diverse pathways of gentamicin B biosynthesis. Nat Chem Biol 2019; 15:295-303. [PMID: 30643280 PMCID: PMC6488028 DOI: 10.1038/s41589-018-0203-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022]
Abstract
Gentamicin B (GB), a valuable starting material for the preparation of the semisynthetic aminoglycoside antibiotic isepamicin, is produced in trace amounts by the wild-type Micromonospora echinospora. While the biosynthetic pathway to GB has remained obscure for decades, we have now identified three hidden pathways to GB production via seven hitherto unknown intermediates in M. echinospora. The narrow substrate specificity of a key glycosyltransferase and the C6′-amination enzymes, in combination with the weak and unsynchronized gene expression of the 2′-deamination enzymes, limit GB production in M. echinospora. The crystal structure of the aminotransferase involved in C6′-amination explains its substrate specificity. Some of the new intermediates displayed similar premature termination codon readthrough activity but with reduced toxicity compared to the natural aminoglycoside G418. This work not only led to the discovery of unknown biosynthetic routes to GB, but also demonstrated the potential to mine new aminoglycosides from nature for drug discovery.
Collapse
|
25
|
Harwood CR, Mouillon JM, Pohl S, Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 2018; 42:721-738. [PMID: 30053041 PMCID: PMC6199538 DOI: 10.1093/femsre/fuy028] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/17/2018] [Indexed: 11/14/2022] Open
Abstract
Members of the 'Bacillus subtilis group' include some of the most commercially important bacteria, used for the production of a wide range of industrial enzymes and fine biochemicals. Increasingly, group members have been developed for use as animal feed enhancers and antifungal biocontrol agents. The group has long been recognised to produce a range of secondary metabolites and, despite their long history of safe usage, this has resulted in an increased focus on their safety. Traditional methods used to detect the production of secondary metabolites and other potentially harmful compounds have relied on phenotypic tests. Such approaches are time consuming and, in some cases, lack specificity. Nowadays, accessibility to genome data and associated bioinformatical tools provides a powerful means for identifying gene clusters associated with the synthesis of secondary metabolites. This review focuses primarily on well-characterised strains of B. subtilis and B. licheniformis and their synthesis of non-ribosomally synthesised peptides and polyketides. Where known, the activities and toxicities of their secondary metabolites are discussed, together with the limitations of assays currently used to assess their toxicity. Finally, the regulatory framework under which such strains are authorised for use in the production of food and feed enzymes is also reviewed.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Jean-Marie Mouillon
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoevej 36, DK-2880 Bagsvaerd, Denmark
| | - Susanne Pohl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoevej 36, DK-2880 Bagsvaerd, Denmark
| |
Collapse
|
26
|
Dunbar KL, Büttner H, Molloy EM, Dell M, Kumpfmüller J, Hertweck C. Genome Editing Reveals Novel Thiotemplated Assembly of Polythioamide Antibiotics in Anaerobic Bacteria. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyle L. Dunbar
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Hannah Büttner
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Evelyn M. Molloy
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Maria Dell
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Jana Kumpfmüller
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
- Natural Product Chemistry; Friedrich Schiller University; 07743 Jena Germany
| |
Collapse
|
27
|
Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiol Res 2018; 218:41-48. [PMID: 30454657 DOI: 10.1016/j.micres.2018.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 10/06/2018] [Indexed: 11/22/2022]
Abstract
Peanut suffer from a number of fungal and bacterial pathogens, while plant endophytes were considered excellent candidates as biocontrol agents. In this study, the peanut endophytic bacterium LDO2 was evaluated for the potential of peanut pathogens inhibition and growth-promotion, and the genetic mechanisms were explored by genome mining. Strain LDO2 significantly inhibited the growth of peanut pathogenic fungi and pathogenic bacteria, and specifically, it showed pronounced inhibition on mycelia growth of Aspergillus flavus mycelia and caused mycelial deformity. Gene clusters responsible for antifungal metabolites (fengycin, surfactin, bacilysin) and antibacterial metabolites (butirosin, bacillaene, difficidin, macrolactin, surfactin, bacilysin) were identified. Strain LDO2 also exhibited several growth-promoting related features including phosphate solubilization, siderophore production and growth promotion of peanut root. Genes associated with plant growth promotion were also identified and analyzed, as well as genes related to secreted proteins. These findings suggested that this peanut endophyte could be a potential biocontrol agent in peanut production and a source of antimicrobial compounds for further exploitation.
