1
|
Witek K, Kaczor A, Żesławska E, Podlewska S, Marć MA, Czarnota-Łydka K, Nitek W, Latacz G, Tejchman W, Bischoff M, Jacob C, Handzlik J. Chalcogen-Varied Imidazolone Derivatives as Antibiotic Resistance Breakers in Staphylococcus aureus Strains. Antibiotics (Basel) 2023; 12:1618. [PMID: 37998820 PMCID: PMC10669504 DOI: 10.3390/antibiotics12111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
In this study, a search for new therapeutic agents that may improve the antibacterial activity of conventional antibiotics and help to successfully overcome methicillin-resistant Staphylococcus aureus (MRSA) infections has been conducted. The purpose of this work was to extend the scope of our preliminary studies and to evaluate the adjuvant potency of new derivatives in a set of S. aureus clinical isolates. The study confirmed the high efficacy of piperazine derivatives of 5-arylideneimidazol-4-one (7-9) tested previously, and it enabled the authors to identify even more efficient modulators of bacterial resistance among new analogs. The greatest capacity to enhance oxacillin activity was determined for 1-benzhydrylpiperazine 5-spirofluorenehydantoin derivative (13) which, at concentrations as low as 0.0625 mM, restores the effectiveness of β-lactam antibiotics against MRSA strains. In silico studies showed that the probable mechanism of action of 13 is related to the binding of the molecule with the allosteric site of PBP2a. Interestingly, thiazole derivatives tested were shown to act as both oxacillin and erythromycin conjugators in S. aureus isolates, suggesting a complex mode of action (i.e., influence on the Msr(A) efflux pump). This high enhancer activity indicates the high potential of imidazolones to become commercially available antibiotic adjuvants.
Collapse
Affiliation(s)
- Karolina Witek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
- Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Bioorganic Chemistry, School of Pharmacy, University of Saarland, Campus B2.1, D-66123 Saarbrüecken, Germany;
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany;
| | - Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| | - Ewa Żesławska
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Krakow, Poland; (E.Ż.); (W.T.)
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| | - Kinga Czarnota-Łydka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Św. Łazarza 15, 31-530 Krakow, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| | - Waldemar Tejchman
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Krakow, Poland; (E.Ż.); (W.T.)
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany;
| | - Claus Jacob
- Bioorganic Chemistry, School of Pharmacy, University of Saarland, Campus B2.1, D-66123 Saarbrüecken, Germany;
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| |
Collapse
|
2
|
Lade H, Kim JS. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics (Basel) 2023; 12:1362. [PMID: 37760659 PMCID: PMC10525618 DOI: 10.3390/antibiotics12091362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| |
Collapse
|
3
|
Romero J, Islam MT, Taylor R, Grayson C, Schoenrock A, Wong A. High-throughput design of bacterial anti-sense RNAs using CAREng. BIOINFORMATICS ADVANCES 2022; 2:vbac069. [PMID: 36699397 PMCID: PMC9710602 DOI: 10.1093/bioadv/vbac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 01/28/2023]
Abstract
Summary Short RNA (sRNA) modulation of gene expression is an increasingly popular tool for bacterial functional genomics. Antisense pairing between an sRNA and a target messenger RNA results in post-transcriptional down-regulation of a specific gene and can thus be used both for investigating individual gene function and for large-scale genetic screens. sRNAs have several advantages over knockout libraries in studies of gene function, including inducibility, the capacity to interrogate essential genes and easy portability to multiple genetic backgrounds. High-throughput, systematic design of antisense RNAs will increase the efficiency and repeatability of sRNA screens. To this end, we present CAREng, the Computer-Automated sRNA Engineer. CAREng designs antisense RNAs for all coding sequences in a given genome, while checking for potential off-targets. Availability and implementation CAREng is available as a Python script and through a web portal (https://caren.carleton.ca). Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Jazmin Romero
- Research Computing Services, Carleton University, Ottawa K1S 5B6, Canada
| | - Md Tanvir Islam
- Research Computing Services, Carleton University, Ottawa K1S 5B6, Canada
| | - Ryan Taylor
- Research Computing Services, Carleton University, Ottawa K1S 5B6, Canada
| | - Cathryn Grayson
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Andrew Schoenrock
- Research Computing Services, Carleton University, Ottawa K1S 5B6, Canada
| | - Alex Wong
- To whom correspondence should be addressed.
| |
Collapse
|
4
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
5
|
An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 2022; 86:e0015921. [PMID: 35420454 PMCID: PMC9199415 DOI: 10.1128/mmbr.00159-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of resistance to β-lactam antibiotics has made Staphylococcus aureus a clinical burden on a global scale. MRSA (methicillin-resistant S. aureus) is commonly known as a superbug. The ability of MRSA to proliferate in the presence of β-lactams is attributed to the acquisition of mecA, which encodes the alternative penicillin binding protein, PBP2A, which is insensitive to the antibiotics. Most MRSA isolates exhibit low-level β-lactam resistance, whereby additional genetic adjustments are required to develop high-level resistance. Although several genetic factors that potentiate or are required for high-level resistance have been identified, how these interact at the mechanistic level has remained elusive. Here, we discuss the development of resistance and assess the role of the associated components in tailoring physiology to accommodate incoming mecA.
Collapse
|
6
|
Abstract
Cell division and cell wall synthesis in staphylococci need to be precisely coordinated and controlled to allow the cell to multiply while maintaining its nearly spherical shape. The mechanisms ensuring correct placement of the division plane and synthesis of new cell wall have been studied intensively. However, hitherto unknown factors and proteins are likely to play key roles in this complex interplay. Here, we identified and investigated a protein with a major influence on cell morphology in Staphylococcus aureus. The protein, named SmdA (for staphylococcal morphology determinant A), is a membrane protein with septum-enriched localization. By CRISPRi knockdown and overexpression combined with different microscopy techniques, we demonstrated that proper levels of SmdA were necessary for cell division, including septum formation and cell splitting. We also identified conserved residues in SmdA that were critical for its functionality. Pulldown and bacterial two-hybrid interaction experiments showed that SmdA interacted with several known cell division and cell wall synthesis proteins, including penicillin-binding proteins (PBPs) and EzrA. Notably, SmdA also affected susceptibility to cell wall targeting antibiotics, particularly in methicillin-resistant S. aureus (MRSA). Together, our results showed that S. aureus was dependent on balanced amounts of membrane attached SmdA to carry out proper cell division.
Collapse
|
7
|
Melander RJ, Mattingly AE, Melander C. Phenotypic screening of compound libraries as a platform for the identification of antibiotic adjuvants: Identification of colistin adjuvants from a natural product library. Methods Enzymol 2021; 665:153-176. [PMID: 35379433 PMCID: PMC10942738 DOI: 10.1016/bs.mie.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The identification of antibiotic adjuvants, small molecules that potentiate the activity of conventional antibiotics, provides an orthogonal approach to the development of new antibiotics in the fight against drug resistant bacterial infections. Methods to identify novel adjuvants could potentially aid efforts to overcome the increasing prevalence of resistance and stave off the onset of a "post-antibiotic era." Phenotypic whole cell screens allow for the identification of hits with the necessary properties to access their biomolecular target, and may also facilitate the discovery of novel adjuvant targets. A phenotypic screening platform is outlined, in which a natural product library was explored for activity with antibiotics from several mechanistically distinct classes against clinically important bacterial species. General approaches to delineating the mechanism of action of hit compounds identified from phenotypic screens are described, followed by specific approaches to uncovering the mechanism of action of the colistin adjuvants identified from the natural product screen.
