1
|
Teng L, Sun Y, Chen J, Wang C, Urbach JM, Kobe B, Ye N, Zeng Q. Exon shuffling and alternative splicing of ROCO genes in brown algae enables a diverse repertoire of candidate immune receptors. FRONTIERS IN PLANT SCIENCE 2024; 15:1445022. [PMID: 39246816 PMCID: PMC11378527 DOI: 10.3389/fpls.2024.1445022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
The ROCO family is a family of GTPases characterized by a central ROC-COR tandem domain. Interest in the structure and function of ROCO proteins has increased with the identification of their important roles in human disease. Nevertheless, the functions of most ROCO proteins are still unknown. In the present study, we characterized the structure, evolution, and expression of ROCOs in four species of brown algae. Brown algae have a larger number of ROCO proteins than other organisms reported to date. Phylogenetic analyses showed that ROCOs have an ancient origin, likely originated in prokaryotes. ROCOs in brown algae clustered into four groups and showed no strong relationship with red algae or green algae. Brown algal ROCOs retain the ancestral LRR-ROC-COR domain arrangement, which is found in prokaryotes, plants and some basal metazoans. Remarkably, individual LRR motifs in ROCO genes are each encoded by separate exons and exhibit intense exon shuffling and diversifying selection. Furthermore, the tandem LRR exons exhibit alternative splicing to generate multiple transcripts. Both exon shuffling and alternative splicing of LRR repeats may be important mechanisms for generating diverse ligand-binding specificities as immune receptors. Besides their potential immune role, expression analysis shows that many ROCO genes are responsive to other stress conditions, suggesting they could participate in multiple signal pathways, not limited to the immune response. Our results substantially enhance our understanding of the structure and function of this mysterious gene family.
Collapse
Affiliation(s)
- Linhong Teng
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Yuhuan Sun
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jiayi Chen
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jonathan M Urbach
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA, United States
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | |
Collapse
|
2
|
Zhu C, Herbst S, Lewis PA. Leucine-rich repeat kinase 2 at a glance. J Cell Sci 2023; 136:jcs259724. [PMID: 37698513 PMCID: PMC10508695 DOI: 10.1242/jcs.259724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multidomain scaffolding protein with dual guanosine triphosphatase (GTPase) and kinase enzymatic activities, providing this protein with the capacity to regulate a multitude of signalling pathways and act as a key mediator of diverse cellular processes. Much of the interest in LRRK2 derives from mutations in the LRRK2 gene being the most common genetic cause of Parkinson's disease, and from the association of the LRRK2 locus with a number of other human diseases, including inflammatory bowel disease. Therefore, the LRRK2 research field has focused on the link between LRRK2 and pathology, with the aim of uncovering the underlying mechanisms and, ultimately, finding novel therapies and treatments to combat them. From the biochemical and cellular functions of LRRK2, to its relevance to distinct disease mechanisms, this Cell Science at a Glance article and the accompanying poster deliver a snapshot of our current understanding of LRRK2 function, dysfunction and links to disease.
Collapse
Affiliation(s)
- Christiane Zhu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Susanne Herbst
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Kumar S, Behl T, Sehgal A, Chigurupati S, Singh S, Mani V, Aldubayan M, Alhowail A, Kaur S, Bhatia S, Al-Harrasi A, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Abdel Daim MM. Exploring the focal role of LRRK2 kinase in Parkinson's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32368-32382. [PMID: 35147886 DOI: 10.1007/s11356-022-19082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Satvinder Kaur
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistrty, Faculty of Pharmacy and Health Science, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Mohamed M Abdel Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Herbst S, Lewis PA. From structure to ætiology: a new window on the biology of leucine-rich repeat kinase 2 and Parkinson's disease. Biochem J 2021; 478:2945-2951. [PMID: 34328508 PMCID: PMC8331089 DOI: 10.1042/bcj20210383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/20/2023]
Abstract
Since the discovery of mutations in leucine-rich repeat kinase 2 (LRRK2) as an underlying genetic cause for the development of Parkinson's disease (PD) in 2004 (Neuron 44, 601-607; Neuron 44, 595-600), and subsequent efforts to develop LRRK2 kinase inhibitors as a therapy for Parkinson's (Expert Opin. Ther. Targets 21, 751-753), elucidating the atomic resolution structure of LRRK2 has been a major goal of research into this protein. At over 250 kDa, the large size and complicated domain organisation of LRRK2 has made this a highly challenging target for structural biologists, however, a number of recent studies using both in vitro and in situ approaches (Nature 588, 344-349; Cell 182, 1508-1518.e1516; Cell 184, 3519-3527.e3510) have provided important new insights into LRRK2 structure and the complexes formed by this protein.