Collapse
|
28
|
Dunbar KL, Büttner H, Molloy EM, Dell M, Kumpfmüller J, Hertweck C. Genome Editing Reveals Novel Thiotemplated Assembly of Polythioamide Antibiotics in Anaerobic Bacteria. Angew Chem Int Ed Engl 2018; 57:14080-14084. [PMID: 30193003 DOI: 10.1002/anie.201807970] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Closthioamide (CTA) is a unique symmetric nonribosomal peptide with six thioamide moieties that is produced by the Gram-positive obligate anaerobe Ruminiclostridium cellulolyticum. CTA displays potent inhibitory activity against important clinical pathogens, making it a promising drug candidate. Yet, the biosynthesis of this DNA gyrase-targeting antibiotic has remained enigmatic. Using a combination of genome mining, genome editing (targeted group II intron, CRISPR/Cas9), and heterologous expression, we show that CTA biosynthesis involves specialized enzymes for starter unit biosynthesis, amide bond formation, thionation, and dimerization. Surprisingly, CTA biosynthesis involves a novel thiotemplated peptide assembly line that markedly differs from known nonribosomal peptide synthetases. These findings provide the first insights into the biosynthesis of thioamide-containing nonribosomal peptides and offer a starting point for the discovery of related natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Hannah Büttner
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Evelyn M Molloy
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Maria Dell
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jana Kumpfmüller
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany.,Natural Product Chemistry, Friedrich Schiller University, 07743, Jena, Germany
| |
Collapse
|
29
|
Wang KKA, Ng TL, Wang P, Huang Z, Balskus EP, van der Donk WA. Glutamic acid is a carrier for hydrazine during the biosyntheses of fosfazinomycin and kinamycin. Nat Commun 2018; 9:3687. [PMID: 30206228 PMCID: PMC6133997 DOI: 10.1038/s41467-018-06083-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023] Open
Abstract
Fosfazinomycin and kinamycin are natural products that contain nitrogen-nitrogen (N-N) bonds but that are otherwise structurally unrelated. Despite their considerable structural differences, their biosynthetic gene clusters share a set of genes predicted to facilitate N-N bond formation. In this study, we show that for both compounds, one of the nitrogen atoms in the N-N bond originates from nitrous acid. Furthermore, we show that for both compounds, an acetylhydrazine biosynthetic synthon is generated first and then funneled via a glutamyl carrier into the respective biosynthetic pathways. Therefore, unlike other pathways to N-N bond-containing natural products wherein the N-N bond is formed directly on a biosynthetic intermediate, during the biosyntheses of fosfazinomycin, kinamycin, and related compounds, the N-N bond is made in an independent pathway that forms a branch of a convergent route to structurally complex natural products.
Collapse
Affiliation(s)
- Kwo-Kwang A Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Tai L Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, MA, USA
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Zedu Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemistry, Fudan University, Shanghai, 200438-6789, China
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, MA, USA.
