1
|
Huang J, Wang X, Xia R, Yang D, Liu J, Lv Q, Yu X, Meng J, Chen K, Song B, Wang Y. Domain-knowledge enabled ensemble learning of 5-formylcytosine (f5C) modification sites. Comput Struct Biotechnol J 2024; 23:3175-3185. [PMID: 39253057 PMCID: PMC11381828 DOI: 10.1016/j.csbj.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
5-formylcytidine (f5C) is a unique post-transcriptional RNA modification found in mRNA and tRNA at the wobble site, playing a crucial role in mitochondrial protein synthesis and potentially contributing to the regulation of translation. Recent studies have unveiled that the f5C modifications may drive mitochondrial mRNA translation to power cancer metastasis. Accurate identification of f5C sites is essential for further unraveling their molecular functions and regulatory mechanisms, but there are currently no computational methods available for predicting their locations. In this study, we introduce an innovative ensemble approach, successfully enabling the computational recognition of Saccharomyces cerevisiae f5C. We conducted a comprehensive model selection process that involved multiple basic machine learning and deep learning algorithms such as recurrent neural networks, convolutional neural networks and Transformer-based models. Initially trained only on sequence information, these individual models achieved an AUROC ranging from 0.7104 to 0.7492. Through the integration of 32 novel domain-derived genomic features, the performance of individual models has significantly improved to an AUROC between 0.7309 and 0.8076. To further enhance accuracy and robustness, we then constructed the ensembles of these individual models with different combinations. The best performance attained by our ensemble models reached an AUROC of 0.8391. Shapley additive explanations were conducted to explain the significant contributions of genomic features, providing insights into the putative distribution of f5C across various topological regions and potentially paving the way for revealing their functional relevance within distinct genomic contexts. A freely accessible web server that allows real-time analysis of user-uploaded sites can be accessed at: www.rnamd.org/Resf5C-Pred.
Collapse
Affiliation(s)
- Jiaming Huang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xuan Wang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Rong Xia
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Dongqing Yang
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoxuan Yu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Meng
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Bowen Song
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
2
|
Yang YY, Cao Z, Wang Y. Mass Spectrometry-Based Proteomics for Assessing Epitranscriptomic Regulations. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39422510 DOI: 10.1002/mas.21911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Epitranscriptomics is a rapidly evolving field that explores chemical modifications in RNA and how they contribute to dynamic and reversible regulations of gene expression. These modifications, for example, N6-methyladenosine (m6A), are crucial in various RNA metabolic processes, including splicing, stability, subcellular localization, and translation efficiency of mRNAs. Mass spectrometry-based proteomics has become an indispensable tool in unraveling the complexities of epitranscriptomics, offering high-throughput, precise protein identification, and accurate quantification of differential protein expression. Over the past two decades, advances in mass spectrometry, including the improvement of high-resolution mass spectrometers and innovative sample preparation methods, have allowed researchers to perform in-depth analyses of epitranscriptomic regulations. This review focuses on the applications of bottom-up proteomics in the field of epitranscriptomics, particularly in identifying and quantifying epitranscriptomic reader, writer, and eraser (RWE) proteins and in characterizing their functions, posttranslational modifications, and interactions with other proteins. Together, by leveraging modern proteomics, researchers can gain deep insights into the intricate regulatory networks of RNA modifications, advancing fundamental biology, and fostering potential therapeutic applications.
Collapse
Affiliation(s)
- Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Zhongwen Cao
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| |
Collapse
|
3
|
Jiang H, Liu G, Gao Y, Gan J, Chen D, Murchie AIH. Cofactor binding triggers rapid conformational remodelling of the active site of a methyltransferase ribozyme. J Biol Chem 2024; 300:107863. [PMID: 39374779 PMCID: PMC11566860 DOI: 10.1016/j.jbc.2024.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The methyltransferase ribozyme SMRZ-1 utilizes S-adenosyl-methionine (SAM) and Cu (II) ions to methylate RNA. A comparison of the SAM-bound and unbound RNA structures has shown a conformational change in the RNA. However, the contribution of specific interactions and the role of a pseudo-triplex motif in the catalytic center on the methylation reaction is not completely understood. In this study, we have used atomic substitutions and mutational analysis to investigate the reaction specificity and the key interactions required for catalysis. Substitution of the fluorescent nucleotide 2-aminopurine within the active ribozyme enabled the conformational dynamics of the RNA upon co-factor binding to be explored using fluorescence spectroscopy. We show that fast co-factor binding (t1/2 ∼ 0.7 s) drives a conformational change in the RNA to facilitate methyl group transfer. The importance of stacking interactions at the pseudo-triplex motif and chelation of the Cu (II) ion were shown to be essential for SAM binding.
Collapse
Affiliation(s)
- Hengyi Jiang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Getong Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Gao
- Department of Physiology and Biophysics, Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Gan
- Department of Physiology and Biophysics, Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongrong Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Alastair I H Murchie
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Gervason S, Sen S, Fontecave M, Golinelli-Pimpaneau B. [4Fe-4S]-dependent enzymes in non-redox tRNA thiolation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119807. [PMID: 39106920 DOI: 10.1016/j.bbamcr.2024.119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
Post-transcriptional modification of nucleosides in transfer RNAs (tRNAs) is an important process for accurate and efficient translation of the genetic information during protein synthesis in all domains of life. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A), within tRNAs. Whereas the mechanism that has prevailed for decades involved persulfide chemistry, more and more tRNA thiolation enzymes have now been shown to contain a [4Fe-4S] cluster. This review summarizes the information over the last ten years concerning the biochemical, spectroscopic and structural characterization of [4Fe-4S]-dependent non-redox tRNA thiolation enzymes.
Collapse
Affiliation(s)
- Sylvain Gervason
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Sambuddha Sen
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France.
| |
Collapse
|
5
|
Ripp A, Krämer M, Barth V, Moser P, Haas TM, Singh J, Huck T, Gleue L, Friedland K, Helm M, Jessen HJ. The P(III)-Amidite Based Synthesis of Stable Isotope Labeled mRNA-Cap-Structures Enables their Sensitive Quantitation from Brain Tissue. Angew Chem Int Ed Engl 2024:e202414537. [PMID: 39324525 DOI: 10.1002/anie.202414537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
The 5' cap structure is crucial to mRNA function, with its diverse methylation patterns depending on the cellular state. Sensitive analytical methods are sought after to quantify this cap variety also referred to as cap epitranscriptome. To address a bottleneck for accurate and precise quantitation, we report a facile and fast access to high-quality synthetic standards via a new route, involving P(III)-amidite chemistry. A range of cap nucleotides and their stable heavy isotopic labeled analogues were derived from nucleoside diphosphates, which themselves were directly prepared in a one-step reaction sequence starting from unprotected nucleosides using a triphosphorylating reagent in combination with ethylenediamine. Considering a wider scope, the route also enables direct access to magic spot nucleotides and diphosphates of isoprenyl-alcohols. Stable-isotope labeled cap nucleotides derived from this route paved the way for the development of a highly sensitive LC-MS/MS method, applied to the characterization of mouse brain cap epitranscriptomes, which turned out to be very different from those of cultured cell lines of widespread use in the life sciences.
Collapse
Affiliation(s)
- Alexander Ripp
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| | - Martina Krämer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Vanessa Barth
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| | - Patrick Moser
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Tamara Huck
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Lukas Gleue
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Kristina Friedland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| |
Collapse
|
6
|
Bessler L, Sirleaf J, Kampf CJ, Frankowska K, Leszczyńska G, Opatz T, Helm M. Esterification of Cyclic N 6-Threonylcarbamoyladenosine During RNA Sample Preparation. ChemMedChem 2024; 19:e202400115. [PMID: 38630955 DOI: 10.1002/cmdc.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
The continuous deciphering of crucial biological roles of RNA modifications and their involvement in various pathological conditions, together with their key roles in the use of RNA-based therapeutics, has reignited interest in studying the occurrence and identity of non-canonical ribonucleoside structures during the past years. Discovery and structural elucidation of new modified structures is usually achieved by combination of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) at the nucleoside level and stable isotope labeling experiments. This approach, however, has its pitfalls as demonstrated in the course of the present study: we structurally elucidated a new nucleoside structure that showed significant similarities to the family of (c)t6A modifications and was initially considered a genuine modification, but subsequently turned out to be an in vitro formed glycerol ester of t6A. This artifact is generated from ct6A during RNA hydrolysis upon addition of enzymes stored in glycerol containing buffers in a mildly alkaline milieu, and was moreover shown to undergo an intramolecular transesterification reaction. Our results demand for extra caution, not only in the discovery of new RNA modifications, but also with regard to the quantification of known modified structures, in particular chemically labile modifications, such as ct6A, that might suffer from exposure to putatively harmless reagents during the diverse steps of sample preparation.