Collapse
Affiliation(s)
- Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Anne E Mattingly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.
| |
Collapse
|
8
|
Ftsh Sensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics by Degrading YpfP, a Lipoteichoic Acid Synthesis Enzyme. Antibiotics (Basel) 2021; 10:antibiotics10101198. [PMID: 34680778 PMCID: PMC8532640 DOI: 10.3390/antibiotics10101198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
In the Gram-positive pathogen Staphylococcus aureus, FtsH, a membrane-bound metalloprotease, plays a critical role in bacterial virulence and stress resistance. This protease is also known to sensitize methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics; however, the molecular mechanism is not known. Here, by the analysis of FtsH substrate mutants, we found that FtsH sensitizes MRSA specifically to β-lactams by degrading YpfP, the enzyme synthesizing the anchor molecule for lipoteichoic acid (LTA). Both the overexpression of FtsH and the disruption of ypfP-sensitized MRSA to β-lactams were observed. The knockout mutation in ftsH and ypfP increased the thickness of the cell wall. The β-lactam sensitization coincided with the production of aberrantly large LTA molecules. The combination of three mutations in the rpoC, vraB, and SAUSA300_2133 genes blocked the β-lactam-sensitizing effect of FtsH. Murine infection with the ypfP mutant could be treated by oxacillin, a β-lactam antibiotic ineffective against MRSA; however, the effective concentration of oxacillin differed depending on the S. aureus strain. Our study demonstrated that the β-lactam sensitizing effect of FtsH is due to its digestion of YpfP. It also suggests that the larger LTA molecules are responsible for the β-lactam sensitization phenotype, and YpfP is a viable target for developing novel anti-MRSA drugs.
Collapse
|
9
|
Halder V, McDonnell B, Uthayakumar D, Usher J, Shapiro RS. Genetic interaction analysis in microbial pathogens: unravelling networks of pathogenesis, antimicrobial susceptibility and host interactions. FEMS Microbiol Rev 2021; 45:fuaa055. [PMID: 33145589 DOI: 10.1093/femsre/fuaa055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic interaction (GI) analysis is a powerful genetic strategy that analyzes the fitness and phenotypes of single- and double-gene mutant cells in order to dissect the epistatic interactions between genes, categorize genes into biological pathways, and characterize genes of unknown function. GI analysis has been extensively employed in model organisms for foundational, systems-level assessment of the epistatic interactions between genes. More recently, GI analysis has been applied to microbial pathogens and has been instrumental for the study of clinically important infectious organisms. Here, we review recent advances in systems-level GI analysis of diverse microbial pathogens, including bacterial and fungal species. We focus on important applications of GI analysis across pathogens, including GI analysis as a means to decipher complex genetic networks regulating microbial virulence, antimicrobial drug resistance and host-pathogen dynamics, and GI analysis as an approach to uncover novel targets for combination antimicrobial therapeutics. Together, this review bridges our understanding of GI analysis and complex genetic networks, with applications to diverse microbial pathogens, to further our understanding of virulence, the use of antimicrobial therapeutics and host-pathogen interactions. .
Collapse
Affiliation(s)
- Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Brianna McDonnell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
10
|
Lade H, Kim JS. Bacterial Targets of Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:398. [PMID: 33917043 PMCID: PMC8067735 DOI: 10.3390/antibiotics10040398] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent bacterial pathogens and continues to be a leading cause of morbidity and mortality worldwide. MRSA is a commensal bacterium in humans and is transmitted in both community and healthcare settings. Successful treatment remains a challenge, and a search for new targets of antibiotics is required to ensure that MRSA infections can be effectively treated in the future. Most antibiotics in clinical use selectively target one or more biochemical processes essential for S. aureus viability, e.g., cell wall synthesis, protein synthesis (translation), DNA replication, RNA synthesis (transcription), or metabolic processes, such as folic acid synthesis. In this review, we briefly describe the mechanism of action of antibiotics from different classes and discuss insights into the well-established primary targets in S. aureus. Further, several components of bacterial cellular processes, such as teichoic acid, aminoacyl-tRNA synthetases, the lipid II cycle, auxiliary factors of β-lactam resistance, two-component systems, and the accessory gene regulator quorum sensing system, are discussed as promising targets for novel antibiotics. A greater molecular understanding of the bacterial targets of antibiotics has the potential to reveal novel therapeutic strategies or identify agents against antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Korea;
| |
Collapse
|
11
|
Mikkelsen K, Sirisarn W, Alharbi O, Alharbi M, Liu H, Nøhr-Meldgaard K, Mayer K, Vestergaard M, Gallagher LA, Derrick JP, McBain AJ, Biboy J, Vollmer W, O'Gara JP, Grunert T, Ingmer H, Xia G. The Novel Membrane-Associated Auxiliary Factors AuxA and AuxB Modulate β-lactam Resistance in MRSA by stabilizing Lipoteichoic Acids. Int J Antimicrob Agents 2021; 57:106283. [PMID: 33503451 DOI: 10.1016/j.ijantimicag.2021.106283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 01/20/2023]
Abstract
A major determinant of β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is the drug insensitive transpeptidase, PBP2a, encoded by mecA. Full expression of the resistance phenotype requires auxiliary factors. Two such factors, auxiliary factor A (auxA, SAUSA300_0980) and B (auxB, SAUSA300_1003), were identified in a screen against mutants with increased susceptibility to β-lactams in the MRSA strain, JE2. auxA and auxB encode transmembrane proteins, with AuxA predicted to be a transporter. Inactivation of auxA or auxB enhanced β-lactam susceptibility in community-, hospital- and livestock-associated MRSA strains without affecting PBP2a expression, peptidoglycan cross-linking or wall teichoic acid synthesis. Both mutants displayed increased susceptibility to inhibitors of lipoteichoic acid (LTA) synthesis and alanylation pathways and released LTA even in the absence of β-lactams. The β-lactam susceptibility of the aux mutants was suppressed by mutations inactivating gdpP, which was previously found to allow growth of mutants lacking the lipoteichoic synthase enzyme, LtaS. Using the Galleria mellonella infection model, enhanced survival of larvae inoculated with either auxA or auxB mutants was observed compared with the wild-type strain following treatment with amoxicillin. These results indicate that AuxA and AuxB are central for LTA stability and potential inhibitors can be tools to re-sensitize MRSA strains to β-lactams and combat MRSA infections.