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Howard Hughes Medical Institute, Chevy Chase, 20815, MD, USA.
| |
Collapse
|
30
|
Chen L, Heng J, Qin S, Bian K. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS One 2018; 13:e0198560. [PMID: 29856856 PMCID: PMC5983450 DOI: 10.1371/journal.pone.0198560] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/21/2018] [Indexed: 11/19/2022] Open
Abstract
Fusarium head blight (FHB) mainly caused by F. graminearum, always brings serious damage to wheat production worldwide. In this study, we found that strain LM2303 had strong antagonist activity against F. graminearum and significantly reduced disease severity of FHB with the control efficiency of 72.3% under field conditions. To gain a comprehensive understanding of the biocontrol potential of strain LM2303 against FHB, an integrated approach of genome mining and chemical analysis was employed. The whole genome of strain LM2303 was obtained and analyzed, showing the largest number of genes/gene clusters associated with biocontrol functions as compared with the known biocontrol strains (FZB42, M75, CAU B946). And strain LM2303 was accurately determined as a member of the B. velezensis clade using the phylogenomic analysis of single-copy core genes. Through genome mining, 13 biosynthetic gene clusters(BGCs) encoding secondary metabolites with biocontrol functions were identified, which were further confirmed through chemical analyses such as UHPLC-ESI-MS, including three antifungal metabolites (fengycin B, iturin A, and surfactin A), eight antibacterial metabolites (surfactin A, butirosin, plantazolicin and hydrolyzed plantazolicin, kijanimicin, bacilysin, difficidin, bacillaene A and bacillaene B, 7-o-malonyl macrolactin A and 7-o-succinyl macrolactin A), the siderophore bacillibactin, molybdenum cofactor and teichuronic acid. In addition, genes/gene clusters involved in plant colonization, plant growth promotion and induced systemic resistance were also found and analyzed, along with the corresponding metabolites. Finally, four different mechanisms of strain LM2303 involved in the biocontrol of FHB were putatively obtained. This work provides better insights into a mechanistic understanding of strain LM2303 in control of FHB, reinforcing the higher potential of this strain as a powerful biocontrol strain agent (BCA) for FHB control. The results also provide scientific reference and comparison for other biocontrol strains.
Collapse
Affiliation(s)
- Liang Chen
- Provincial Key Laboratory for Transformation and Utilization of Cereal Resource, College of Bioengineering, Henan University of Technology, Zhengzhou, China
- Collaborative Innovation Center for Grain Storage Security in Henan Province, Zhengzhou, China
| | - Junying Heng
- Provincial Key Laboratory for Transformation and Utilization of Cereal Resource, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Suya Qin
- Provincial Key Laboratory for Transformation and Utilization of Cereal Resource, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Ke Bian
- Provincial Key Laboratory for Transformation and Utilization of Cereal Resource, College of Bioengineering, Henan University of Technology, Zhengzhou, China
- Collaborative Innovation Center for Grain Storage Security in Henan Province, Zhengzhou, China
| |
Collapse
|
31
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
32
|
Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW. Selection and Assessment of Plant Growth-Promoting Rhizobacteria for Biological Control of Multiple Plant Diseases. PHYTOPATHOLOGY 2017; 107:928-936. [PMID: 28440700 DOI: 10.1094/phyto-02-17-0051-r] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.
Collapse
Affiliation(s)
- Ke Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Molli Newman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Chia-Hui Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| |
Collapse
|
33
|
Complete genome sequence of Bacillus velezensis LM2303, a biocontrol strain isolated from the dung of wild yak inhabited Qinghai-Tibet plateau. J Biotechnol 2017; 251:124-127. [PMID: 28461206 DOI: 10.1016/j.jbiotec.2017.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 11/20/2022]
Abstract
Bacillus velezensis LM2303 is a biocontrol strain with a broad inhibitory spectrum against plant pathogens, isolated from the dung of wild yak inhabited Qinghai-Tibet plateau, China. Here we present its complete genome sequence, which consists of a single, circular chromosome of 3,989,393bp with a 46.68% G+C content. Genome analysis revealed genes encoding specialized functions for the biosynthesis of antifungal metabolites and antibacterial metabolites, the promotion of plant growth, the alleviation of oxidative stress and nutrient utilization. And the biosynthesis of antimicrobial metabolites in strain LM2303 was confirmed by biochemical analysis, while its plant growth promoting traits were confirmed by inoculation tests. Our results will establish a better foundation for further studies and biocontrol application of B. velezensis LM2303.
