1
|
Yang F, Tan J, Fang Y, Chen G, Zhang Y, Hu Q, Han W, Liu Y, Fu B, Jing Z, Li W. The Multiplicity of Infection of Recombinant Vaccinia Virus Expressing the T7 RNA Polymerase Determines the Rescue Efficiency of Vesicular Stomatitis Virus. Front Microbiol 2022; 13:846426. [PMID: 35444622 PMCID: PMC9014117 DOI: 10.3389/fmicb.2022.846426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Vesicular stomatitis virus (VSV) has a wide range of cell tropism, making it a prototype of studying the negative-strand RNA virus (NSRV), including virus–host interactions and vaccine development. Although VSV rescue systems have been progressively optimized throughout time, the T7-based expression system is the most commonly utilized to rescue VSV. However, it remains a significant barrier for many labs. In our study, we found that rescue VSV’s efficiency is associated with the various multiplicities of infection (MOIs) of recombinant vaccinia virus expressing the T7 RNA polymerase (vTF-7.3). It works at maximum efficiency while the MOI of vTF-7.3 is 5, which is analyzed by quantitative PCR, Western blot, and flow cytometry, compared to the lowest rescue level with MOI of 1. Meanwhile, our data also suggest that purification of vTF-7.3 prior to transfection is a prerequisite for VSV rescue. Overall, our study reveals for the first time a precise correlation between vTF-7.3 and rescue efficiency, which may aid in resolving the uncertainties in the quest to build the VSV reverse genetic system.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jinlong Tan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongzhi Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Wuweiyi Han
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yongsheng Liu
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weike Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Therapeutic strategies to target the Ebola virus life cycle. Nat Rev Microbiol 2019; 17:593-606. [DOI: 10.1038/s41579-019-0233-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
|
3
|
Fanunza E, Frau A, Corona A, Tramontano E. Antiviral Agents Against Ebola Virus Infection: Repositioning Old Drugs and Finding Novel Small Molecules. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018; 51:135-173. [PMID: 32287476 PMCID: PMC7112331 DOI: 10.1016/bs.armc.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ebola virus (EBOV) causes a deadly hemorrhagic syndrome in humans with mortality rate up to 90%. First reported in Zaire in 1976, EBOV outbreaks showed a fluctuating trend during time and fora long period it was considered a tragic disease confined to the isolated regions of the African continent where the EBOV fear was perpetuated among the poor communities. The extreme severity of the recent 2014-16 EBOV outbreak in terms of fatality rate and rapid spread out of Africa led to the understanding that EBOV is a global health risk and highlights the necessity to find countermeasures against it. In the recent years, several small molecules have been shown to display in vitro and in vivo efficacy against EBOV and some of them have advanced into clinical trials. In addition, also existing drugs have been tested for their anti-EBOV activity and were shown to be promising candidates. However, despite the constant effort addressed to identify anti-EBOV therapeutics, no approved drugs are available against EBOV yet. In this chapter, we describe the main EBOV life cycle steps, providing a detailed picture of the druggable viral and host targets that have been explored so far by different technologies. We then summarize the small molecules, nucleic acid oligomers, and antibody-based therapies reported to have an effect either in in silico, or in biochemical and cell-based assays or in animal models and clinical trials, listing them according to their demonstrated or putative mechanism of action.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
4
|
Gumpper RH, Li W, Castañeda CH, Scuderi MJ, Bashkin JK, Luo M. A Polyamide Inhibits Replication of Vesicular Stomatitis Virus by Targeting RNA in the Nucleocapsid. J Virol 2018; 92:e00146-18. [PMID: 29437970 PMCID: PMC5874401 DOI: 10.1128/jvi.00146-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022] Open
Abstract
Polyamides have been shown to bind double-stranded DNA by complementing the curvature of the minor groove and forming various hydrogen bonds with DNA. Several polyamide molecules have been found to have potent antiviral activities against papillomavirus, a double-stranded DNA virus. By analogy, we reason that polyamides may also interact with the structured RNA bound in the nucleocapsid of a negative-strand RNA virus. Vesicular stomatitis virus (VSV) was selected as a prototype virus to test this possibility since its genomic RNA encapsidated in the nucleocapsid forms a structure resembling one strand of an A-form RNA duplex. One polyamide molecule, UMSL1011, was found to inhibit infection of VSV. To confirm that the polyamide targeted the nucleocapsid, a nucleocapsid-like particle (NLP) was incubated with UMSL1011. The encapsidated RNA in the polyamide-treated NLP was protected from thermo-release and digestion by RNase A. UMSL1011 also inhibits viral RNA synthesis in the intracellular activity assay for the viral RNA-dependent RNA polymerase. The crystal structure revealed that UMSL1011 binds the structured RNA in the nucleocapsid. The conclusion of our studies is that the RNA in the nucleocapsid is a viable antiviral target of polyamides. Since the RNA structure in the nucleocapsid is similar in all negative-strand RNA viruses, polyamides may be optimized to target the specific RNA genome of a negative-strand RNA virus, such