Collapse
Affiliation(s)
- Larissa Bessler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Jason Sirleaf
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christopher J Kampf
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Katarzyna Frankowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Łódź, Poland
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Łódź, Poland
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
7
|
Jörg M, Plehn JE, Kristen M, Lander M, Walz L, Lietz C, Wijns J, Pichot F, Rojas-Charry L, Wirtz Martin KM, Ruffini N, Kreim N, Gerber S, Motorin Y, Endres K, Rossmanith W, Methner A, Helm M, Friedland K. N1-methylation of adenosine (m 1A) in ND5 mRNA leads to complex I dysfunction in Alzheimer's disease. Mol Psychiatry 2024; 29:1427-1439. [PMID: 38287100 PMCID: PMC11189808 DOI: 10.1038/s41380-024-02421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
One mechanism of particular interest to regulate mRNA fate post-transcriptionally is mRNA modification. Especially the extent of m1A mRNA methylation is highly discussed due to methodological differences. However, one single m1A site in mitochondrial ND5 mRNA was unanimously reported by different groups. ND5 is a subunit of complex I of the respiratory chain. It is considered essential for the coupling of oxidation and proton transport. Here we demonstrate that this m1A site might be involved in the pathophysiology of Alzheimer's disease (AD). One of the pathological hallmarks of this neurodegenerative disease is mitochondrial dysfunction, mainly induced by Amyloid β (Aβ). Aβ mainly disturbs functions of complex I and IV of the respiratory chain. However, the molecular mechanism of complex I dysfunction is still not fully understood. We found enhanced m1A methylation of ND5 mRNA in an AD cell model as well as in AD patients. Formation of this m1A methylation is catalyzed by increased TRMT10C protein levels, leading to translation repression of ND5. As a consequence, here demonstrated for the first time, TRMT10C induced m1A methylation of ND5 mRNA leads to mitochondrial dysfunction. Our findings suggest that this newly identified mechanism might be involved in Aβ-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Marko Jörg
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Johanna E Plehn
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marco Kristen
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marc Lander
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Lukas Walz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Christine Lietz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Julie Wijns
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Florian Pichot
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Liliana Rojas-Charry
- Institute of Molecular Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Katja M Wirtz Martin
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Nicolas Ruffini
- Institute for Human Genetics, University Medical Center Johannes Gutenberg University, 55131, Mainz, Germany
| | - Nastasja Kreim
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center Johannes Gutenberg University, 55131, Mainz, Germany
| | - Yuri Motorin
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, UMS2008 IBSLor CNRS, Université de Lorraine-INSERM, Biopôle, 9 Avenue de la Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France
- IMoPA, UMR7365 CNRS, Université de Lorraine, Biopôle, 9 Avenue de la Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straβe 13, 1090, Vienna, Austria
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany.
| | - Kristina Friedland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany.
| |
Collapse
|
8
|
Martinez-Feduchi P, Jin P, Yao B. Epigenetic modifications of DNA and RNA in Alzheimer's disease. Front Mol Neurosci 2024; 17:1398026. [PMID: 38726308 PMCID: PMC11079283 DOI: 10.3389/fnmol.2024.1398026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common form of dementia. There are two main types of AD: familial and sporadic. Familial AD is linked to mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). On the other hand, sporadic AD is the more common form of the disease and has genetic, epigenetic, and environmental components that influence disease onset and progression. Investigating the epigenetic mechanisms associated with AD is essential for increasing understanding of pathology and identifying biomarkers for diagnosis and treatment. Chemical covalent modifications on DNA and RNA can epigenetically regulate gene expression at transcriptional and post-transcriptional levels and play protective or pathological roles in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Quaiyum S, Sun J, Marchand V, Sun G, Reed CJ, Motorin Y, Dedon PC, Minnick MF, de Crécy-Lagard V. Mapping the tRNA modification landscape of Bartonella henselae Houston I and Bartonella quintana Toulouse. Front Microbiol 2024; 15:1369018. [PMID: 38544857 PMCID: PMC10965804 DOI: 10.3389/fmicb.2024.1369018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens-Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana. Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. Bartonella quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.
Collapse
Affiliation(s)
- Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Virginie Marchand
- Université de Lorraine, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility and UMR7365 IMoPA, CNRS-Inserm, Biopôle UL, Nancy, France
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Yuri Motorin
- Université de Lorraine, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility and UMR7365 IMoPA, CNRS-Inserm, Biopôle UL, Nancy, France
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Michael F. Minnick
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
- Genetic Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Ding D, Fang Z, Kim SC, O’Flaherty DK, Jia X, Stone TB, Zhou L, Szostak JW. Unusual Base Pair between Two 2-Thiouridines and Its Implication for Nonenzymatic RNA Copying. J Am Chem Soc 2024; 146:3861-3871. [PMID: 38293747 PMCID: PMC10870715 DOI: 10.1021/jacs.3c11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
2-Thiouridine (s2U) is a nucleobase modification that confers enhanced efficiency and fidelity both on modern tRNA codon translation and on nonenzymatic and ribozyme-catalyzed RNA copying. We have discovered an unusual base pair between two 2-thiouridines that stabilizes an RNA duplex to a degree that is comparable to that of a native A:U base pair. High-resolution crystal structures indicate similar base-pairing geometry and stacking interactions in duplexes containing s2U:s2U compared to those with U:U pairs. Notably, the C═O···H-N hydrogen bond in the U:U pair is replaced with a C═S···H-N hydrogen bond in the s2U:s2U base pair. The thermodynamic stability of the s2U:s2U base pair suggested that this self-pairing might lead to an increased error frequency during nonenzymatic RNA copying. However, competition experiments show that s2U:s2U base-pairing induces only a low level of misincorporation during nonenzymatic RNA template copying because the correct A:s2U base pair outcompetes the slightly weaker s2U:s2U base pair. In addition, even if an s2U is incorrectly incorporated, the addition of the next base is greatly hindered. This strong stalling effect would further increase the effective fidelity of nonenzymatic RNA copying with s2U. Our findings suggest that s2U may enhance the rate and extent of nonenzymatic copying with only a minimal cost in fidelity.
Collapse
Affiliation(s)
- Dian Ding
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Ziyuan Fang
- Howard
Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Seohyun Chris Kim
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Derek K. O’Flaherty
- Department
of Chemistry, College of Engineering and Physical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xiwen Jia
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Talbot B. Stone
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for RNA Innovation, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lijun Zhou
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for RNA Innovation, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Zhang L, Duan HC, Paduch M, Hu J, Zhang C, Mu Y, Lin H, He C, Kossiakoff AA, Jia G, Zhang L. The Molecular Basis of Human ALKBH3 Mediated RNA N 1 -methyladenosine (m 1 A) Demethylation. Angew Chem Int Ed Engl 2024; 63:e202313900. [PMID: 38158383 DOI: 10.1002/anie.202313900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
N1 -methyladenosine (m1 A) is a prevalent post-transcriptional RNA modification, and the distribution and dynamics of the modification play key epitranscriptomic roles in cell development. At present, the human AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family member ALKBH3 is the only known mRNA m1 A demethylase, but its catalytic mechanism remains unclear. Here, we present the structures of ALKBH3-oligo crosslinked complexes obtained with the assistance of a synthetic antibody crystallization chaperone. Structural and biochemical results showed that ALKBH3 utilized two β-hairpins (β4-loop-β5 and β'-loop-β'') and the α2 helix to facilitate single-stranded substrate binding. Moreover, a bubble-like region around Asp194 and a key residue inside the active pocket (Thr133) enabled specific recognition and demethylation of m1 A- and 3-methylcytidine (m3 C)-modified substrates. Mutation of Thr133 to the corresponding residue in the AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family members FTO or ALKBH5 converted ALKBH3 substrate selectivity from m1 A to N6 -methyladenosine (m6 A), as did Asp194 deletion. Our findings provide a molecular basis for understanding the mechanisms of substrate recognition and m1 A demethylation by ALKBH3. This study is expected to aid structure-guided design of chemical probes for further functional studies and therapeutic applications.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hong-Chao Duan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Marcin Paduch
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chi Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Anthony A Kossiakoff
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
13
|
Quaiyum S, Sun J, Marchand V, Sun G, Reed CJ, Motorin Y, Dedon PC, Minnick MF, de Crécy-Lagard V. Mapping the tRNA Modification Landscape of Bartonella henselae Houston I and Bartonella quintana Toulouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574729. [PMID: 38260440 PMCID: PMC10802484 DOI: 10.1101/2024.01.08.574729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens- Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana . Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. B. quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.