Collapse
Affiliation(s)
- Kasper Mikkelsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Wanchat Sirisarn
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Ohood Alharbi
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Mohanned Alharbi
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Huayong Liu
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | | | - Katharina Mayer
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Martin Vestergaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Laura A Gallagher
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, NU Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, NU Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Tom Grunert
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| | - Guoqing Xia
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|
12
|
Leonard A, Möhlis K, Schlüter R, Taylor E, Lalk M, Methling K. Exploring metabolic adaptation of Streptococcus pneumoniae to antibiotics. J Antibiot (Tokyo) 2020; 73:441-454. [PMID: 32210362 PMCID: PMC7292801 DOI: 10.1038/s41429-020-0296-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023]
Abstract
The Gram-positive bacterium Streptococcus pneumoniae is one of the common causes of community acquired pneumonia, meningitis, and otitis media. Analyzing the metabolic adaptation toward environmental stress conditions improves our understanding of its pathophysiology and its dependency on host-derived nutrients. In this study, extra- and intracellular metabolic profiles were evaluated to investigate the impact of antimicrobial compounds targeting different pathways of the metabolome of S. pneumoniae TIGR4Δcps. For the metabolomics approach, we analyzed the complex variety of metabolites by using 1H NMR, HPLC-MS, and GC–MS as different analytical techniques. Through this combination, we detected nearly 120 metabolites. For each antimicrobial compound, individual metabolic effects were detected that often comprised global biosynthetic pathways. Cefotaxime altered amino acids metabolism and carbon metabolism. The purine and pyrimidine metabolic pathways were mostly affected by moxifloxacin treatment. The combination of cefotaxime and azithromycin intensified the stress response compared with the use of the single antibiotic. However, we observed that three cell wall metabolites were altered only by treatment with the combination of the two antibiotics. Only moxifloxacin stress-induced alternation in CDP-ribitol concentration. Teixobactin-Arg10 resulted in global changes of pneumococcal metabolism. To meet the growing requirements for new antibiotics, our metabolomics approach has shown to be a promising complement to other OMICs investigations allowing insights into the mode of action of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Anne Leonard
- Institute for Biochemistry, Metabolomics, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Kevin Möhlis
- Institute for Biochemistry, Metabolomics, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, F.-L-Jahn-Str. 15, 17489, Greifswald, Germany
| | - Edward Taylor
- University of Lincoln, School of Life Sciences, Green Lane, LN67DL, Lincoln, England, United Kingdom
| | - Michael Lalk
- Institute for Biochemistry, Metabolomics, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Karen Methling
- Institute for Biochemistry, Metabolomics, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany.
| |
Collapse
|
13
|
Abstract
In light of the rising prevalence of antimicrobial resistance (AMR) and the slow pace of new antimicrobial development, there has been increasing interest in the development of adjuvants that improve or restore the effectiveness of existing drugs. Here, we use a novel small RNA (sRNA) screening approach to identify genes whose knockdown increases ciprofloxacin (CIP) sensitivity in a resistant strain of Escherichia coli 5000 sRNA constructs were initially screened on a gyrA S83L background, ultimately leading to 30 validated genes whose disruption reduces CIP resistance. This set includes genes involved in DNA replication, repair, recombination, efflux, and other regulatory systems. Our findings increase understanding of the functional interactions of DNA Gyrase, and may aid in the development of new therapeutic approaches for combating AMR.
Collapse
|
14
|
Abstract
Dating back to the 1960s, initial studies on the staphylococcal cell wall were driven by the need to clarify the mode of action of the first antibiotics and the resistance mechanisms developed by the bacteria. During the following decades, the elucidation of the biosynthetic path and primary composition of staphylococcal cell walls was propelled by advances in microbial cell biology, specifically, the introduction of high-resolution analytical techniques and molecular genetic approaches. The field of staphylococcal cell wall gradually gained its own significance as the complexity of its chemical structure and involvement in numerous cellular processes became evident, namely its versatile role in host interactions, coordination of cell division and environmental stress signaling.This chapter includes an updated description of the anatomy of staphylococcal cell walls, paying particular attention to information from the last decade, under four headings: high-resolution analysis of the Staphylococcus aureus peptidoglycan; variations in peptidoglycan composition; genetic determinants and enzymes in cell wall synthesis; and complex functions of cell walls. The latest contributions to a more precise picture of the staphylococcal cell envelope were possible due to recently developed state-of-the-art microscopy and spectroscopy techniques and to a wide combination of -omics approaches, that are allowing to obtain a more integrative view of this highly dynamic structure.
Collapse
Affiliation(s)
- Rita Sobral
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | |
Collapse
|
15
|
Kaushik A, Kaushik M, Lather V, Dua J. Recent Review on Subclass B1 Metallo-β-lactamases Inhibitors: Sword for Antimicrobial Resistance. Curr Drug Targets 2019; 20:756-762. [DOI: 10.2174/1389450120666181217101812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023]
Abstract
An emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations,
posing a global threat to human health. The production of the metallo-β-lactamase enzyme is the
most powerful strategy of bacteria to produce resistance. An efficient way to combat this global health
threat is the development of broad/non-specific type of metallo-β-lactamase inhibitors, which can inhibit
the different isoforms of the enzyme. Till date, there are no clinically active drugs against metallo-
β-lactamase. The lack of efficient drug molecules against MBLs carrying bacteria requires continuous
research efforts to overcome the problem of multidrug-resistance bacteria. The present review will
discuss the clinically potent molecules against different variants of B1 metallo-β-lactamase.
Collapse
Affiliation(s)
| | | | - Viney Lather
- Amity institute of Pharmacy, Amity University, Noida, India
| | - J.S. Dua
- School of Pharmacy, MMU, Sadopur, Ambala, India
| |
Collapse
|
16
|
Nair S, Poonacha N, Desai S, Hiremath D, Tuppad D, Mohan T, Chikkamadaiah R, Durgaiah M, Kumar S, Channabasappa S, Vipra A, Sharma U. Restoration of sensitivity of a diverse set of drug-resistant Staphylococcus clinical strains by bactericidal protein P128. J Med Microbiol 2018; 67:296-307. [DOI: 10.1099/jmm.0.000697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sandhya Nair
- GangaGen Biotechnologies Pvt Ltd., Bangalore, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chu J, Vila-Farres X, Inoyama D, Gallardo-Macias R, Jaskowski M, Satish S, Freundlich JS, Brady SF. Human Microbiome Inspired Antibiotics with Improved β-Lactam Synergy against MDR Staphylococcus aureus. ACS Infect Dis 2018; 4:33-38. [PMID: 28845973 DOI: 10.1021/acsinfecdis.7b00056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The flippase MurJ is responsible for transporting the cell wall intermediate lipid II from the cytoplasm to the outside of the cell. While essential for the survival of bacteria, it remains an underexploited target for antibacterial therapy. The humimycin antibiotics are lipid II flippase (MurJ) inhibitors that were synthesized on the basis of bioinformatic predictions derived from secondary metabolite gene clusters found in the human microbiome. Here, we describe an SAR campaign around humimycin A that produced humimycin 17S. Compared to humimycin A, 17S is a more potent β-lactam potentiator, has a broader spectrum of activity, which now includes both methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus faecalis (VRE), and did not lead to any detectable resistance when used in combination with a β-lactam. Combinations of β-lactam and humimycin 17S provide a potentially useful long-term MRSA regimen.