as respiratory syncytial virus and Ebola virus.IMPORTANCE Negative-strand RNA viruses (NSVs) include several life-threatening pathogens, such as rabies virus, respiratory syncytial virus, and Ebola virus. There are no effective antiviral drugs against these viruses. Polyamides offer an exceptional opportunity because they may be optimized to target each NSV. Our studies on vesicular stomatitis virus, an NSV, demonstrated that a polyamide molecule could specifically target the viral RNA in the nucleocapsid and inhibit viral growth. The target specificity of the polyamide molecule was proved by its inhibition of thermo-release and RNA nuclease digestion of the RNA bound in a model nucleocapsid, and a crystal structure of the polyamide inside the nucleocapsid. This encouraging observation provided the proof-of-concept rationale for designing polyamides as antiviral drugs against NSVs.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
- Molecular Basis of Disease, Georgia State University, Atlanta, Georgia, USA
| | - Weike Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Carlos H Castañeda
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - M José Scuderi
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - James K Bashkin
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug screening. Antiviral Res 2017; 146:21-27. [PMID: 28807685 DOI: 10.1016/j.antiviral.2017.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/20/2022]
Abstract
Ebola virus (EBOV) causes a severe disease in humans with the potential for significant international public health consequences. Currently, treatments are limited to experimental vaccines and therapeutics. Therefore, research into prophylaxis and antiviral strategies to combat EBOV infections is of utmost importance. The requirement for high containment laboratories to study EBOV infection is a limiting factor for conducting EBOV research. To overcome this issue, minigenome systems have been used as valuable tools to study EBOV replication and transcription mechanisms and to screen for antiviral compounds at biosafety level 2. The most commonly used EBOV minigenome system relies on the ectopic expression of the T7 RNA polymerase (T7), which can be limiting for certain cell types. We have established an improved EBOV minigenome system that utilizes endogenous RNA polymerase II (pol II) as a driver for the synthesis of minigenome RNA. We show here that this system is as efficient as the T7-based minigenome system, but works in a wider range of cell types, including biologically relevant cell types such as bat cells. Importantly, we were also able to adapt this system to a reliable and cost-effective 96-well format antiviral screening assay with a Z-factor of 0.74, indicative of a robust assay. Using this format, we identified JG40, an inhibitor of Hsp70, as an inhibitor of EBOV replication, highlighting the potential for this system as a tool for antiviral drug screening. In summary, this updated EBOV minigenome system provides a convenient and effective means of advancing the field of EBOV research.
Collapse
|
6
|
Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle. Antiviral Res 2017; 141:48-61. [PMID: 28192094 DOI: 10.1016/j.antiviral.2017.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Filoviruses are important pathogens that cause severe and often fatal hemorrhagic fever in humans, for which no approved vaccines and antiviral treatments are yet available. In an earlier article (Martin et al., Antiviral Research, 2016), we reviewed the role of the filovirus surface glycoprotein in replication and as a target for drugs and vaccines. In this review, we focus on recent findings on the filovirus replication machinery and how they could be used for the identification of new therapeutic targets and the development of new antiviral compounds. First, we summarize the recent structural and functional advances on the molecules involved in filovirus replication/transcription cycle, particularly the NP, VP30, VP35 proteins, and the "large" protein L, which harbors the RNA-dependent RNA polymerase (RdRp) and mRNA capping activities. These proteins are essential for viral mRNA synthesis and genome replication, and consequently they constitute attractive targets for drug design. We then describe how these insights into filovirus replication mechanisms and the structure/function characterization of the involved proteins have led to the development of new and innovative antiviral strategies that may help reduce the filovirus disease case fatality rate through post-exposure or prophylactic treatments.
Collapse
|
7
|
Connor J, Kobinger G, Olinger G. Therapeutics Against Filovirus Infection. Curr Top Microbiol Immunol 2017; 411:263-290. [PMID: 28653190 DOI: 10.1007/82_2017_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapies for filovirus infections are urgently needed. The paradoxical issue facing therapies is the need for rigorous safety and efficacy testing, adhering to the principle tenant of medicine to do no harm, while responding to the extreme for a treatment option during an outbreak. Supportive care remains a primary goal for infected patients. Years of research into filoviruses has provided possible medical interventions ranging from direct antivirals, host-factor supportive approaches, and passive immunity. As more basic research is directed toward understanding these pathogens and their impact on the host, effective approaches to treat patients during infection will be identified. The ability to manage outbreaks with medical interventions beyond supportive care will require clinical trial design that will balance the benefits of the patient and scientific community.