Collapse
|
14
|
Strassler SE, Bowles IE, Krishnamohan A, Kim H, Edgington CB, Kuiper EG, Hancock CJ, Comstock LR, Jackman JE, Conn GL. tRNA m 1G9 modification depends on substrate-specific RNA conformational changes induced by the methyltransferase Trm10. J Biol Chem 2023; 299:105443. [PMID: 37949221 PMCID: PMC10704376 DOI: 10.1016/j.jbc.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the ninth nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 13 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) that allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.
Collapse
Affiliation(s)
- Sarah E Strassler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Isobel E Bowles
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Aiswarya Krishnamohan
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Hyejeong Kim
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Catherine B Edgington
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Emily G Kuiper
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Clio J Hancock
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lindsay R Comstock
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
15
|
Pichler A, Hillmeier M, Heiss M, Peev E, Xefteris S, Steigenberger B, Thoma I, Müller M, Borsò M, Imhof A, Carell T. Synthesis and Structure Elucidation of Glutamyl-Queuosine. J Am Chem Soc 2023; 145:25528-25532. [PMID: 37967838 PMCID: PMC10690763 DOI: 10.1021/jacs.3c10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Queuosine is one of the most complex hypermodified RNA nucleosides found in the Wobble position of tRNAs. In addition to Queuosine itself, several further modified derivatives are known, where the cyclopentene ring structure is additionally modified by a galactosyl-, a mannosyl-, or a glutamyl-residue. While sugar-modified Queuosine derivatives are found in the tRNAs of vertebrates, glutamylated Queuosine (gluQ) is only known in bacteria. The exact structure of gluQ, particularly with respect to how and where the glutamyl side chain is connected to the Queuosine cyclopentene side chain, is unknown. Here we report the first synthesis of gluQ and, using UHPLC-MS-coinjection and NMR studies, we show that the isolated natural gluQ is the α-allyl-connected gluQ compound.
Collapse
Affiliation(s)
- Alexander Pichler
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Hillmeier
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Matthias Heiss
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Elsa Peev
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Stylianos Xefteris
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Barbara Steigenberger
- Mass
Spectrometry Core Facility, Max Planck Institute
of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Planegg, Germany
| | - Ines Thoma
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Müller
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Marco Borsò
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Axel Imhof
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Thomas Carell
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
16
|
Bou-Nader C, Pecqueur L, de Crécy-Lagard V, Hamdane D. Integrative Approach to Probe Alternative Redox Mechanisms in RNA Modifications. Acc Chem Res 2023; 56:3142-3152. [PMID: 37916403 PMCID: PMC10999249 DOI: 10.1021/acs.accounts.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA modifications found in most RNAs, particularly in tRNAs and rRNAs, reveal an abundance of chemical alterations of nucleotides. Over 150 distinct RNA modifications are known, emphasizing a remarkable diversity of chemical moieties in RNA molecules. These modifications play pivotal roles in RNA maturation, structural integrity, and the fidelity and efficiency of translation processes. The catalysts responsible for these modifications are RNA-modifying enzymes that use a striking array of chemistries to directly influence the chemical landscape of RNA. This diversity is further underscored by instances where the same modification is introduced by distinct enzymes that use unique catalytic mechanisms and cofactors across different domains of life. This phenomenon of convergent evolution highlights the biological importance of RNA modification and the vast potential within the chemical repertoire for nucleotide alteration. While shared RNA modifications can hint at conserved enzymatic pathways, a major bottleneck is to identify alternative routes within species that possess a modified RNA but are devoid of known RNA-modifying enzymes. To address this challenge, a combination of bioinformatic and experimental strategies proves invaluable in pinpointing new genes responsible for RNA modifications. This integrative approach not only unveils new chemical insights but also serves as a wellspring of inspiration for biocatalytic applications and drug design. In this Account, we present how comparative genomics and genome mining, combined with biomimetic synthetic chemistry, biochemistry, and anaerobic crystallography, can be judiciously implemented to address unprecedented and alternative chemical mechanisms in the world of RNA modification. We illustrate these integrative methodologies through the study of tRNA and rRNA modifications, dihydrouridine, 5-methyluridine, queuosine, 8-methyladenosine, 5-carboxymethylamino-methyluridine, or 5-taurinomethyluridine, each dependent on a diverse array of redox chemistries, often involving organic compounds, organometallic complexes, and metal coenzymes. We explore how vast genome and tRNA databases empower comparative genomic analyses and enable the identification of novel genes that govern RNA modification. Subsequently, we describe how the isolation of a stable reaction intermediate can guide the synthesis of a biomimetic to unveil new enzymatic pathways. We then discuss the usefulness of a biochemical "shunt" strategy to study catalytic mechanisms and to directly visualize reactive intermediates bound within active sites. While we primarily focus on various RNA-modifying enzymes studied in our laboratory, with a particular emphasis on the discovery of a SAM-independent methylation mechanism, the strategies and rationale presented herein are broadly applicable for the identification of new enzymes and the elucidation of their intricate chemistries. This Account offers a comprehensive glimpse into the evolving landscape of RNA modification research and highlights the pivotal role of integrated approaches to identify novel enzymatic pathways.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, 32611, USA
- University of Florida, Genetics Institute, Gainesville, Florida, 32610, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
17
|
Yared MJ, Yoluç Y, Catala M, Tisné C, Kaiser S, Barraud P. Different modification pathways for m1A58 incorporation in yeast elongator and initiator tRNAs. Nucleic Acids Res 2023; 51:10653-10667. [PMID: 37650648 PMCID: PMC10602860 DOI: 10.1093/nar/gkad722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
As essential components of the protein synthesis machinery, tRNAs undergo a tightly controlled biogenesis process, which include the incorporation of numerous posttranscriptional modifications. Defects in these tRNA maturation steps may lead to the degradation of hypomodified tRNAs by the rapid tRNA decay (RTD) and nuclear surveillance pathways. We previously identified m1A58 as a late modification introduced after modifications Ψ55 and T54 in yeast elongator tRNAPhe. However, previous reports suggested that m1A58 is introduced early during the tRNA modification process, in particular on primary transcripts of initiator tRNAiMet, which prevents its degradation by RNA decay pathways. Here, aiming to reconcile this apparent inconsistency on the temporality of m1A58 incorporation, we examined its introduction into yeast elongator and initiator tRNAs. We used specifically modified tRNAs to report on the molecular aspects controlling the Ψ55 → T54 → m1A58 modification circuit in elongator tRNAs. We also show that m1A58 is efficiently introduced on unmodified tRNAiMet, and does not depend on prior modifications. Finally, we show that m1A58 has major effects on the structural properties of initiator tRNAiMet, so that the tRNA elbow structure is only properly assembled when this modification is present. This observation provides a structural explanation for the degradation of hypomodified tRNAiMet lacking m1A58 by the nuclear surveillance and RTD pathways.
Collapse
Affiliation(s)
- Marcel-Joseph Yared
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Yasemin Yoluç
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Marjorie Catala
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Carine Tisné
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Stefanie Kaiser
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| | - Pierre Barraud
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| |
Collapse
|
18
|
Strassler SE, Bowles IE, Krishnamohan A, Kim H, Edgington CB, Kuiper EG, Hancock CJ, Comstock LR, Jackman JE, Conn GL. tRNA m 1G9 modification depends on substrate-specific RNA conformational changes induced by the methyltransferase Trm10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526536. [PMID: 36778341 PMCID: PMC9915607 DOI: 10.1101/2023.02.01.526536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the 9th nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 14 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) which allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.
Collapse
Affiliation(s)
- Sarah E. Strassler
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - Isobel E. Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Aiswarya Krishnamohan
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Hyejeong Kim
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Catherine B. Edgington
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Emily G. Kuiper
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - Clio J. Hancock
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
| | - Lindsay R. Comstock
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27106, USA
| | - Jane E. Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| |
Collapse
|
19
|
Bian P, Chai J, Xu B. Research Advances on Deafness Genes Associated with Mitochondrial tRNA-37 Modifications. J Int Adv Otol 2023; 19:414-419. [PMID: 37789629 PMCID: PMC10645192 DOI: 10.5152/iao.2023.231107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 10/05/2023] Open
Abstract
As the most common cause of speech disorders, the etiological study of deafness is important for the diagnosis and treatment of deafness. The mitochondrial genome has gradually become a hotspot for deafness genetic research. Mitochondria are the core organelles of energy and material metabolism in eukaryotic cells. Human mitochondria contain 20 amino acids, except for tRNALeu and tRNASer, which have 2 iso-receptors, the other 18 amino acids correspond to unique tRNAs one by one, so mutations in any one tRNA may lead to protein translation defects in mitochondria and thus affect their oxidative phosphorylation process resulting in the corresponding disease phenotype. Mitochondrial tRNAs are extensively modified with base modifications that contribute to the correct folding of tRNAs and maintain their stability. Defective mitochondrial tRNA modifications are closely associated with the development of mitochondrial diseases. The in-depth study found that modification defects of mammalian mitochondrial tRNAs are associated with deafness, especially the nucleotide modification defect of mt-tRNA-37. This article reviews the research on mitochondrial tRNAs, nucleotide modification structure of mitochondrial tRNA-37, and nuclear genes related to modification defects to provide new ideas for the etiological study of deafness.