Collapse
Affiliation(s)
- John Chu
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Xavier Vila-Farres
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Daigo Inoyama
- Department
of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Ricardo Gallardo-Macias
- Department
of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Mark Jaskowski
- Department
of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Shruthi Satish
- Department
of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Joel S. Freundlich
- Department
of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
18
|
El Khoury JY, Boucher N, Bergeron MG, Leprohon P, Ouellette M. Penicillin induces alterations in glutamine metabolism in Streptococcus pneumoniae. Sci Rep 2017; 7:14587. [PMID: 29109543 PMCID: PMC5673960 DOI: 10.1038/s41598-017-15035-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/19/2017] [Indexed: 11/09/2022] Open
Abstract
Penicillin is a bactericidal antibiotic that inhibits the synthesis of the peptidoglycan by targeting penicillin-binding proteins. This study aimed to assess through transcriptional profiling the stress response of S. pneumoniae strains after exposure to lethal penicillin concentrations to understand further the mode of action of penicillin. Two experimental designs (time-course and dose-response) were used for monitoring the effect of penicillin on the transcriptional profile. The expression of some genes previously shown to be modulated by penicillin was altered, including ciaRH, pstS and clpL. Genes of the glnRA and glnPQ operons were among the most downregulated genes in the three strains. These genes are involved in glutamine synthesis and uptake and LC-MS work confirmed that penicillin treatment increases the intracellular glutamine concentrations. Glutamine conferred a protective role against penicillin when added to the culture medium. Glutamine synthetase encoded by glnA catalyses the transformation of glutamate and ammonium into glutamine and its chemical inhibition by the inhibitor L-methionine sulfoximine is shown to sensitize S. pneumoniae to penicillin, including penicillin-resistant clinical isolates. In summary, a combination of RNA-seq and metabolomics revealed that penicillin interferes with glutamine metabolism suggesting strategies that could eventually be exploited for combination therapy or for reversal of resistance.
Collapse
Affiliation(s)
- Jessica Y El Khoury
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Nancy Boucher
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Michel G Bergeron
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
19
|
Melander RJ, Melander C. The Challenge of Overcoming Antibiotic Resistance: An Adjuvant Approach? ACS Infect Dis 2017; 3:559-563. [PMID: 28548487 DOI: 10.1021/acsinfecdis.7b00071] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antibiotic resistance is one of the greatest current threats to human health, and without significant action we face the chilling prospect of a world without effective antibiotics. Although continued effort toward the development of new antibiotics, particularly those with novel mechanisms of action, remains crucial, this alone probably will not be enough to prevail, and it is imperative that additional approaches are also explored. One such approach is the identification of adjuvants that augment the activity of current antibiotics. This approach has the potential to render an antibiotic against which bacteria have developed resistance once again effective, to broaden the spectrum of an antibiotic, and to lower the required dose of an antibiotic. In this viewpoint we discuss some of the advantages and disadvantages of the use of adjuvants, and describe various approaches to their identification.
Collapse
Affiliation(s)
- Roberta J. Melander
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Christian Melander
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
20
|
Bacteriological profiling of diphenylureas as a novel class of antibiotics against methicillin-resistant Staphylococcus aureus. PLoS One 2017; 12:e0182821. [PMID: 28797064 PMCID: PMC5552351 DOI: 10.1371/journal.pone.0182821] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Bacterial resistance to antibiotics remains an imposing global public health challenge. Of the most serious pathogens, methicillin-resistant Staphylococcus aureus (MRSA) is problematic given strains have emerged that exhibit resistance to several antibiotic classes including β-lactams and agents of last resort such as vancomycin. New antibacterial agents composed of unique chemical scaffolds are needed to counter this public health challenge. The present study examines two synthetic diphenylurea compounds 1 and 2 that inhibit growth of clinically-relevant isolates of MRSA at concentrations as low as 4 µg/mL and are non-toxic to human colorectal cells at concentrations up to 128 μg/mL. Both compounds exhibit rapid bactericidal activity, completely eliminating a high inoculum of MRSA within four hours. MRSA mutants exhibiting resistance to 1 and 2 could not be isolated, indicating a low likelihood of rapid resistance emerging to these compounds. Bacterial cytological profiling revealed the diphenylureas exert their antibacterial activity by targeting bacterial cell wall synthesis. Both compounds demonstrate the ability to resensitize vancomycin-resistant Staphylococcus aureus to the effect of vancomycin. The present study lays the foundation for further investigation and development of diphenylurea compounds as a new class of antibacterial agents.
Collapse
|
21
|
Mandal M, Tan Z, Madsen-Duggan C, Buevich AV, Caldwell JP, Dejesus R, Flattery A, Garlisi CG, Gill C, Ha SN, Ho G, Koseoglu S, Labroli M, Basu K, Lee SH, Liang L, Liu J, Mayhood T, McGuinness D, McLaren DG, Wen X, Parmee E, Rindgen D, Roemer T, Sheth P, Tawa P, Tata J, Yang C, Yang SW, Xiao L, Wang H, Tan C, Tang H, Walsh P, Walsh E, Wu J, Su J. Can We Make Small Molecules Lean? Optimization of a Highly Lipophilic TarO Inhibitor. J Med Chem 2017; 60:3851-3865. [DOI: 10.1021/acs.jmedchem.7b00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mihirbaran Mandal
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Zheng Tan
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Christina Madsen-Duggan
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Alexei V. Buevich
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - John P. Caldwell
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Reynalda Dejesus
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Amy Flattery
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Charles G. Garlisi
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Charles Gill
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Sookhee Nicole Ha
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ginny Ho
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Sandra Koseoglu
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Marc Labroli
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Kallol Basu
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Sang Ho Lee
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lianzhu Liang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jenny Liu
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Todd Mayhood
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Debra McGuinness
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David G. McLaren
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xiujuan Wen
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Emma Parmee
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Diane Rindgen
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Terry Roemer
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Payal Sheth
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Tawa
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - James Tata
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Christine Yang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shu-Wei Yang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Li Xiao
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Hao Wang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Christopher Tan
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Haifeng Tang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Walsh
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Erika Walsh
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jin Wu
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jing Su
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
22
|
He Y, Hu Z, Sun W, Li Q, Li XN, Zhu H, Huang J, Liu J, Wang J, Xue Y, Zhang Y. Spiroaspertrione A, a Bridged Spirocyclic Meroterpenoid, as a Potent Potentiator of Oxacillin against Methicillin-Resistant Staphylococcus aureus from Aspergillus sp. TJ23. J Org Chem 2017; 82:3125-3131. [DOI: 10.1021/acs.joc.7b00056] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan He
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengxi Hu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Li
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Nian Li
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hucheng Zhu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinfeng Huang
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junjun Liu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianping Wang
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongbo Xue
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
23
|