Collapse
|
34
|
Park JW, Ban YH, Nam SJ, Cha SS, Yoon YJ. Biosynthetic pathways of aminoglycosides and their engineering. Curr Opin Biotechnol 2017; 48:33-41. [PMID: 28365471 DOI: 10.1016/j.copbio.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
Despite decades long clinical usage, aminoglycosides still remain a valuable pharmaceutical source for fighting Gram-negative bacterial pathogens, and their newly identified bioactivities are also renewing interest in this old class of antibiotics. As Nature's gift, some aminoglycosides possess natural defensive structural elements that can circumvent drug resistance mechanisms. Thus, a detailed understanding of aminoglycoside biosynthesis will enable us to apply Nature's biosynthetic strategy towards expanding structural diversity in order to produce novel and more robust aminoglycoside analogs. The engineered biosynthesis of novel aminoglycosides is required not only to develop effective therapeutics against the emerging 'superbugs' but also to reinvigorate antibiotic lead discovery in readiness for the emerging post-antibiotic era.
Collapse
Affiliation(s)
- Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Hee Ban
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
35
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 582] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
36
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
37
|
Mechanisms of β-amino acid incorporation in polyketide macrolactam biosynthesis. Curr Opin Chem Biol 2016; 35:58-64. [DOI: 10.1016/j.cbpa.2016.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/30/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
|
38
|
Molinatto G, Puopolo G, Sonego P, Moretto M, Engelen K, Viti C, Ongena M, Pertot I. Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499, a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. J Biotechnol 2016; 238:56-59. [PMID: 27671697 DOI: 10.1016/j.jbiotec.2016.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/17/2016] [Accepted: 09/23/2016] [Indexed: 11/30/2022]
Abstract
Bacillus amyloliquefaciens subsp. plantarum S499 is a plant beneficial rhizobacterium with a good antagonistic potential against phytopathogens through the release of active secondary metabolites. Moreover, it can induce systemic resistance in plants by producing considerable amounts of surfactins. The complete genome sequence of B. amyloliquefaciens subsp. plantarum S499 includes a circular chromosome of 3,927,922bp and a plasmid of 8,008bp. A remarkable abundance in genomic regions of putative horizontal origin emerged from the analysis. Furthermore, we highlighted the presence of genes involved in the establishment of interactions with the host plants at the root level and in the competition with other soil-borne microorganisms. More specifically, genes related to the synthesis of amylolysin, amylocyclicin, and butirosin were identified. These antimicrobials were not known before to be part of the antibiotic arsenal of the strain. The information embedded in the genome will support the upcoming studies regarding the application of B. amyloliquefaciens isolates as plant-growth promoters and biocontrol agents.
Collapse
Affiliation(s)
- Giulia Molinatto
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1-38010 S. Michele all'Adige, TN, Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1-38010 S. Michele all'Adige, TN, Italy.