Collapse
Affiliation(s)
- Panpan Bian
- Department of Otolaryngology—Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Chai
- Department of Otolaryngology—Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Baicheng Xu
- Department of Otolaryngology—Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
20
|
Martella G, Motwani NH, Khan Z, Sousa PFM, Gorokhova E, Motwani HV. Simultaneous RNA and DNA Adductomics Using Single Data-Independent Acquisition Mass Spectrometry Analysis. Chem Res Toxicol 2023; 36:1471-1482. [PMID: 37566384 PMCID: PMC10523582 DOI: 10.1021/acs.chemrestox.3c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Indexed: 08/12/2023]
Abstract
Adductomics studies are used for the detection and characterization of various chemical modifications (adducts) of nucleic acids and proteins. The advancements in liquid chromatography coupled with high-resolution tandem mass spectrometry (HRMS/MS) have resulted in efficient methods for qualitative and quantitative adductomics. We developed an HRMS-based method for the simultaneous analysis of RNA and DNA adducts in a single run and demonstrated its application using Baltic amphipods, useful sentinels of environmental disturbances, as test organisms. The novelty of this method is screening for RNA and DNA adducts by a single injection on an Orbitrap HRMS instrument using full scan and data-independent acquisition. The MS raw files were processed with an open-source program, nLossFinder, to identify and distinguish RNA and DNA adducts based on the characteristic neutral loss of ribonucleosides and 2'-deoxyribonucleosides, respectively. In the amphipods, in addition to the nearly 150 putative DNA adducts characterized earlier, we detected 60 putative RNA adducts. For the structural identification of the detected RNA adducts, the MODOMICS database was used. The identified RNA adducts included simple mono- and dimethylation and other larger functional groups on different ribonucleosides and deaminated product inosine. However, 54 of these RNA adducts are not yet structurally identified, and further work on their characterization may uncover new layers of information related to the transcriptome and help understand their biological significance. Considering the susceptibility of nucleic acids to environmental factors, including pollutants, the developed multi-adductomics methodology with further advancement has the potential to provide biomarkers for diagnostics of pollution effects in biota.
Collapse
Affiliation(s)
- Giulia Martella
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Nisha H. Motwani
- School
of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge SE-14189, Sweden
| | - Zareen Khan
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Pedro F. M. Sousa
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Elena Gorokhova
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Hitesh V. Motwani
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
21
|
Wang J, Chew BLA, Lai Y, Dong H, Xu L, Liu Y, Fu XY, Lin Z, Shi PY, Lu TK, Luo D, Jaffrey SR, Dedon PC. A systems-level mass spectrometry-based technique for accurate and sensitive quantification of the RNA cap epitranscriptome. Nat Protoc 2023; 18:2671-2698. [PMID: 37567932 DOI: 10.1038/s41596-023-00857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/26/2023] [Indexed: 08/13/2023]
Abstract
Chemical modifications of transcripts with a 5' cap occur in all organisms and function in many aspects of RNA metabolism. To facilitate analysis of RNA caps, we developed a systems-level mass spectrometry-based technique, CapQuant, for accurate and sensitive quantification of the cap epitranscriptome. The protocol includes the addition of stable isotope-labeled cap nucleotides (CNs) to RNA, enzymatic hydrolysis of endogenous RNA to release CNs, and off-line enrichment of CNs by ion-pairing high-pressure liquid chromatography, followed by a 17 min chromatography-coupled tandem quadrupole mass spectrometry run for the identification and quantification of individual CNs. The total time required for the protocol can be up to 7 d. In this approach, 26 CNs can be quantified in eukaryotic poly(A)-tailed RNA, bacterial total RNA and viral RNA. This protocol can be modified to analyze other types of RNA and RNA from in vitro sources. CapQuant stands out from other methods in terms of superior specificity, sensitivity and accuracy, and it is not limited to individual caps nor does it require radiolabeling. Thanks to its unique capability of accurately and sensitively quantifying RNA caps on a systems level, CapQuant can reveal both the RNA cap landscape and the transcription start site distribution of capped RNA in a broad range of settings.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China.
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
- Institute of Biomedical Sciences, Inner Mongolia University, Hohhot, China.
| | - Bing Liang Alvin Chew
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
| | - Yong Lai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Luang Xu
- Cancer Science Institute of Singapore, Singapore, Singapore
- School of Life Science and Technology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Yu Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xin-Yuan Fu
- Cancer Science Institute of Singapore, Singapore, Singapore
- Generos Pharmaceutical Co. Ltd, Hangzhou, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Pei-Yong Shi
- Departments of Biochemistry & Molecular Biology and Pharmacology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
- GlaxoSmithKline, Rockville, MD, USA
| | - Timothy K Lu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Synthetic Biology Center, Departments of Biological Engineering and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Senti Bio, San Francisco, CA, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
- Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Alings F, Scharmann K, Eggers C, Böttcher B, Sokołowski M, Shvetsova E, Sharma P, Roth J, Rashiti L, Glatt S, Brunke S, Leidel SA. Ncs2* mediates in vivo virulence of pathogenic yeast through sulphur modification of cytoplasmic transfer RNA. Nucleic Acids Res 2023; 51:8133-8149. [PMID: 37462076 PMCID: PMC10450187 DOI: 10.1093/nar/gkad564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 08/26/2023] Open
Abstract
Fungal pathogens threaten ecosystems and human health. Understanding the molecular basis of their virulence is key to develop new treatment strategies. Here, we characterize NCS2*, a point mutation identified in a clinical baker's yeast isolate. Ncs2 is essential for 2-thiolation of tRNA and the NCS2* mutation leads to increased thiolation at body temperature. NCS2* yeast exhibits enhanced fitness when grown at elevated temperatures or when exposed to oxidative stress, inhibition of nutrient signalling, and cell-wall stress. Importantly, Ncs2* alters the interaction and stability of the thiolase complex likely mediated by nucleotide binding. The absence of 2-thiolation abrogates the in vivo virulence of pathogenic baker's yeast in infected mice. Finally, hypomodification triggers changes in colony morphology and hyphae formation in the common commensal pathogen Candida albicans resulting in decreased virulence in a human cell culture model. These findings demonstrate that 2-thiolation of tRNA acts as a key mediator of fungal virulence and reveal new mechanistic insights into the function of the highly conserved tRNA-thiolase complex.