Quantitation of wall teichoic acid in Staphylococcus aureus by direct measurement of monomeric units using LC-MS/MS. Anal Biochem 2017; 518:9-15. [DOI: 10.1016/j.ab.2016.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/19/2016] [Accepted: 10/30/2016] [Indexed: 11/24/2022]
|
24
|
Antibacterial New Target Discovery: Sentinel Examples, Strategies, and Surveying Success. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Lee SH, Wang H, Labroli M, Koseoglu S, Zuck P, Mayhood T, Gill C, Mann P, Sher X, Ha S, Yang SW, Mandal M, Yang C, Liang L, Tan Z, Tawa P, Hou Y, Kuvelkar R, DeVito K, Wen X, Xiao J, Batchlett M, Balibar CJ, Liu J, Xiao J, Murgolo N, Garlisi CG, Sheth PR, Flattery A, Su J, Tan C, Roemer T. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci Transl Med 2016; 8:329ra32. [PMID: 26962156 DOI: 10.1126/scitranslmed.aad7364] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current β-lactam antibiotics and created an urgent need for new treatment options. We report an S. aureus phenotypic screening strategy involving chemical suppression of the growth inhibitory consequences of depleting late-stage wall teichoic acid biosynthesis. This enabled us to identify early-stage pathway-specific inhibitors of wall teichoic acid biosynthesis predicted to be chemically synergistic with β-lactams. We demonstrated by genetic and biochemical means that each of the new chemical series discovered, herein named tarocin A and tarocin B, inhibited the first step in wall teichoic acid biosynthesis (TarO). Tarocins do not have intrinsic bioactivity but rather demonstrated potent bactericidal synergy in combination with broad-spectrum β-lactam antibiotics against diverse clinical isolates of methicillin-resistant staphylococci as well as robust efficacy in a murine infection model of MRSA. Tarocins and other inhibitors of wall teichoic acid biosynthesis may provide a rational strategy to develop Gram-positive bactericidal β-lactam combination agents active against methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Sang Ho Lee
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Hao Wang
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Marc Labroli
- Merck Research Laboratories, West Point, PA 19486, USA
| | | | - Paul Zuck
- Merck Research Laboratories, West Point, PA 19486, USA
| | - Todd Mayhood
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Charles Gill
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Paul Mann
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Xinwei Sher
- Merck Research Laboratories, Boston, MA 02115, USA
| | - Sookhee Ha
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Shu-Wei Yang
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Mihir Mandal
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | | | - Lianzhu Liang
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Zheng Tan
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Paul Tawa
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Yan Hou
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | | | | | - Xiujuan Wen
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Jing Xiao
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | | | | | - Jenny Liu
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Jianying Xiao
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | | | | | - Payal R Sheth
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Amy Flattery
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Jing Su
- Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| | | | - Terry Roemer
- Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| |
Collapse
|
26
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
27
|
Yang SW, Pan J, Yang C, Labroli M, Pan W, Caldwell J, Ha S, Koseoglu S, Xiao JC, Mayhood T, Sheth PR, Garlisi CG, Wu J, Lee SH, Wang H, Tan CM, Roemer T, Su J. Benzimidazole analogs as WTA biosynthesis inhibitors targeting methicillin resistant Staphylococcus aureus. Bioorg Med Chem Lett 2016; 26:4743-4747. [DOI: 10.1016/j.bmcl.2016.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
28
|
Labroli MA, Caldwell JP, Yang C, Lee SH, Wang H, Koseoglu S, Mann P, Yang SW, Xiao J, Garlisi CG, Tan C, Roemer T, Su J. Discovery of potent wall teichoic acid early stage inhibitors. Bioorg Med Chem Lett 2016; 26:3999-4002. [DOI: 10.1016/j.bmcl.2016.06.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
29
|
Czarny TL, Brown ED. A Small-Molecule Screening Platform for the Discovery of Inhibitors of Undecaprenyl Diphosphate Synthase. ACS Infect Dis 2016; 2:489-99. [PMID: 27626101 DOI: 10.1021/acsinfecdis.6b00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The bacterial cell wall has long been a celebrated target for antibacterial drug discovery due to its critical nature in bacteria and absence in mammalian systems. At the heart of the cell wall biosynthetic pathway lies undecaprenyl phosphate (Und-P), the lipid-linked carrier upon which the bacterial cell wall is built. This study exploits recent insights into the link between late-stage wall teichoic acid inhibition and Und-P production, in Gram-positive organisms, to develop a cell-based small-molecule screening platform that enriches for inhibitors of undecaprenyl diphosphate synthase (UppS). Screening a chemical collection of 142,000 small molecules resulted in the identification of 6 new inhibitors of UppS. To date, inhibitors of UppS have generally shown off-target effects on membrane potential due to their physical-chemical characteristics. We demonstrate that MAC-0547630, one of the six inhibitors identified, exhibits selective, nanomolar inhibition against UppS without off-target effects on membrane potential. Such characteristics make it a unique chemical probe for exploring the inhibition of UppS in bacterial cell systems.
Collapse
Affiliation(s)
- Tomasz L. Czarny
- Department
of Biochemistry and Biomedical Sciences and ‡Michael G. DeGroote Institute of
Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D. Brown
- Department
of Biochemistry and Biomedical Sciences and ‡Michael G. DeGroote Institute of
Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
30
|
Bouley R, Ding D, Peng Z, Bastian M, Lastochkin E, Song W, Suckow MA, Schroeder VA, Wolter WR, Mobashery S, Chang M. Structure-Activity Relationship for the 4(3H)-Quinazolinone Antibacterials. J Med Chem 2016; 59:5011-21. [PMID: 27088777 PMCID: PMC4885108 DOI: 10.1021/acs.jmedchem.6b00372] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
We recently reported on the discovery
of a novel antibacterial
(2) with a 4(3H)-quinazolinone core.
This discovery was made by in silico screening of 1.2 million compounds
for binding to a penicillin-binding protein and the subsequent demonstration
of antibacterial activity against Staphylococcus aureus. The first structure–activity relationship for this antibacterial
scaffold is explored in this report with evaluation of 77 variants
of the structural class. Eleven promising compounds were further evaluated
for in vitro toxicity, pharmacokinetics,
and efficacy in a mouse peritonitis model of infection, which led
to the discovery of compound 27. This new quinazolinone
has potent activity against methicillin-resistant (MRSA) strains,
low clearance, oral bioavailability and shows efficacy in a mouse
neutropenic thigh infection model.
Collapse
Affiliation(s)
- Renee Bouley
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Derong Ding
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Zhihong Peng
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Maria Bastian
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Elena Lastochkin
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Wei Song
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Mark A Suckow
- Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Valerie A Schroeder
- Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - William R Wolter
- Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Mann PA, Müller A, Wolff KA, Fischmann T, Wang H, Reed P, Hou Y, Li W, Müller CE, Xiao J, Murgolo N, Sher X, Mayhood T, Sheth PR, Mirza A, Labroli M, Xiao L, McCoy M, Gill CJ, Pinho MG, Schneider T, Roemer T. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets. PLoS Pathog 2016; 12:e1005585. [PMID: 27144276 PMCID: PMC4856313 DOI: 10.1371/journal.ppat.1005585] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation. Staphylococcus aureus and Staphylococcus epidermidis cause life-threatening infections that are commonly acquired in hospitals as well as the community and remain difficult to treat with current antibiotics. In part, this is due to the emergence of methicillin-resistant S. aureus and S. epidermidis (MRSA and MRSE), which exhibit broad resistance to β-lactams such as penicillin and other members of this important founding class of antibiotics. Compounding this problem, Staphylococci commonly colonize the surface of catheters and other medical devices, forming bacterial communities that are intrinsically resistant to antibiotics. Here we functionally characterize a family of 2-epimerases, named MnaA and Cap5P, that we demonstrate by genetic, biochemical, and X-ray crystallography means are essential for wall teichoic acid biosynthesis and that upon their genetic inactivation render methicillin-resistant Staphylococci unable to form biofilms as well as broadly hypersusceptible to β-lactam antibiotics both in vitro and in a host infection setting. WTA 2-epimerases therefore constitute a novel class of methicillin-resistant Staphylococcal drug targets.