| | - Paolo Sonego
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1-38010 S. Michele all'Adige, TN, Italy
| | - Marco Moretto
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1-38010 S. Michele all'Adige, TN, Italy
| | - Kristof Engelen
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1-38010 S. Michele all'Adige, TN, Italy
| | - Carlo Viti
- Department of Agrifood Production and Environmental Sciences, University of Firenze, Piazzale delle Cascine 24-50144 Florence, Italy
| | - Marc Ongena
- Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2-5030 Gembloux, Belgium
| | - Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1-38010 S. Michele all'Adige, TN, Italy
| |
Collapse
|
39
|
Liu X, Jin Y, Cui Z, Nonaka K, Baba S, Funabashi M, Yang Z, Van Lanen SG. The Role of a Nonribosomal Peptide Synthetase in l-Lysine Lactamization During Capuramycin Biosynthesis. Chembiochem 2016; 17:804-10. [PMID: 26840634 PMCID: PMC4933962 DOI: 10.1002/cbic.201500701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 01/10/2023]
Abstract
Capuramycins are one of several known classes of natural products that contain an l-Lys-derived l-α-amino-ɛ-caprolactam (l-ACL) unit. The α-amino group of l-ACL in a capuramycin is linked to an unsaturated hexuronic acid component through an amide bond that was previously shown to originate by an ATP-independent enzymatic route. With the aid of a combined in vivo and in vitro approach, a predicted tridomain nonribosomal peptide synthetase CapU is functionally characterized here as the ATP-dependent amide-bond-forming catalyst responsible for the biosynthesis of the remaining amide bond present in l-ACL. The results are consistent with the adenylation domain of CapU as the essential catalytic component for l-Lys activation and thioesterification of the adjacent thiolation domain. However, in contrast to expectations, lactamization does not require any additional domains or proteins and is likely a nonenzymatic event. The results set the stage for examining whether a similar NRPS-mediated mechanism is employed in the biosynthesis of other l-ACL-containing natural products and, just as intriguingly, how spontaneous lactamization is avoided in the numerous NRPS-derived peptides that contain an unmodified l-Lys residue.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Yuanyuan Jin
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medicinal Sciences & Peking Union Medical College, Beijing, China
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Koichi Nonaka
- Biologics Technology Research Laboratories, Daiichi Sankyo, Co. Ltd., Gunma, 370-0503, Japan
| | - Satoshi Baba
- Biologics Technology Research Laboratories, Daiichi Sankyo, Co. Ltd., Gunma, 370-0503, Japan
| | - Masanori Funabashi
- Natural Product Research Group, Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co. Ltd., Tokyo, 134-8630, Japan
| | - Zhaoyong Yang
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medicinal Sciences & Peking Union Medical College, Beijing, China
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
40
|
Antibiotics and evolution: food for thought. ACTA ACUST UNITED AC 2016; 43:149-53. [DOI: 10.1007/s10295-015-1702-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022]
Abstract
Abstract
The role of secondary metabolites in effecting and modulating reactions during early biochemical evolution has been largely unappreciated. It is possible that low molecular weight effectors were gradually replaced by polypeptides as polymerizing reactions became more complex, but retained some ability to interact with original receptor sites. Indeed, by reviewing the era of antibiotics in this light we can begin to reconcile the ancient and contemporary activities of these molecules. The corollary being that secondary metabolites participate in a vast array of interactions in nature and investigating their intended receptors will be revealing in both pharmacological and evolutionary terms.
Collapse
|
41
|
Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone. Metab Eng Commun 2015; 3:1-7. [PMID: 29468109 PMCID: PMC5779725 DOI: 10.1016/j.meteno.2015.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/25/2015] [Accepted: 11/03/2015] [Indexed: 11/23/2022] Open
Abstract
2-Pyrrolidone is a valuable bulk chemical with myriad applications as a solvent, polymer precursor and active pharmaceutical intermediate. A novel 2-pyrrolidone synthase, ORF27, from Streptomyces aizunensis was identified to catalyze the ring closing dehydration of γ-aminobutyrate. ORF27's tendency to aggregate was resolved by expression at low temperature and fusion to the maltose binding protein (MBP). Recombinant Escherichia coli was metabolically engineered for the production of 2-pyrrolidone from glutamate by expressing both the genes encoding GadB, a glutamate decarboxylase, and ORF27. Incorporation of a GadB mutant lacking H465 and T466, GadB_ΔHT, improved the efficiency of one-pot 2-pyrrolidone biosynthesis in vivo. When the recombinant E. coli strain expressing the E. coli GadB_ΔHT mutant and the ORF27-MBP fusion was cultured in ZYM-5052 medium containing 9 g/L of l-glutamate, 7.7 g/L of l-glutamate was converted to 1.1 g/L of 2-pyrrolidone within 31 h, achieving 25% molar yield from the consumed substrate. ORF27 from Streptomyces aizunensis catalyzes formation of 2-pyrrolidone from γ-aminobutyrate. Recombinant Escherichia coli with GadB and ORF27 produces 2-pyrrolidone from glutamate. Engineered strain capable of producing 1.1 g/L of 2-pyrrolidone from 9 g/L of glutamate within 31 h.