Collapse
Affiliation(s)
- John Connor
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA.
| | - Gary Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, Universite Laval, 2705 Boulevard Laurier, RC-709, Ville de Québec, QC G1V 4G2, Canada
| | - Gene Olinger
- Department of Medicine, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albaney Street, Boston, MA, 02118, USA
| |
Collapse
|
8
|
Rivera A, Messaoudi I. Pathophysiology of Ebola Virus Infection: Current Challenges and Future Hopes. ACS Infect Dis 2015; 1:186-97. [PMID: 27622648 PMCID: PMC7443712 DOI: 10.1021/id5000426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), are among the deadliest viruses that cause disease in humans, with reported case fatality rates of up to 90% in some outbreaks. The high virulence of EBOV and MARV is largely attributed to the ability of these viruses to interfere with the host immune response. Currently, there are no approved vaccines or postexposure therapeutics, and treatment options for patients infected with EBOV are limited to supportive care. In this review, we discuss mechanisms of EBOV pathogenesis and its ability to subvert host immunity as well as several vaccines and therapeutics with respect to their evaluation in small animal models, nonhuman primates, and human clinical trials.
Collapse
Affiliation(s)
- Andrea Rivera
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA
| | - Ilhem Messaoudi
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA
| |
Collapse
|
9
|
Abstract
The current Ebola virus disease (EVD) outbreak in West Africa is the largest with over 5100 deaths in four West African countries as of 14 November 2014. EVD has high case-fatality rates but no licensed treatment or vaccine is yet available. Several vaccine candidates that protected nonhuman primates are not yet available for clinical use. Slow development of vaccine-stimulated immunity, sporadic nature and fast progression of EVD underlines the need for the development of effective postexposure therapeutic drugs. WHO encouraged the use of untested drugs for EVD to curb the fast-spreading outbreak. Here, we summarize therapeutics for EVD including monoclonal antibody-based therapy and inhibitors of viral replication including our recently developed small-molecule inhibitors of VP30 dephosphorylation.
Collapse
Affiliation(s)
- Marina Jerebtsova
- Department of Microbiology, Howard University, Washington, DC 20059, USA
| | - Sergei Nekhai
- Department of Microbiology, Howard University, Washington, DC 20059, USA ; Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA ; Department of Medicine, Howard University, Washington, DC 20059, USA ; Department of Pharmacology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
10
|
Small molecule inhibitors of ebola virus infection. Drug Discov Today 2015; 20:277-86. [DOI: 10.1016/j.drudis.2014.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/01/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022]
|
11
|
De Clercq E. Ebola virus (EBOV) infection: Therapeutic strategies. Biochem Pharmacol 2015; 93:1-10. [PMID: 25481298 PMCID: PMC7110990 DOI: 10.1016/j.bcp.2014.11.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022]
Abstract
Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
12
|
Hoenen T, Feldmann H. Reverse genetics systems as tools for the development of novel therapies against filoviruses. Expert Rev Anti Infect Ther 2014; 12:1253-63. [PMID: 25169588 PMCID: PMC11014685 DOI: 10.1586/14787210.2014.948848] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Filoviruses cause severe hemorrhagic fevers with case fatality rates of up to 90%, for which no antivirals are currently available. Their categorization as biosafety level 4 agents restricts work with infectious viruses to a few maximum containment laboratories worldwide, which constitutes a significant obstacle for the development of countermeasures. Reverse genetics facilitates the generation of recombinant filoviruses, including reporter-expressing viruses, which have been increasingly used for drug screening and development in recent years. Further, reverse-genetics based lifecycle modeling systems allow modeling of the filovirus lifecycle without the need for a maximum containment laboratory and have recently been optimized for use in high-throughput assays. The availability of these reverse genetics-based tools will significantly improve our ability to find novel antivirals against filoviruses.