Collapse
Affiliation(s)
- Fiona Alings
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Karin Scharmann
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Mikołaj Sokołowski
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ekaterina Shvetsova
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Joël Roth
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Leon Rashiti
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
24
|
Piell KM, Petri BJ, Head KZ, Wahlang B, Xu R, Zhang X, Pan J, Rai SN, de Silva K, Chariker JH, Rouchka EC, Tan M, Li Y, Cave MC, Klinge CM. Disruption of the mouse liver epitranscriptome by long-term aroclor 1260 exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104138. [PMID: 37137421 PMCID: PMC10330322 DOI: 10.1016/j.etap.2023.104138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Chronic environmental exposure to polychlorinated biphenyls (PCBs) is associated with non-alcoholic fatty liver disease (NAFLD) and exacerbated by a high fat diet (HFD). Here, chronic (34 wks.) exposure of low fat diet (LFD)-fed male mice to Aroclor 1260 (Ar1260), a non-dioxin-like (NDL) mixture of PCBs, resulted in steatohepatitis and NAFLD. Twelve hepatic RNA modifications were altered with Ar1260 exposure including reduced abundance of 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A), in contrast to increased Am in the livers of HFD-fed, Ar1260-exposed mice reported previously. Differences in 13 RNA modifications between LFD- and HFD- fed mice, suggest that diet regulates the liver epitranscriptome. Integrated network analysis of epitranscriptomic modifications identified a NRF2 (Nfe2l2) pathway in the chronic, LFD, Ar1260-exposed livers and an NFATC4 (Nfatc4) pathway for LFD- vs. HFD-fed mice. Changes in protein abundance were validated. The results demonstrate that diet and Ar1260 exposure alter the liver epitranscriptome in pathways associated with NAFLD.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Banrida Wahlang
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Raobo Xu
- University of Louisville Hepatobiology and Toxicology Center, USA; Department of Chemistry, University of Louisville College of Arts and Sciences, USA
| | - Xiang Zhang
- University of Louisville Hepatobiology and Toxicology Center, USA; Department of Chemistry, University of Louisville College of Arts and Sciences, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA
| | - Jianmin Pan
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cancer Data Science Center, Biostatistics and Informatics Shared Resource, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cancer Data Science Center, Biostatistics and Informatics Shared Resource, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kalpani de Silva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
| | - Julia H Chariker
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
| | - Min Tan
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yan Li
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Matthew C Cave
- University of Louisville Hepatobiology and Toxicology Center, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA; The University of Louisville Superfund Research Center, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
25
|
Liu Z, Lan P, Liu T, Liu X, Liu T. m6Aminer: Predicting the m6Am Sites on mRNA by Fusing Multiple Sequence-Derived Features into a CatBoost-Based Classifier. Int J Mol Sci 2023; 24:ijms24097878. [PMID: 37175594 PMCID: PMC10177809 DOI: 10.3390/ijms24097878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
As one of the most important post-transcriptional modifications, m6Am plays a fairly important role in conferring mRNA stability and in the progression of cancers. The accurate identification of the m6Am sites is critical for explaining its biological significance and developing its application in the medical field. However, conventional experimental approaches are time-consuming and expensive, making them unsuitable for the large-scale identification of the m6Am sites. To address this challenge, we exploit a CatBoost-based method, m6Aminer, to identify the m6Am sites on mRNA. For feature extraction, nine different feature-encoding schemes (pseudo electron-ion interaction potential, hash decimal conversion method, dinucleotide binary encoding, nucleotide chemical properties, pseudo k-tuple composition, dinucleotide numerical mapping, K monomeric units, series correlation pseudo trinucleotide composition, and K-spaced nucleotide pair frequency) were utilized to form the initial feature space. To obtain the optimized feature subset, the ExtraTreesClassifier algorithm was adopted to perform feature importance ranking, and the top 300 features were selected as the optimal feature subset. With different performance assessment methods, 10-fold cross-validation and independent test, m6Aminer achieved average AUC of 0.913 and 0.754, demonstrating a competitive performance with the state-of-the-art models m6AmPred (0.905 and 0.735) and DLm6Am (0.897 and 0.730). The prediction model developed in this study can be used to identify the m6Am sites in the whole transcriptome, laying a foundation for the functional research of m6Am.
Collapse
Affiliation(s)
- Ze Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
| | - Pengfei Lan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ting Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xudong Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
26
|
Bimai O, Legrand P, Ravanat JL, Touati N, Zhou J, He N, Lénon M, Barras F, Fontecave M, Golinelli-Pimpaneau B. The thiolation of uridine 34 in tRNA, which controls protein translation, depends on a [4Fe-4S] cluster in the archaeum Methanococcus maripaludis. Sci Rep 2023; 13:5351. [PMID: 37005440 PMCID: PMC10067955 DOI: 10.1038/s41598-023-32423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.
Collapse
Affiliation(s)
- Ornella Bimai
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, 38000, Grenoble, France
| | - Nadia Touati
- IR CNRS Renard, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Nisha He
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Marine Lénon
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France.
| |
Collapse
|
27
|
Wang Y, Wang X, Cui X, Meng J, Rong R. Self-attention enabled deep learning of dihydrouridine (D) modification on mRNAs unveiled a distinct sequence signature from tRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:411-420. [PMID: 36845339 PMCID: PMC9945750 DOI: 10.1016/j.omtn.2023.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Dihydrouridine (D) is a modified pyrimidine nucleotide universally found in viral, prokaryotic, and eukaryotic species. It serves as a metabolic modulator for various pathological conditions, and its elevated levels in tumors are associated with a series of cancers. Precise identification of D sites on RNA is vital for understanding its biological function. A number of computational approaches have been developed for predicting D sites on tRNAs; however, none have considered mRNAs. We present here DPred, the first computational tool for predicting D on mRNAs in yeast from the primary RNA sequences. Built on a local self-attention layer and a convolutional neural network (CNN) layer, the proposed deep learning model outperformed classic machine learning approaches (random forest, support vector machines, etc.) and achieved reasonable accuracy and reliability with areas under the curve of 0.9166 and 0.9027 in jackknife cross-validation and on an independent testing dataset, respectively. Importantly, we showed that distinct sequence signatures are associated with the D sites on mRNAs and tRNAs, implying potentially different formation mechanisms and putative divergent functionality of this modification on the two types of RNA. DPred is available as a user-friendly Web server.
Collapse
Affiliation(s)
- Yue Wang
- Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,Department of Computer Science, University of Liverpool, L69 7ZB Liverpool, UK
| | - Xuan Wang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xiaodong Cui
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Jia Meng
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, UK
| | - Rong Rong
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,Corresponding author: Rong Rong, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
28
|
Talló-Parra M, Muscolino E, Díez J. The host tRNA epitranscriptome: A new player in RNA virus infections. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1073619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses completely depend on the host translation machineries to express the viral proteins. Recent data reveal an unprecedented interaction of positive strand RNA ((+)RNA) viruses with the host tRNA epitranscriptome to favor viral protein expression via a specific reprogramming of codon optimality that ultimately favors decoding of the viral codons. We propose that this feature is shared by multiple RNA viruses and that the involved tRNA modifying enzymes represent promising novel targets for the development of broad-spectrum antivirals.
Collapse
|
29
|
Suleman MT, Khan YD. m1A-pred: Prediction of Modified 1-methyladenosine Sites in RNA Sequences through Artificial Intelligence. Comb Chem High Throughput Screen 2022; 25:2473-2484. [PMID: 35718969 DOI: 10.2174/1386207325666220617152743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The process of nucleotides modification or methyl groups addition to nucleotides is known as post-transcriptional modification (PTM). 1-methyladenosine (m1A) is a type of PTM formed by adding a methyl group to the nitrogen at the 1st position of the adenosine base. Many human disorders are associated with m1A, which is widely found in ribosomal RNA and transfer RNA. OBJECTIVE The conventional methods such as mass spectrometry and site-directed mutagenesis proved to be laborious and burdensome. Systematic identification of modified sites from RNA sequences is gaining much attention nowadays. Consequently, an extreme gradient boost predictor, m1A-Pred, is developed in this study for the prediction of modified m1A sites. METHODS The current study involves the extraction of position and composition-based properties within nucleotide sequences. The extraction of features helps in the development of the features vector. Statistical moments were endorsed for dimensionality reduction in the obtained features. RESULTS Through a series of experiments using different computational models and evaluation methods, it was revealed that the proposed predictor, m1A-pred, proved to be the most robust and accurate model for the identification of modified sites. AVAILABILITY AND IMPLEMENTATION To enhance the research on m1A sites, a friendly server was also developed, which was the final phase of this research.
Collapse
Affiliation(s)
- Muhammad Taseer Suleman
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
30
|
Detection technologies for RNA modifications. Exp Mol Med 2022; 54:1601-1616. [PMID: 36266445 PMCID: PMC9636272 DOI: 10.1038/s12276-022-00821-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022] Open
Abstract
To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the 'epitranscriptome'. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.
Collapse
|
31
|
Brégeon D, Pecqueur L, Toubdji S, Sudol C, Lombard M, Fontecave M, de Crécy-Lagard V, Motorin Y, Helm M, Hamdane D. Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chem Biol 2022; 17:1638-1657. [PMID: 35737906 DOI: 10.1021/acschembio.2c00307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Until recently, post-transcriptional modifications of RNA were largely restricted to noncoding RNA species. However, this belief seems to have quickly dissipated with the growing number of new modifications found in mRNA that were originally thought to be primarily tRNA-specific, such as dihydrouridine. Recently, transcriptomic profiling, metabolic labeling, and proteomics have identified unexpected dihydrouridylation of mRNAs, greatly expanding the catalog of novel mRNA modifications. These data also implicated dihydrouridylation in meiotic chromosome segregation, protein translation rates, and cell proliferation. Dihydrouridylation of tRNAs and mRNAs are introduced by flavin-dependent dihydrouridine synthases. In this review, we will briefly outline the current knowledge on the distribution of dihydrouridines in the transcriptome, their chemical labeling, and highlight structural and mechanistic aspects regarding the dihydrouridine synthases enzyme family. A special emphasis on important research directions to be addressed will also be discussed. This new entry of dihydrouridine into mRNA modifications has definitely added a new layer of information that controls protein synthesis.