Collapse
|
42
|
Kudo F, Eguchi T. Aminoglycoside Antibiotics: New Insights into the Biosynthetic Machinery of Old Drugs. CHEM REC 2015; 16:4-18. [PMID: 26455715 DOI: 10.1002/tcr.201500210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Indexed: 11/07/2022]
Abstract
2-Deoxystreptamine (2DOS) is the unique chemically stable aminocyclitol scaffold of clinically important aminoglycoside antibiotics such as neomycin, kanamycin, and gentamicin, which are produced by Actinomycetes. The 2DOS core can be decorated with various deoxyaminosugars to make structurally diverse pseudo-oligosaccharides. After the discovery of biosynthetic gene clusters for 2DOS-containing aminoglycoside antibiotics, the function of each biosynthetic enzyme has been extensively elucidated. The common biosynthetic intermediates 2DOS, paromamine and ribostamycin are constructed by conserved enzymes encoded in the gene clusters. The biosynthetic intermediates are then converted to characteristic architectures by unique enzymes encoded in each biosynthetic gene cluster. In this Personal Account, we summarize both common biosynthetic pathways and the pathways used for structural diversification.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
43
|
Walker MC, van der Donk WA. The many roles of glutamate in metabolism. J Ind Microbiol Biotechnol 2015; 43:419-30. [PMID: 26323613 DOI: 10.1007/s10295-015-1665-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/25/2015] [Indexed: 12/20/2022]
Abstract
The amino acid glutamate is a major metabolic hub in many organisms and as such is involved in diverse processes in addition to its role in protein synthesis. Nitrogen assimilation, nucleotide, amino acid, and cofactor biosynthesis, as well as secondary natural product formation all utilize glutamate in some manner. Glutamate also plays a role in the catabolism of certain amines. Understanding glutamate's role in these various processes can aid in genome mining for novel metabolic pathways or the engineering of pathways for bioremediation or chemical production of valuable compounds.
Collapse
Affiliation(s)
- Mark C Walker
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
44
|
Burroughs AM, Zhang D, Aravind L. The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications. Biol Direct 2015; 10:21. [PMID: 25976611 PMCID: PMC4431377 DOI: 10.1186/s13062-015-0053-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/07/2015] [Indexed: 12/26/2022] Open
Abstract
Abstract Deciphering the origin of uniquely eukaryotic features of sub-cellular systems, such as the translation apparatus, is critical in reconstructing eukaryogenesis. One such feature is the highly conserved, but poorly understood, eukaryotic protein CDC123, which regulates the abundance of the eukaryotic translation initiation eIF2 complex and binds one of its components eIF2γ. We show that the eukaryotic protein CDC123 defines a novel clade of ATP-grasp enzymes distinguished from all other members of the superfamily by a RAGNYA domain with two conserved lysines (henceforth the R2K clade). Combining the available biochemical and genetic data on CDC123 with the inferred enzymatic function, we propose that the eukaryotic CDC123 proteins are likely to function as ATP-dependent protein-peptide ligases which modify proteins by ribosome-independent addition of an oligopeptide tag. We also show that the CDC123 family emerged first in bacteria where it appears to have diversified along with the two other families of the R2K clade. The bacterial CDC123 family members are of two distinct types, one found as part of type VI secretion systems which deliver polymorphic toxins and the other functioning as potential effectors delivered to amoeboid eukaryotic hosts. Representatives of the latter type have also been independently transferred to phylogenetically unrelated amoeboid eukaryotes and their nucleo-cytoplasmic large DNA viruses. Similarly, the two other prokaryotic R2K clade families are also proposed to participate in biological conflicts between bacteriophages and their hosts. These findings add further evidence to the recently proposed hypothesis that the horizontal transfer of enzymatic effectors from the bacterial endosymbionts of the stem eukaryotes played a fundamental role in the emergence of the characteristically eukaryotic regulatory systems and sub-cellular structures. Reviewers This article was reviewed by Michael Galperin and Sandor Pongor. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0053-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