Collapse
Affiliation(s)
- Paul A. Mann
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Kerstin A. Wolff
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Thierry Fischmann
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Hao Wang
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Patricia Reed
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Yan Hou
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Wenjin Li
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry, University of Bonn, Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry, University of Bonn, Bonn, Germany
| | - Jianying Xiao
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Nicholas Murgolo
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Xinwei Sher
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Todd Mayhood
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Payal R. Sheth
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Asra Mirza
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Marc Labroli
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Li Xiao
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Mark McCoy
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Charles J. Gill
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Mariana G. Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Terry Roemer
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
Genetic strategies have yet to come into their own as tools for antibiotic development. While holding a lot of initial promise, they have only recently started to bear fruit in the quest for new drug targets. An ever-increasing body of knowledge is showing that genetics can lead to significant improvements in the success and efficiency of drug discovery. Techniques such as high-frequency transposon mutagenesis and expression modulation have matured and have been applied successfully not only to the identification and characterization of new targets, but also to their validation as tractable weaknesses of bacteria. Past experience shows that choosing targets must not rely on gene essentiality alone, but rather needs to incorporate knowledge of the system as a whole. The ability to manipulate genes and their expression is key to ensuring that we understand the entire set of processes that are affected by drug treatment. Focusing on exacerbating these perturbations, together with the identification of new targets to which resistance has not yet occurred--both enabled by genetic approaches--may point us toward the successful development of new combination therapies engineered based on underlying biology.
Collapse
|
33
|
|
34
|
The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A. Antimicrob Agents Chemother 2015; 60:1656-66. [PMID: 26711778 DOI: 10.1128/aac.02333-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
Expression of the methicillin-resistant S. aureus (MRSA) phenotype results from the expression of the extra penicillin-binding protein 2A (PBP2A), which is encoded by mecA and acquired horizontally on part of the SCCmec cassette. PBP2A can catalyze dd-transpeptidation of peptidoglycan (PG) because of its low affinity for β-lactam antibiotics and can functionally cooperate with the PBP2 transglycosylase in the biosynthesis of PG. Here, we focus upon the role of the membrane-bound PrsA foldase protein as a regulator of β-lactam resistance expression. Deletion of prsA altered oxacillin resistance in three different SCCmec backgrounds and, more importantly, caused a decrease in PBP2A membrane amounts without affecting mecA mRNA levels. The N- and C-terminal domains of PrsA were found to be critical features for PBP2A protein membrane levels and oxacillin resistance. We propose that PrsA has a role in posttranscriptional maturation of PBP2A, possibly in the export and/or folding of newly synthesized PBP2A. This additional level of control in the expression of the mecA-dependent MRSA phenotype constitutes an opportunity to expand the strategies to design anti-infective agents.
Collapse
|
35
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Baer CE, Rubin EJ, Sassetti CM. New insights into TB physiology suggest untapped therapeutic opportunities. Immunol Rev 2015; 264:327-43. [PMID: 25703570 DOI: 10.1111/imr.12267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current regimens used to treat tuberculosis are largely comprised of serendipitously discovered drugs that are combined based on clinical experience. Despite curing millions, these drug regimens are limited by the long course of therapy, the emergence of resistance, and the persistent tissue damage that remains after treatment. The last two decades have produced only a single new drug but have represented a renaissance in our understanding of the physiology of tuberculosis infection. The advent of mycobacterial genetics, sophisticated immunological methods, and imaging technologies have transformed our understanding of bacterial physiology as well as the contribution of the host response to disease outcome. Specific alterations in bacterial metabolism, heterogeneity in bacterial state, and drug penetration all limit the effectiveness of antimicrobial therapy. This review summarizes these new biological insights and discusses strategies to exploit them for the rational development of more effective therapeutics. Three general strategies are discussed. First, our emerging insight into bacterial physiology suggests new pathways that might be targeted to accelerate therapy. Second, we explore whether the concept of genetic synergy can be used to design effective combination therapies. Finally, we outline possible approaches to modulate the host response to accentuate antibiotic efficacy. These biology-driven strategies promise to produce more effective therapies.
Collapse
Affiliation(s)
- Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | |
Collapse
|
37
|
Gonzales PR, Pesesky MW, Bouley R, Ballard A, Biddy BA, Suckow MA, Wolter WR, Schroeder VA, Burnham CAD, Mobashery S, Chang M, Dantas G. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat Chem Biol 2015; 11:855-61. [PMID: 26368589 PMCID: PMC4618095 DOI: 10.1038/nchembio.1911] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent multidrug-resistant pathogens worldwide, exhibiting increasing resistance to the latest antibiotic therapies. Here we show that the triple β-lactam combination meropenem-piperacillin-tazobactam (ME/PI/TZ) acts synergistically and is bactericidal against MRSA subspecies N315 and 72 other clinical MRSA isolates in vitro and clears MRSA N315 infection in a mouse model. ME/PI/TZ suppresses evolution of resistance in MRSA via reciprocal collateral sensitivity of its constituents. We demonstrate that these activities also extend to other carbapenem-penicillin-β-lactamase inhibitor combinations. ME/PI/TZ circumvents the tight regulation of the mec and bla operons in MRSA, the basis for inducible resistance to β-lactam antibiotics. Furthermore, ME/PI/TZ subverts the function of penicillin-binding protein-2a (PBP2a) via allostery, which we propose as the mechanism for both synergy and collateral sensitivity. Showing in vivo activity similar to that of linezolid, ME/PI/TZ demonstrates that combinations of older β-lactam antibiotics could be effective against MRSA infections in humans.
Collapse
Affiliation(s)
- Patrick R. Gonzales
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Mitchell W. Pesesky
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Renee Bouley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Anna Ballard
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Brent A. Biddy
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Mark A. Suckow
- Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - William R. Wolter
- Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Valerie A. Schroeder
- Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gautam Dantas
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
38
|
Balibar CJ, Roemer T. Yeast: a microbe with macro-implications to antimicrobial drug discovery. Brief Funct Genomics 2015; 15:147-54. [PMID: 26443612 DOI: 10.1093/bfgp/elv038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Paramount to any rational discovery of new antibiotics displaying novel mechanisms of action is a deep knowledge of the genetic basis of microbial growth, division and virulence. The bakers' yeast,Saccharomyces cerevisiae, illustrates the highest understanding of the genetic underpinnings of microbial life, and from this framework, a systems biology paradigm has evolved, begging to be emulated in antibacterial discovery. Here, we review landmark events in the history of yeast genomics that provide this new foundation for antibacterial drug discovery.
Collapse
|
39
|
Abstract
The dramatic rise in microbial drug resistance in recent years has led to ongoing searches for novel drugs to add to the armory against infectious disease. Nevertheless, a paucity of new antibacterial drugs in discovery and development pipelines using traditional approaches has prompted a variety of unconventional and disruptive strategies for antibacterial drug discovery. Herein, we review recent nontraditional approaches that have been piloted for early drug discovery efforts. These unique methodologies open new avenues for finding the next generation of antimicrobials.