Collapse
Affiliation(s)
- Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Sabrine Toubdji
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Claudia Sudol
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| |
Collapse
|
32
|
Šimonová A, Romanská V, Benoni B, Škubník K, Šmerdová L, Prochazkova M, Spustová K, Moravčík O, Gahurova L, Pačes J, Plevka P, Cahova H. Honeybee iflaviruses pack specific tRNA fragments from host cells in their virions. Chembiochem 2022; 23:e202200281. [PMID: 35771148 PMCID: PMC9544947 DOI: 10.1002/cbic.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Indexed: 11/15/2022]
Abstract
The Picornavirales include viruses that infect vertebrates, insects, and plants. It was believed that they pack only their genomic mRNA in the particles; thus, we envisaged these viruses as excellent model systems for studies of mRNA modifications. We used LC–MS to analyze digested RNA isolated from particles of the sacbrood and deformed wing iflaviruses as well as of the echovirus 18 and rhinovirus 2 picornaviruses. Whereas in the picornavirus RNAs we detected only N6‐methyladenosine and 2’‐O‐methylated nucleosides, the iflavirus RNAs contained a wide range of methylated nucleosides, such as 1‐methyladenosine (m1A) and 5‐methylcytidine (m5C). Mapping of m1A and m5C through RNA sequencing of the SBV and DWV RNAs revealed the presence of tRNA molecules. Both modifications were detected only in tRNA. Further analysis revealed that tRNAs are present in form of 3’ and 5’ fragments and they are packed selectively. Moreover, these tRNAs are typically packed by other viruses.
Collapse
Affiliation(s)
- Anna Šimonová
- Charles University: Univerzita Karlova, First Faculty of Medicine, CZECH REPUBLIC
| | - Veronika Romanská
- Charles University: Univerzita Karlova, First Faculty of Medicine, CZECH REPUBLIC
| | - Barbora Benoni
- Charles University: Univerzita Karlova, First Faculty of Medicine, CZECH REPUBLIC
| | - Karel Škubník
- Masaryk University: Masarykova Univerzita, CEITEC, CZECH REPUBLIC
| | - Lenka Šmerdová
- Masaryk University: Masarykova Univerzita, CEITEC, CZECH REPUBLIC
| | | | - Kristina Spustová
- IOCB CAS: Ustav organicke chemie a biochemie Akademie ved Ceske republiky, Chemical Biology of Nucleic Acids, CZECH REPUBLIC
| | - Ondřej Moravčík
- Institute of Molecular Genetics Czech Academy of Sciences: Ustav molekularni genetiky Akademie Ved Ceske Republiky, Bioinformatic, CZECH REPUBLIC
| | - Lenka Gahurova
- University of South Bohemia Faculty of Science: Jihoceska Univerzita v Ceskych Budejovicich Prirodovedecka Fakulta, Departement of Molecular Biology, CZECH REPUBLIC
| | - Jan Pačes
- Institute of Molecular Genetics Czech Academy of Sciences: Ustav molekularni genetiky Akademie Ved Ceske Republiky, Bioinformatic, CZECH REPUBLIC
| | - Pavel Plevka
- Masaryk University: Masarykova Univerzita, CEITEC, CZECH REPUBLIC
| | - Hana Cahova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic, CZECH REPUBLIC
| |
Collapse
|
33
|
Sjekloća L, Ferré-D’Amaré AR. Biochemical and structural characterization of the flavodoxin-like domain of the Schizosaccharomyces japonicus putative tRNA Phe 4-demethylwyosine synthase Tyw1 in complex with FMN. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000570. [PMID: 35693892 PMCID: PMC9186531 DOI: 10.17912/micropub.biology.000570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The S-adenosyl-L-methionine-dependent tRNA 4-demethylwyosine synthase TYW1 catalyzes biosynthesis of 4-demethylwyosine (imG-14), the precursor for wyosine, the hypermodified guanine-derived nucleotide present at position 37 of phenylalanine tRNAs of archaea and eukarya. Eukaryotic TYW1 enzymes contain N-terminal flavodoxin-like and C-terminal radical-SAM domains. We determined co-crystal structures of the flavodoxin-like domain of the putative Tyw1 from Schizosaccharomyces japonicus in complex with flavin mononucleotide (FMN), exploiting an unexpected anomalous scatterer present in the recombinant protein. Our results show how eukaryotic TYW1 enzymes bind the coenzyme FMN and will help further elucidation of the structural enzymology of 4-demethylwyosine synthesis.
Collapse
Affiliation(s)
- Ljiljana Sjekloća
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive, Bethesda, Maryland, 20892-8012, United States
,
Current affiliation: Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste 34149, Italy
,
Correspondence to: Ljiljana Sjekloća (
)
| | - Adrian R. Ferré-D’Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive, Bethesda, Maryland, 20892-8012, United States
| |
Collapse
|
34
|
Richter F, Plehn JE, Bessler L, Hertler J, Jörg M, Cirzi C, Tuorto F, Friedland K, Helm M. RNA marker modifications reveal the necessity for rigorous preparation protocols to avoid artifacts in epitranscriptomic analysis. Nucleic Acids Res 2022; 50:4201-4215. [PMID: 34850949 PMCID: PMC9071408 DOI: 10.1093/nar/gkab1150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
The accurate definition of an epitranscriptome is endangered by artefacts resulting from RNA degradation after cell death, a ubiquitous yet little investigated process. By tracing RNA marker modifications through tissue preparation protocols, we identified a major blind spot from daily lab routine, that has massive impact on modification analysis in small RNAs. In particular, m6,6A and Am as co-varying rRNA marker modifications, appeared in small RNA fractions following rRNA degradation in vitro and in cellulo. Analysing mouse tissue at different time points post mortem, we tracked the progress of intracellular RNA degradation after cell death, and found it reflected in RNA modification patterns. Differences were dramatic between liver, where RNA degradation commenced immediately after death, and brain, yielding essentially undamaged RNA. RNA integrity correlated with low amounts of co-varying rRNA markers. Thus validated RNA preparations featured differentially modified tRNA populations whose information content allowed a distinction even among the related brain tissues cortex, cerebellum and hippocampus. Inversely, advanced cell death correlated with high rRNA marker content, and correspondingly little with the naïve state of living tissue. Therefore, unless RNA and tissue preparations are executed with utmost care, interpretation of modification patterns in tRNA and small RNA are prone to artefacts.
Collapse
Affiliation(s)
- Florian Richter
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5 55128 Mainz, Germany
| | - Johanna E Plehn
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5 55128 Mainz, Germany
| | - Larissa Bessler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5 55128 Mainz, Germany
| | - Jasmin Hertler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5 55128 Mainz, Germany
| | - Marko Jörg
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5 55128 Mainz, Germany
| | - Cansu Cirzi
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) 69120 Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg 69120 Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance69120 Heidelberg, Germany
| | - Kristina Friedland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5 55128 Mainz, Germany
| |
Collapse
|
35
|
Zhou H, Li Y, Gan Y, Wang R. Total RNA Synthesis and its Covalent Labeling Innovation. Top Curr Chem (Cham) 2022; 380:16. [PMID: 35218412 DOI: 10.1007/s41061-022-00371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
RNA plays critical roles in a wide range of physiological processes. For example, it is well known that RNA plays an important role in regulating gene expression, cell proliferation, and differentiation, and many other chemical and biological processes. However, the research community still suffers from limited approaches that can be applied to readily visualize a specific RNA-of-interest (ROI). Several methods can be used to track RNAs; these rely mainly on biological properties, namely, hybridization, aptamer, reporter protein, and protein binding. With respect to covalent approaches, very few cases have been reported. Happily, several new methods for efficient labeling studies of ROIs have been demonstrated successfully in recent years. Additionally, methods employed for the detection of ROIs by RNA modifying enzymes have also proved feasible. Several approaches, namely, phosphoramidite chemistry, in vitro transcription reactions, co-transcription reactions, chemical post-modification, RNA modifying enzymes, ligation, and other methods targeted at RNA labeling have been revealed in the past decades. To illustrate the most recent achievements, this review aims to summarize the most recent research in the field of synthesis of RNAs-of-interest bearing a variety of unnatural nucleosides, the subsequent RNA labeling research via biocompatible ligation, and beyond.
Collapse
Affiliation(s)
- Hongling Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youfang Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Natural Product and Resource, Shanghai Institute of Organic Chemistry, Shanghai, 230030, China.
| |
Collapse
|
36
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
37
|
Frankowska K, Sochacka E. New efficient synthesis of tRNA related adenosines bearing the hydantoin ring (ct6A, ms2ct6A) by intramolecular cyclization of N6-(N-Boc-α-aminoacyl)-adenosine derivatives. Chembiochem 2022; 23:e202100655. [PMID: 34997683 DOI: 10.1002/cbic.202100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Indexed: 11/10/2022]
Abstract
A novel and efficient way for synthesis of N6-hydantoin modified adenosines, which utilizes readily available N6-(N-Boc-α-aminoacyl)-adenosine derivatives, was developed. The procedure is based on the epimerization free Tf2O-mediated conversion of the Boc group into an isocyanate moiety, followed by intramolecular cyclization. Using this method two recently discovered hydantoin modified tRNA adenosines, i.e. cyclic N6-threonylcarbamoyl-adenosine (ct6A) and 2-methylthio-N6-threonylcarbamoyladenosine (ms2ct6A) were prepared in good yields.