45
|
Goswami A, Van Lanen SG. Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome. MOLECULAR BIOSYSTEMS 2015; 11:338-53. [PMID: 25418915 PMCID: PMC4304603 DOI: 10.1039/c4mb00627e] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amide bond-containing (ABC) biomolecules are some of the most intriguing and functionally significant natural products with unmatched utility in medicine, agriculture and biotechnology. The enzymatic formation of an amide bond is therefore a particularly interesting platform for engineering the synthesis of structurally diverse natural and unnatural ABC molecules for applications in drug discovery and molecular design. As such, efforts to unravel the mechanisms involved in carboxylate activation and substrate selection has led to the characterization of a number of structurally and functionally distinct protein families involved in amide bond synthesis. Unlike ribosomal synthesis and thio-templated synthesis using nonribosomal peptide synthetases, which couple the hydrolysis of phosphoanhydride bond(s) of ATP and proceed via an acyl-adenylate intermediate, here we discuss two mechanistically alternative strategies: ATP-dependent enzymes that generate acylphosphate intermediates and ATP-independent transacylation strategies. Several examples highlighting the function and synthetic utility of these amide bond-forming strategies are provided.
Collapse
Affiliation(s)
- Anwesha Goswami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, USA.
| | | |
Collapse
|
46
|
Takeishi R, Kudo F, Numakura M, Eguchi T. Epimerization at C-3'' in butirosin biosynthesis by an NAD(+) -dependent dehydrogenase BtrE and an NADPH-dependent reductase BtrF. Chembiochem 2015; 16:487-95. [PMID: 25600434 DOI: 10.1002/cbic.201402612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/11/2022]
Abstract
Butirosin is an aminoglycoside antibiotic consisting two epimers at C-3'' of ribostamycin/xylostasin with a unique 4-amino-2-hydroxybutyrate moiety at C-1 of the aminocyclitol 2-deoxystreptamine (2DOS). To date, most of the enzymes encoded in the biosynthetic gene cluster for butirosin, from the producing strain Bacillus circulans, have been characterized. A few unknown functional proteins, including nicotinamide adenine dinucleotide cofactor-dependent dehydrogenase/reductase (BtrE and BtrF), are supposed to be involved in the epimerization at C-3'' of butirosin B/ribostamycin but remain to be characterized. Herein, the conversion of ribostamycin to xylsostasin by BtrE and BtrF in the presence of NAD(+) and NADPH was demonstrated. BtrE oxidized the C-3'' of ribostamycin with NAD(+) to yield 3''-oxoribostamycin. BtrF then reduced the generated 3''-oxoribostamycin with NADPH to produce xylostasin. This reaction step was the last piece of butirosin biosynthesis to be described.
Collapse
Affiliation(s)
- Ryohei Takeishi
- Department of Chemistry, Tokyo Institute of Technology, Okayama, Meguro-ku, Tokyo 152-8551 (Japan)
| | | | | | | |
Collapse
|
47
|
Müller S, Garcia-Gonzalez E, Genersch E, Süssmuth RD. Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae. Nat Prod Rep 2015; 32:765-78. [DOI: 10.1039/c4np00158c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Gram-positive spore-forming bacterium Paenibacillus larvae is the causative agent of the fatal disease American Foulbrood of the western honey bee. This article highlights recent findings on secondary metabolites synthesized by P. larvae.