Collapse
Affiliation(s)
- Thomas Hoenen
- Division of Intramural Research, Laboratory of Virology, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Division of Intramural Research, Laboratory of Virology, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
13
|
Uebelhoer LS, Albariño CG, McMullan LK, Chakrabarti AK, Vincent JP, Nichol ST, Towner JS. High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses. Antiviral Res 2014; 106:86-94. [PMID: 24713118 DOI: 10.1016/j.antiviral.2014.03.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/28/2014] [Accepted: 03/29/2014] [Indexed: 12/27/2022]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV), members of the family Filoviridae, represent a significant challenge to global public health. Currently, no licensed therapies exist to treat filovirus infections, which cause up to 90% mortality in human cases. To facilitate development of antivirals against these viruses, we established two distinct screening platforms based on MARV and EBOV reverse genetics systems that express secreted Gaussia luciferase (gLuc). The first platform is a mini-genome replicon to screen viral replication inhibitors using gLuc quantification in a BSL-2 setting. The second platform is complementary to the first and expresses gLuc as a reporter gene product encoded in recombinant infectious MARV and EBOV, thereby allowing for rapid quantification of viral growth during treatment with antiviral compounds. We characterized these viruses by comparing luciferase activity to virus production, and validated luciferase activity as an authentic real-time measure of viral growth. As proof of concept, we adapt both mini-genome and infectious virus platforms to high-throughput formats, and demonstrate efficacy of several antiviral compounds. We anticipate that both approaches will prove highly useful in the development of anti-filovirus therapies, as well as in basic research on the filovirus life cycle.
Collapse
Affiliation(s)
| | | | | | | | - Joel P Vincent
- Centers for Disease Control and Prevention, Atlanta, USA
| | | | | |
Collapse
|
14
|
Chemical derivatives of a small molecule deubiquitinase inhibitor have antiviral activity against several RNA viruses. PLoS One 2014; 9:e94491. [PMID: 24722666 PMCID: PMC3983190 DOI: 10.1371/journal.pone.0094491] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/17/2014] [Indexed: 12/21/2022] Open
Abstract
Most antiviral treatment options target the invading pathogen and unavoidably encounter loss of efficacy as the pathogen mutates to overcome replication restrictions. A good strategy for circumventing drug resistance, or for pathogens without treatment options, is to target host cell proteins that are utilized by viruses during infection. The small molecule WP1130 is a selective deubiquitinase inhibitor shown previously to successfully reduce replication of noroviruses and some other RNA viruses. In this study, we screened a library of 31 small molecule derivatives of WP1130 to identify compounds that retained the broad-spectrum antiviral activity of the parent compound in vitro but exhibited improved drug-like properties, particularly increased aqueous solubility. Seventeen compounds significantly reduced murine norovirus infection in murine macrophage RAW 264.7 cells, with four causing decreases in viral titers that were similar or slightly better than WP1130 (1.9 to 2.6 log scale). Antiviral activity was observed following pre-treatment and up to 1 hour postinfection in RAW 264.7 cells as well as in primary bone marrow-derived macrophages. Treatment of the human norovirus replicon system cell line with the same four compounds also decreased levels of Norwalk virus RNA. No significant cytotoxicity was observed at the working concentration of 5 µM for all compounds tested. In addition, the WP1130 derivatives maintained their broad-spectrum antiviral activity against other RNA viruses, Sindbis virus, LaCrosse virus, encephalomyocarditis virus, and Tulane virus. Thus, altering structural characteristics of WP1130 can maintain effective broad-spectrum antiviral activity while increasing aqueous solubility.
Collapse
|
15
|
Hoenen T, Groseth A, Callison J, Takada A, Feldmann H. A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antiviral Res 2013; 99:207-13. [PMID: 23751367 PMCID: PMC3787978 DOI: 10.1016/j.antiviral.2013.05.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023]
Abstract
Ebola virus (EBOV) causes a severe hemorrhagic fever with case fatality rates of up to 90%, for which no antiviral therapies are available. Antiviral screening is hampered by the fact that development of cytopathic effect, the easiest means to detect infection with wild-type EBOV, is relatively slow. To overcome this problem we generated a recombinant EBOV carrying a luciferase reporter. Using this virus we show that EBOV entry is rapid, with viral protein expression detectable within 2 h after infection. Further, luminescence-based assays were developed to allow highly sensitive titer determination within 48 h. As a proof-of-concept for its utility in antiviral screening we used this virus to assess neutralizing antibodies and siRNAs, with significantly faster screening times than currently available wild-type or recombinant viruses. The availability of this recombinant virus will allow for more rapid and quantitative evaluation of antivirals against EBOV, as well as the study of details of the EBOV life cycle.
Collapse
Affiliation(s)
- Thomas Hoenen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Allison Groseth
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Japan
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
16
|
Filone CM, Connor JH. Approaches for antiviral probe development: new libraries, new mechanisms. Future Virol 2013. [DOI: 10.2217/fvl.13.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Claire Marie Filone
- Boston University School of Medicine, Department of Microbiology, 72 East Concord St, Boston, MA 02118, USA
| | - John H Connor
- Boston University School of Medicine, Department of Microbiology, 72 East Concord St, Boston, MA 02118, USA
| |
Collapse
|