Collapse
Affiliation(s)
- Katarzyna Frankowska
- Lodz University of Technology: Politechnika Lodzka, Faculty of Chemistry, POLAND
| | - Elzbieta Sochacka
- Lodz University of Technology, Faculty of Chemistry, ul. Żeromskiego 116, 90-924, Łódź, POLAND
| |
Collapse
|
38
|
Almeida RL, Ogihara CA, de Souza JS, Oliveira KC, Cafarchio EM, Tescaro L, Maciel RMB, Giannocco G, Sato MA. Regularly swimming exercise modifies opioidergic neuromodulation in rostral ventrolateral medulla in hypertensive rats. Brain Res 2022; 1774:147726. [PMID: 34785257 DOI: 10.1016/j.brainres.2021.147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022]
Abstract
Moderate exercise reduces arterial pressure (AP) and heart rate (HR) in spontaneously hypertensive rats (SHR) and changes neurotransmission in medullary areas involved in cardiovascular regulation. We investigated if regularly swimming exercise (SW) affects the cardiovascular adjustments mediated by opioidergic neuromodulation in the RVLM in SHR and Wistar-Kyoto (WKY) rats. Rats were submitted to 6 wks of SW. The day after the last exercise bout, α-chloralose-anesthetized rats underwent a cannulation of the femoral artery for AP and HR recordings, and Doppler flow probes were placed around the lower abdominal aorta and superior mesenteric artery. Bilateral injection of endomorphin-2 (EM-2, 0.4 mmol/L, 60 nL) into the RVLM increased MAP in SW-SHR (20 ± 4 mmHg, N = 6), which was lower than in sedentary (SED)-SHR (35 ± 4 mmHg, N = 6). The increase in MAP in SW-SHR induced by EM-2 into the RVLM was similar in SED- and SW-WKY. Naloxone (0.5 mmol/L, 60 nL) injected into the RVLM evoked an enhanced hypotension in SW-SHR (-66 ± 8 mmHg, N = 6) compared to SED-SHR (-25 ± 3 mmHg, N = 6), which was similar in SED- and SW-WKY. No significant changes were observed in HR after EM-2 or naloxone injections into the RVLM. Changes in hindquarter and mesenteric conductances evoked by EM-2 or naloxone injections into the RVLM in SW- or SED-SHR were not different. Mu Opioid Receptor expression by Western blotting was reduced in SW-SHR than in SED-SHR and SW-WKY. Therefore, regularly SW alters the opioidergic neuromodulation in the RVLM in SHR and modifies the mu opioid receptor expression in this medullary area.
Collapse
Affiliation(s)
- Roberto L Almeida
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil
| | - Cristiana A Ogihara
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil
| | | | - Kelen C Oliveira
- Dept. Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo M Cafarchio
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil.
| | - Larissa Tescaro
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil
| | - Rui M B Maciel
- Dept. Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gisele Giannocco
- Dept. Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil
| |
Collapse
|
39
|
Jiang H, Gao Y, Zhang L, Chen D, Gan J, Murchie AIH. The identification and characterization of a selected SAM-dependent methyltransferase ribozyme that is present in natural sequences. Nat Catal 2021. [DOI: 10.1038/s41929-021-00685-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: From cells to muscle physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1700. [PMID: 34664402 DOI: 10.1002/wrna.1700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Naturally occurring post-transcriptional chemical modifications serve critical roles in impacting RNA structure and function. More directly, modifications may affect RNA stability, intracellular transport, translational efficiency, and fidelity. The combination of effects caused by modifications are ultimately linked to gene expression regulation at a genome-wide scale. The latter is especially true in systems that undergo rapid metabolic and or translational remodeling in response to external stimuli, such as the presence of stressors, but beyond that, modifications may also affect cell homeostasis. Although examples of the importance of RNA modifications in translation are accumulating rapidly, still what these contribute to the function of complex physiological systems such as muscle is only recently emerging. In the present review, we will introduce key information on various modifications and highlight connections between those and cellular malfunctions. In passing, we will describe well-documented roles for modifications in the nervous system and use this information as a stepping stone to emphasize a glaring paucity of knowledge on the role of RNA modifications in heart and skeletal muscle, with particular emphasis on mitochondrial function in those systems. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
41
|
Dannfald A, Favory JJ, Deragon JM. Variations in transfer and ribosomal RNA epitranscriptomic status can adapt eukaryote translation to changing physiological and environmental conditions. RNA Biol 2021; 18:4-18. [PMID: 34159889 PMCID: PMC8677040 DOI: 10.1080/15476286.2021.1931756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023] Open
Abstract
The timely reprogramming of gene expression in response to internal and external cues is essential to eukaryote development and acclimation to changing environments. Chemically modifying molecular receptors and transducers of these signals is one way to efficiently induce proper physiological responses. Post-translation modifications, regulating protein biological activities, are central to many well-known signal-responding pathways. Recently, messenger RNA (mRNA) chemical (i.e. epitranscriptomic) modifications were also shown to play a key role in these processes. In contrast, transfer RNA (tRNA) and ribosomal RNA (rRNA) chemical modifications, although critical for optimal function of the translation apparatus, and much more diverse and quantitatively important compared to mRNA modifications, were until recently considered as mainly static chemical decorations. We present here recent observations that are challenging this view and supporting the hypothesis that tRNA and rRNA modifications dynamically respond to various cell and environmental conditions and contribute to adapt translation to these conditions.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
42
|
Li J, Zhu WY, Yang WQ, Li CT, Liu RJ. The occurrence order and cross-talk of different tRNA modifications. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1423-1436. [PMID: 33881742 DOI: 10.1007/s11427-020-1906-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Chemical modifications expand the composition of RNA molecules from four standard nucleosides to over 160 modified nucleosides, which greatly increase the complexity and utility of RNAs. Transfer RNAs (tRNAs) are the most heavily modified cellular RNA molecules and contain the largest variety of modifications. Modification of tRNAs is pivotal for protein synthesis and also precisely regulates the noncanonical functions of tRNAs. Defects in tRNA modifications lead to numerous human diseases. Up to now, more than 100 types of modifications have been found in tRNAs. Intriguingly, some modifications occur widely on all tRNAs, while others only occur on a subgroup of tRNAs or even only a specific tRNA. The modification frequency of each tRNA is approximately 7% to 25%, with 5-20 modification sites present on each tRNA. The occurrence and modulation of tRNA modifications are specifically noticeable as plenty of interplays among different sites and modifications have been discovered. In particular, tRNA modifications are responsive to environmental changes, indicating their dynamic and highly organized nature. In this review, we summarized the known occurrence order, cross-talk, and cooperativity of tRNA modifications.
Collapse
Affiliation(s)
- Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
43
|
Martin SE, Gan H, Toomer G, Sridhar N, Sztuba-Solinska J. The m 6A landscape of polyadenylated nuclear (PAN) RNA and its related methylome in the context of KSHV replication. RNA (NEW YORK, N.Y.) 2021; 27:1102-1125. [PMID: 34187903 PMCID: PMC8370742 DOI: 10.1261/rna.078777.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/25/2021] [Indexed: 05/10/2023]
Abstract
Polyadenylated nuclear (PAN) RNA is a long noncoding transcript involved in Kaposi's sarcoma-associated herpesvirus (KSHV) lytic reactivation and regulation of cellular and viral gene expression. We have previously shown that PAN RNA has dynamic secondary structure and protein binding profiles that can be influenced by epitranscriptomic modifications. N6-methyladenosine (m6A) is one of the most abundant chemical signatures found in viral RNA genomes and virus-encoded RNAs. Here, we combined antibody-independent next-generation mapping with direct RNA sequencing to address the epitranscriptomic status of PAN RNA in KSHV infected cells. We showed that PAN m6A status is dynamic, reaching the highest number of modifications at the late lytic stages of KSHV infection. Using a newly developed method, termed selenium-modified deoxythymidine triphosphate (SedTTP)-reverse transcription (RT) and ligation assisted PCR analysis of m6A (SLAP), we gained insight into the fraction of modification at identified sites. By applying comprehensive proteomic approaches, we identified writers and erasers that regulate the m6A status of PAN, and readers that can convey PAN m6A phenotypic effects. We verified the temporal and spatial subcellular availability of the methylome components for PAN modification by performing confocal microscopy analysis. Additionally, the RNA biochemical probing (SHAPE-MaP) outlined local and global structural alterations invoked by m6A in the context of full-length PAN RNA. This work represents the first comprehensive overview of the dynamic interplay that takes place between the cellular epitranscriptomic machinery and a specific viral RNA in the context of KSHV infected cells.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/genetics
- Adenosine/metabolism
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Base Pairing
- Base Sequence
- Cell Line, Tumor
- Endonucleases/genetics
- Endonucleases/metabolism
- Epigenesis, Genetic
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Lymphocytes/metabolism
- Lymphocytes/virology
- Methylation
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Nuclear/genetics
- RNA, Nuclear/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Reverse Transcription
- Sequence Analysis, RNA
- Transcriptome
Collapse
Affiliation(s)
| | - Huachen Gan
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Gabriela Toomer
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Nikitha Sridhar
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | | |
Collapse
|
44
|
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.