Collapse
Affiliation(s)
- Maya A Farha
- M.G. DeGroote Institute for Infectious Disease Research, and Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| | - Eric D Brown
- M.G. DeGroote Institute for Infectious Disease Research, and Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| |
Collapse
|
40
|
Fishovitz J, Taghizadeh N, Fisher JF, Chang M, Mobashery S. The Tipper-Strominger Hypothesis and Triggering of Allostery in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus (MRSA). J Am Chem Soc 2015; 137:6500-5. [PMID: 25964995 DOI: 10.1021/jacs.5b01374] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transpeptidases involved in the synthesis of the bacterial cell wall (also known as penicillin-binding proteins, PBPs) have evolved to bind the acyl-D-Ala-D-Ala segment of the stem peptide of the nascent peptidoglycan for the physiologically important cross-linking of the cell wall. The Tipper-Strominger hypothesis stipulates that β-lactam antibiotics mimic the acyl-D-Ala-D-Ala moiety of the stem and, thus, are recognized by the PBPs with bactericidal consequences. We document that this mimicry exists also at the allosteric site of PBP2a of methicillin-resistant Staphylococcus aureus (MRSA). Interactions of different classes of β-lactam antibiotics, as mimics of the acyl-D-Ala-D-Ala moiety at the allosteric site, lead to a conformational change, across a distance of 60 Å to the active site. We directly visualize this change using an environmentally sensitive fluorescent probe affixed to the protein loops that frame the active site. This conformational mobility, documented in real time, allows antibiotic access to the active site of PBP2a. Furthermore, we document that this allosteric trigger enables synergy between two different β-lactam antibiotics, wherein occupancy at the allosteric site by one facilitates occupancy by a second at the transpeptidase catalytic site, thus lowering the minimal-inhibitory concentration. This synergy has important implications for the mitigation of facile emergence of resistance to these antibiotics by MRSA.
Collapse
Affiliation(s)
- Jennifer Fishovitz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Negin Taghizadeh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
41
|
Epidemiology of Methicillin-Resistant Staphylococcus aureus Isolated From Health Care Providers in Mofid Children Hospital. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2015. [DOI: 10.5812/pedinfect.16458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Bouley R, Kumarasiri M, Peng Z, Otero LH, Song W, Suckow MA, Schroeder VA, Wolter WR, Lastochkin E, Antunes NT, Pi H, Vakulenko S, Hermoso JA, Chang M, Mobashery S. Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one. J Am Chem Soc 2015; 137:1738-41. [PMID: 25629446 DOI: 10.1021/jacs.5b00056] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the face of the clinical challenge posed by resistant bacteria, the present needs for novel classes of antibiotics are genuine. In silico docking and screening, followed by chemical synthesis of a library of quinazolinones, led to the discovery of (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one (compound 2) as an antibiotic effective in vivo against methicillin-resistant Staphylococcus aureus (MRSA). This antibiotic impairs cell-wall biosynthesis as documented by functional assays, showing binding of 2 to penicillin-binding protein (PBP) 2a. We document that the antibiotic also inhibits PBP1 of S. aureus, indicating a broad targeting of structurally similar PBPs by this antibiotic. This class of antibiotics holds promise in fighting MRSA infections.
Collapse
Affiliation(s)
- Renee Bouley
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Meredith TC, Wang H, Beaulieu P, Gründling A, Roemer T. Harnessing the power of transposon mutagenesis for antibacterial target identification and evaluation. Mob Genet Elements 2014; 2:171-178. [PMID: 23094235 PMCID: PMC3469428 DOI: 10.4161/mge.21647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Determining the mechanism of action of bacterial growth inhibitors can be a formidable challenge in the progression of small molecules into antibacterial therapies. To help address this bottleneck, we have developed a robust transposon mutagenesis system using a suite of outward facing promoters in order to generate a comprehensive range of expression genotypes in Staphylococcus aureus from which to select defined compound-resistant transposon insertion mutants. Resistance stemming from either gene or operon over/under-expression, in addition to deletion, provides insight into multiple factors that contribute to a compound's observed activity, including means of cell envelope penetration and susceptibility to efflux. By profiling the entire resistome, the suitability of an antibacterial target itself is also evaluated, sometimes with unanticipated results. We herein show that for the staphylococcal signal peptidase (SpsB) inhibitors, modulating expression of lipoteichoic acid synthase (LtaS) confers up to a 100-fold increase in the minimal inhibitory concentration. As similarly efficient transposition systems are or will become established in other bacteria and cell types, we discuss the utility, limitations and future promise of Tnp mutagenesis for determining both a compound's mechanism of action and in the evaluation of novel targets.
Collapse
Affiliation(s)
- Timothy C Meredith
- Infectious Diseases Division; Merck Frosst Center for Therapeutic Research; Kirkland, Quebec, Canada
| | | | | | | | | |
Collapse
|
44
|
Fishovitz J, Hermoso JA, Chang M, Mobashery S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life 2014; 66:572-7. [PMID: 25044998 DOI: 10.1002/iub.1289] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/01/2014] [Indexed: 01/31/2023]
Abstract
High-level resistance to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is due to expression of penicillin-binding protein 2a (PBP2a), a transpeptidase that catalyzes cell-wall crosslinking in the face of the challenge by β-lactam antibiotics. The activity of this protein is regulated by allostery at a site 60 Å distant from the active site, where crosslinking of cell wall takes place. This review discusses the state of knowledge on this important enzyme of cell-wall biosynthesis in MRSA.
Collapse
Affiliation(s)
- Jennifer Fishovitz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | | | | | | |
Collapse
|
45
|
β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Chemother 2014; 58:4593-603. [PMID: 24867990 DOI: 10.1128/aac.02802-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has acquired the mecA gene encoding a peptidoglycan transpeptidase, penicillin binding protein 2a (PBP2a), which has decreased affinity for β-lactams. Quickly spreading and highly virulent community-acquired (CA) MRSA strains recently emerged as a frequent cause of infection in individuals without exposure to the health care system. In this study, we found that the inactivation of the components of the ClpXP protease substantially increased the β-lactam resistance level of a CA-MRSA USA300 strain, suggesting that the proteolytic activity of ClpXP controls one or more pathways modulating β-lactam resistance. These pathways do not involve the control of mecA expression, as the cellular levels of PBP2a were unaltered in the clp mutants. An analysis of the cell envelope properties of the clpX and clpP mutants revealed a number of distinct phenotypes that may contribute to the enhanced β-lactam tolerance. Both mutants displayed significantly thicker cell walls, increased peptidoglycan cross-linking, and altered composition of monomeric muropeptide species compared to those of the wild types. Moreover, changes in Sle1-mediated peptidoglycan hydrolysis and altered processing of the major autolysin Atl were observed in the clp mutants. In conclusion, the results presented here point to an important role for the ClpXP protease in controlling cell wall metabolism and add novel insights into the molecular factors that determine strain-dependent β-lactam resistance.
Collapse
|
46
|
Designing analogs of ticlopidine, a wall teichoic acid inhibitor, to avoid formation of its oxidative metabolites. Bioorg Med Chem Lett 2014; 24:905-10. [DOI: 10.1016/j.bmcl.2013.12.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 11/17/2022]
|
47
|
Mann PA, Müller A, Xiao L, Pereira PM, Yang C, Ho Lee S, Wang H, Trzeciak J, Schneeweis J, dos Santos MM, Murgolo N, She X, Gill C, Balibar CJ, Labroli M, Su J, Flattery A, Sherborne B, Maier R, Tan CM, Black T, Önder K, Kargman S, Monsma FJ, Pinho MG, Schneider T, Roemer T. Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem Biol 2013; 8:2442-51. [PMID: 23957438 DOI: 10.1021/cb400487f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Modern medicine is founded on the discovery of penicillin and subsequent small molecules that inhibit bacterial peptidoglycan (PG) and cell wall synthesis. However, the discovery of new chemically and mechanistically distinct classes of PG inhibitors has become exceedingly rare, prompting speculation that intracellular enzymes involved in PG precursor synthesis are not 'druggable' targets. Here, we describe a β-lactam potentiation screen to identify small molecules that augment the activity of β-lactams against methicillin-resistant Staphylococcus aureus (MRSA) and mechanistically characterize a compound resulting from this screen, which we have named murgocil. We provide extensive genetic, biochemical, and structural modeling data demonstrating both in vitro and in whole cells that murgocil specifically inhibits the intracellular membrane-associated glycosyltransferase, MurG, which synthesizes the lipid II PG substrate that penicillin binding proteins (PBPs) polymerize and cross-link into the cell wall. Further, we demonstrate that the chemical synergy and cidality achieved between murgocil and the β-lactam imipenem is mediated through MurG dependent localization of PBP2 to the division septum. Collectively, these data validate our approach to rationally identify new target-specific bioactive β-lactam potentiation agents and demonstrate that murgocil now serves as a highly selective and potent chemical probe to assist our understanding of PG biosynthesis and cell wall biogenesis across Staphylococcal species.