Collapse
Affiliation(s)
| | - Eva Garcia-Gonzalez
- Institute for Bee Research
- Department of Molecular Microbiology and Bee Diseases
- Hohen Neuendorf
- Germany
| | - Elke Genersch
- Institute for Bee Research
- Department of Molecular Microbiology and Bee Diseases
- Hohen Neuendorf
- Germany
| | | |
Collapse
|
48
|
Ni X, Sun Z, Zhang H, He H, Ji Z, Xia H. Genetic engineering combined with random mutagenesis to enhance G418 production in Micromonospora echinospora. ACTA ACUST UNITED AC 2014; 41:1383-90. [DOI: 10.1007/s10295-014-1479-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
Abstract
G418, produced by fermentation of Micromonospora echinospora, is an aminoglycoside antibiotic commonly used in genetic selection and maintenance of eukaryotic cells. Besides G418, M. echinospora produces many G418 analogs. As a result, the G418 product always contains impurities such as gentamicin C1, C1a, C2, C2a, gentamicin A and gentamicin X2. These impurities are less potent but more toxic than G418, but the purification of G418 is difficult because it has similar properties to its impurities. G418 is an intermediate in the gentamicin biosynthesis pathway. From G418 the pathway proceeds via successive dehydrogenation and aminotransferation at the C-6′ position to generate the gentamicin C complex, but genes responsible for these steps are still obscure. Through disruption of gacJ, which is deduced to encode a C-6′ dehydrogenase, the biosynthetic impurities gentamicin C1, C1a, C2 and C2a were all removed, and G418 became the main product of the gacJ disruption strain. These results demonstrated that gacJ is in charge of conversion of the 6′-OH of G418 into 6′-NH2. Disruption of gacJ not only eliminates the impurities seen in the original strain but also improves G418 titers by 15-fold. G418 production was further improved by 26.6 % through traditional random mutagenesis. Through the use of combined traditional and recombinant genetic techniques, we produced a strain from which most impurities were removed and G418 production was improved by 19 fold.
Collapse
Affiliation(s)
- Xianpu Ni
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Zhenpeng Sun
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Hongyu Zhang
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Han He
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Zhouxiang Ji
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Huanzhang Xia
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| |
Collapse
|
49
|
Müller S, Garcia-Gonzalez E, Mainz A, Hertlein G, Heid NC, Mösker E, van den Elst H, Overkleeft HS, Genersch E, Süssmuth RD. Paenilamicin - Struktur und Biosynthese eines hybriden Polyketid-/nichtribosomalen Peptidantibiotikums des bienenpathogenen BakteriumsPaenibacillus larvae. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Müller S, Garcia-Gonzalez E, Mainz A, Hertlein G, Heid NC, Mösker E, van den Elst H, Overkleeft HS, Genersch E, Süssmuth RD. Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae. Angew Chem Int Ed Engl 2014; 53:10821-5. [PMID: 25080172 DOI: 10.1002/anie.201404572] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 11/10/2022]
Abstract
The spore-forming bacterium Paenibacillus larvae is the causative agent of American Foulbrood (AFB), a fatal disease of honey bees that occurs worldwide. Previously, we identified a complex hybrid nonribosomal peptide/polyketide synthesis (NRPS/PKS) gene cluster in the genome of P. larvae. Herein, we present the isolation and structure elucidation of the antibacterial and antifungal products of this gene cluster, termed paenilamicins. The unique structures of the paenilamicins give deep insight into the underlying complex hybrid NRPS/PKS biosynthetic machinery. Bee larval co-infection assays reveal that the paenilamicins are employed by P. larvae in fighting ecological niche competitors and are not directly involved in killing the bee larvae. Their antibacterial and antifungal activities qualify the paenilamicins as attractive candidates for drug development.
Collapse
Affiliation(s)
- Sebastian Müller
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin (Germany) http://www.biochemie.tu-berlin.de
| | | | | | | | | | | | | | | | | | | |
Collapse
|