Collapse
Affiliation(s)
- Reinmar Eggers
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Alexandra Jammer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Bianca Kerschbaumer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Majd Lahham
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Emilia Strandback
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria.
| |
Collapse
|
45
|
Asim MN, Ibrahim MA, Imran Malik M, Dengel A, Ahmed S. Advances in Computational Methodologies for Classification and Sub-Cellular Locality Prediction of Non-Coding RNAs. Int J Mol Sci 2021; 22:8719. [PMID: 34445436 PMCID: PMC8395733 DOI: 10.3390/ijms22168719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Apart from protein-coding Ribonucleic acids (RNAs), there exists a variety of non-coding RNAs (ncRNAs) which regulate complex cellular and molecular processes. High-throughput sequencing technologies and bioinformatics approaches have largely promoted the exploration of ncRNAs which revealed their crucial roles in gene regulation, miRNA binding, protein interactions, and splicing. Furthermore, ncRNAs are involved in the development of complicated diseases like cancer. Categorization of ncRNAs is essential to understand the mechanisms of diseases and to develop effective treatments. Sub-cellular localization information of ncRNAs demystifies diverse functionalities of ncRNAs. To date, several computational methodologies have been proposed to precisely identify the class as well as sub-cellular localization patterns of RNAs). This paper discusses different types of ncRNAs, reviews computational approaches proposed in the last 10 years to distinguish coding-RNA from ncRNA, to identify sub-types of ncRNAs such as piwi-associated RNA, micro RNA, long ncRNA, and circular RNA, and to determine sub-cellular localization of distinct ncRNAs and RNAs. Furthermore, it summarizes diverse ncRNA classification and sub-cellular localization determination datasets along with benchmark performance to aid the development and evaluation of novel computational methodologies. It identifies research gaps, heterogeneity, and challenges in the development of computational approaches for RNA sequence analysis. We consider that our expert analysis will assist Artificial Intelligence researchers with knowing state-of-the-art performance, model selection for various tasks on one platform, dominantly used sequence descriptors, neural architectures, and interpreting inter-species and intra-species performance deviation.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Imran Malik
- National Center for Artificial Intelligence (NCAI), National University of Sciences and Technology, Islamabad 44000, Pakistan;
- School of Electrical Engineering & Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Andreas Dengel
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- DeepReader GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
| |
Collapse
|
46
|
Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes (Basel) 2021; 12:1125. [PMID: 34440299 PMCID: PMC8394870 DOI: 10.3390/genes12081125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France; (L.A.); (R.B.-C.); (H.D.B.); (M.G.); (V.L.); (P.R.)
| |
Collapse
|
47
|
Mao S, Tsai HC, Sheng J. Synthesis of 5-Cyanomethyluridine (cnm 5 U) and 5-Cyanouridine (cn 5 U) Phosphoramidites and Their Incorporation into RNA Oligonucleotides. ACTA ACUST UNITED AC 2021; 82:e114. [PMID: 32846053 DOI: 10.1002/cpnc.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This article contains detailed synthetic protocols for preparation of 5-cyanomethyluridine (cnm5 U) and 5-cyanouridine (cn5 U) phosphoramidites. The synthesis of the cnm5 U phosphoramidite building block starts with commercially available 5-methyluridine (m5 C), followed by bromination of the 5-methyl group to install the cyano moiety using TMSCN/TBAF. The cn5 U phosphoramidite is obtained by regular Vorbrüggen glycosylation of the protected ribofuranose with silylated 5-cyanouracil. These two modified phosphoramidites are suitable for synthesis of RNA oligonucleotides on solid phase using conventional amidite chemistry. Our protocol provides access to two novel building blocks for constructing RNA-based therapeutics. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cnm5 U and cn5 U phosphoramidites Basic Protocol 2: Synthesis, purification, and characterization of cnm5 U- and cn5 U-modified RNA oligonucleotides.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| | - Hsu-Chun Tsai
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| |
Collapse
|
48
|
Ehrlich R, Davyt M, López I, Chalar C, Marín M. On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions? Front Mol Biosci 2021; 8:643701. [PMID: 33796548 PMCID: PMC8007984 DOI: 10.3389/fmolb.2021.643701] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Cellular tRNAs appear today as a diverse population of informative macromolecules with conserved general elements ensuring essential common functions and different and distinctive features securing specific interactions and activities. Their differential expression and the variety of post-transcriptional modifications they are subject to, lead to the existence of complex repertoires of tRNA populations adjusted to defined cellular states. Despite the tRNA-coding genes redundancy in prokaryote and eukaryote genomes, it is surprising to note the absence of genes coding specific translational-active isoacceptors throughout the phylogeny. Through the analysis of different releases of tRNA databases, this review aims to provide a general summary about those “missing tRNA genes.” This absence refers to both tRNAs that are not encoded in the genome, as well as others that show critical sequence variations that would prevent their activity as canonical translation adaptor molecules. Notably, while a group of genes are universally missing, others are absent in particular kingdoms. Functional information available allows to hypothesize that the exclusion of isodecoding molecules would be linked to: 1) reduce ambiguities of signals that define the specificity of the interactions in which the tRNAs are involved; 2) ensure the adaptation of the translational apparatus to the cellular state; 3) divert particular tRNA variants from ribosomal protein synthesis to other cellular functions. This leads to consider the “missing tRNA genes” as a source of putative non-canonical tRNA functions and to broaden the concept of adapter molecules in ribosomal-dependent protein synthesis.
Collapse
Affiliation(s)
- Ricardo Ehrlich
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay.,Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
49
|
The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 2021; 22:375-392. [PMID: 33658722 DOI: 10.1038/s41580-021-00342-0] [Citation(s) in RCA: 343] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Transfer RNA (tRNA) is an adapter molecule that links a specific codon in mRNA with its corresponding amino acid during protein synthesis. tRNAs are enzymatically modified post-transcriptionally. A wide variety of tRNA modifications are found in the tRNA anticodon, which are crucial for precise codon recognition and reading frame maintenance, thereby ensuring accurate and efficient protein synthesis. In addition, tRNA-body regions are also frequently modified and thus stabilized in the cell. Over the past two decades, 16 novel tRNA modifications were discovered in various organisms, and the chemical space of tRNA modification continues to expand. Recent studies have revealed that tRNA modifications can be dynamically altered in response to levels of cellular metabolites and environmental stresses. Importantly, we now understand that deficiencies in tRNA modification can have pathological consequences, which are termed 'RNA modopathies'. Dysregulation of tRNA modification is involved in mitochondrial diseases, neurological disorders and cancer.
Collapse
|
50
|
Schaefer MR. The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics? Genes (Basel) 2021; 12:345. [PMID: 33652758 PMCID: PMC7996938 DOI: 10.3390/genes12030345] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
RNA modifications, long considered to be molecular curiosities embellishing just abundant and non-coding RNAs, have now moved into the focus of both academic and applied research. Dedicated research efforts (epitranscriptomics) aim at deciphering the underlying principles by determining RNA modification landscapes and investigating the molecular mechanisms that establish, interpret and modulate the information potential of RNA beyond the combination of four canonical nucleotides. This has resulted in mapping various epitranscriptomes at high resolution and in cataloguing the effects caused by aberrant RNA modification circuitry. While the scope of the obtained insights has been complex and exciting, most of current epitranscriptomics appears to be stuck in the process of producing data, with very few efforts to disentangle cause from consequence when studying a specific RNA modification system. This article discusses various knowledge gaps in this field with the aim to raise one specific question: how are the enzymes regulated that dynamically install and modify RNA modifications? Furthermore, various technologies will be highlighted whose development and use might allow identifying specific and context-dependent regulators of epitranscriptomic mechanisms. Given the complexity of individual epitranscriptomes, determining their regulatory principles will become crucially important, especially when aiming at modifying specific aspects of an epitranscriptome both for experimental and, potentially, therapeutic purposes.
Collapse
Affiliation(s)
- Matthias R Schaefer
- Centre for Anatomy & Cell Biology, Division of Cell-and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Haus C, 1st Floor, 1090 Vienna, Austria
| |
Collapse
|