Collapse
Affiliation(s)
- Paul A. Mann
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Anna Müller
- Institute
of Medical Microbiology, Immunology and Parasitology—Pharmaceutical
Microbiology Section, University of Bonn, Bonn, Germany
| | - Li Xiao
- Computational
Chemistry, Global Structure Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Pedro M. Pereira
- Laboratory
of Bacterial Cell Biology, Instituto de Tecnologia Química
e Biológica, Universidade Nova de Lisboa, Avenida da República, 2781-901 Oeiras, Portugal
| | - Christine Yang
- Medicinal
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Sang Ho Lee
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Hao Wang
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Joanna Trzeciak
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Jonathan Schneeweis
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Margarida Moreira dos Santos
- Laboratory
of Bacterial Cell Biology, Instituto de Tecnologia Química
e Biológica, Universidade Nova de Lisboa, Avenida da República, 2781-901 Oeiras, Portugal
| | - Nicholas Murgolo
- Research
Solutions, Bioinformatics, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Xinwei She
- Informatics
IT, Merck Inc., Boston, Massachusetts 02110, United States
| | - Charles Gill
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Carl J. Balibar
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Marc Labroli
- Medicinal
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Jing Su
- Medicinal
Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Amy Flattery
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Brad Sherborne
- Computational
Chemistry, Global Structure Chemistry, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Richard Maier
- Procomcure Biotech GmbH, Krems a.d. Donau, Austria
- Division of Molecular
Dermatology, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Christopher M. Tan
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Todd Black
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Kamil Önder
- Procomcure Biotech GmbH, Krems a.d. Donau, Austria
- Division of Molecular
Dermatology, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Stacia Kargman
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Frederick J Monsma
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| | - Mariana G. Pinho
- Laboratory
of Bacterial Cell Biology, Instituto de Tecnologia Química
e Biológica, Universidade Nova de Lisboa, Avenida da República, 2781-901 Oeiras, Portugal
| | - Tanja Schneider
- Institute
of Medical Microbiology, Immunology and Parasitology—Pharmaceutical
Microbiology Section, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site
Bonn-Cologne, Bonn, Germany
| | - Terry Roemer
- Infectious
Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
48
|
Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-López C, Kumarasiri M, Lastochkin E, Fishovitz J, Dawley M, Hesek D, Lee M, Johnson JW, Fisher JF, Chang M, Mobashery S, Hermoso JA. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc Natl Acad Sci U S A 2013; 110:16808-13. [PMID: 24085846 PMCID: PMC3800995 DOI: 10.1073/pnas.1300118110] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain--a remarkable 60 Å distant from the DD-transpeptidase active site--discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design.
Collapse
Affiliation(s)
- Lisandro H. Otero
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Cientificas, 28006 Madrid, Spain; and
| | - Alzoray Rojas-Altuve
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Cientificas, 28006 Madrid, Spain; and
| | - Leticia I. Llarrull
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Cesar Carrasco-López
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Cientificas, 28006 Madrid, Spain; and
| | - Malika Kumarasiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Elena Lastochkin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jennifer Fishovitz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Matthew Dawley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jarrod W. Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Juan A. Hermoso
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Cientificas, 28006 Madrid, Spain; and
| |
Collapse
|
49
|
Ruane KM, Lloyd AJ, Fülöp V, Dowson CG, Barreteau H, Boniface A, Dementin S, Blanot D, Mengin-Lecreulx D, Gobec S, Dessen A, Roper DI. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex. J Biol Chem 2013; 288:33439-48. [PMID: 24064214 PMCID: PMC3829189 DOI: 10.1074/jbc.m113.508135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of the peptidoglycan stem pentapeptide requires the insertion of both l and d amino acids by the ATP-dependent ligase enzymes MurC, -D, -E, and -F. The stereochemical control of the third position amino acid in the pentapeptide is crucial to maintain the fidelity of later biosynthetic steps contributing to cell morphology, antibiotic resistance, and pathogenesis. Here we determined the x-ray crystal structure of Staphylococcus aureus MurE UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.7) at 1.8 Å resolution in the presence of ADP and the reaction product, UDP-MurNAc-l-Ala-γ-d-Glu-l-Lys. This structure provides for the first time a molecular understanding of how this Gram-positive enzyme discriminates between l-lysine and d,l-diaminopimelic acid, the predominant amino acid that replaces l-lysine in Gram-negative peptidoglycan. Despite the presence of a consensus sequence previously implicated in the selection of the third position residue in the stem pentapeptide in S. aureus MurE, the structure shows that only part of this sequence is involved in the selection of l-lysine. Instead, other parts of the protein contribute substrate-selecting residues, resulting in a lysine-binding pocket based on charge characteristics. Despite the absolute specificity for l-lysine, S. aureus MurE binds this substrate relatively poorly. In vivo analysis and metabolomic data reveal that this is compensated for by high cytoplasmic l-lysine concentrations. Therefore, both metabolic and structural constraints maintain the structural integrity of the staphylococcal peptidoglycan. This study provides a novel focus for S. aureus-directed antimicrobials based on dual targeting of essential amino acid biogenesis and its linkage to cell wall assembly.
Collapse
Affiliation(s)
- Karen M Ruane
- From the School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC, Murgolo N, She X, Kales S, Liang L, Liu J, Wu J, Santa Maria J, Su J, Pan J, Hailey J, Mcguinness D, Tan CM, Flattery A, Walker S, Black T, Roemer T. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. ACTA ACUST UNITED AC 2013; 20:272-84. [PMID: 23438756 DOI: 10.1016/j.chembiol.2012.11.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/26/2012] [Accepted: 11/30/2012] [Indexed: 12/31/2022]
Abstract
Innovative strategies are needed to combat drug resistance associated with methicillin-resistant Staphylococcus aureus (MRSA). Here, we investigate the potential of wall teichoic acid (WTA) biosynthesis inhibitors as combination agents to restore β-lactam efficacy against MRSA. Performing a whole-cell pathway-based screen, we identified a series of WTA inhibitors (WTAIs) targeting the WTA transporter protein, TarG. Whole-genome sequencing of WTAI-resistant isolates across two methicillin-resistant Staphylococci spp. revealed TarG as their common target, as well as a broad assortment of drug-resistant bypass mutants mapping to earlier steps of WTA biosynthesis. Extensive in vitro microbiological analysis and animal infection studies provide strong genetic and pharmacological evidence of the potential effectiveness of WTAIs as anti-MRSA β-lactam combination agents. This work also highlights the emerging role of whole-genome sequencing in antibiotic mode-of-action and resistance studies.
Collapse
Affiliation(s)
- Hao Wang
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|