Collapse
Affiliation(s)
- Susanne Herbst
- Department of Comparative Biomedical Science, Royal Veterinary College, Royal College Street, London, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, U.S.A
| | - Patrick A. Lewis
- Department of Comparative Biomedical Science, Royal Veterinary College, Royal College Street, London, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, U.S.A
- Correspondence: Patrick A. Lewis ()
| |
Collapse
|
5
|
Allosteric modulation of the GTPase activity of a bacterial LRRK2 homolog by conformation-specific Nanobodies. Biochem J 2020; 477:1203-1218. [PMID: 32167135 PMCID: PMC7135905 DOI: 10.1042/bcj20190843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the Parkinson's disease (PD)-associated protein leucine-rich repeat kinase 2 (LRRK2) commonly lead to a reduction of GTPase activity and increase in kinase activity. Therefore, strategies for drug development have mainly been focusing on the design of LRRK2 kinase inhibitors. We recently showed that the central RocCOR domains (Roc: Ras of complex proteins; COR: C-terminal of Roc) of a bacterial LRRK2 homolog cycle between a dimeric and monomeric form concomitant with GTP binding and hydrolysis. PD-associated mutations can slow down GTP hydrolysis by stabilizing the protein in its dimeric form. Here, we report the identification of two Nanobodies (NbRoco1 and NbRoco2) that bind the bacterial Roco protein (CtRoco) in a conformation-specific way, with a preference for the GTP-bound state. NbRoco1 considerably increases the GTP turnover rate of CtRoco and reverts the decrease in GTPase activity caused by a PD-analogous mutation. We show that NbRoco1 exerts its effect by allosterically interfering with the CtRoco dimer–monomer cycle through the destabilization of the dimeric form. Hence, we provide the first proof of principle that allosteric modulation of the RocCOR dimer–monomer cycle can alter its GTPase activity, which might present a potential novel strategy to overcome the effect of LRRK2 PD mutations.
Collapse
|
6
|
Qian J, Yang J, Liu X, Chen Z, Yan X, Gu H, Xue Q, Zhou X, Gai L, Lu P, Shi Y, Yao N. Analysis of lncRNA-mRNA networks after MEK1/2 inhibition based on WGCNA in pancreatic ductal adenocarcinoma. J Cell Physiol 2019; 235:3657-3668. [PMID: 31583713 PMCID: PMC6972678 DOI: 10.1002/jcp.29255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) responds poorly to treatment. Efforts have been exerted to prolong the survival time of PDA, but the 5-year survival rates remain disappointing. Understanding the molecular mechanisms of PDA development is significant. MEK/ERK pathway signaling has been proven to be important in PDA. lncRNA-mRNA networks have become a vital part of molecular mechanisms in the MEK/ERK pathway. Herein, weighted gene coexpression network analysis was used to investigate the coexpressed lncRNA-mRNA networks in the MEK/ERK pathway based on GSE45765. Differently expressed long noncoding RNA (lncRNA) and messenger RNA (mRNA) were found and 10 modules were identified based on coexpression profiles. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were then performed to analyze the coexpressed lncRNA and mRNA in different modules. PDA cells and tissues were used to validate the analysis results. Finally, we found that NONHSAT185150.1 and B4GALT6 were negatively correlated with MEK1/2. By analyzing GSE45765, the genome-wide profiles of lncRNA-mRNA network after MEK1/2 was established, which might aid the development of drug-targeting MEK1/2 and the investigation of diagnostic markers.
Collapse
Affiliation(s)
- Jing Qian
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianxin Yang
- Department of General Surgery, Qidong People's Hospital, Qidong, Jiangsu, China
| | - Xianchen Liu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiming Chen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaodi Yan
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hongmei Gu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qiang Xue
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingqin Zhou
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ling Gai
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Pengpeng Lu
- Department of Oncology, Nantong University, Nantong, Jiangsu, China
| | - Yu Shi
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ninghua Yao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
7
|
The dynamic switch mechanism that leads to activation of LRRK2 is embedded in the DFGψ motif in the kinase domain. Proc Natl Acad Sci U S A 2019; 116:14979-14988. [PMID: 31292254 PMCID: PMC6660771 DOI: 10.1073/pnas.1900289116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Little is known about the regulation of Leucine-rich repeat kinase 2 (LRRK2) associated with familial Parkinson’s disease (PD). To test whether the kinase domain drives LRRK2 activation, we applied the spine concept that describes the core architecture of every protein kinase. We discovered that mutation of Y2018, a regulatory spine residue, to Phe in the DFGψ motif created a hyperactive kinase similar to the PD-associated mutation G2019S. The hydroxyl moiety of Y2018 thus serves as a “brake,” stabilizing the inactive conformation; simply removing it destroys a key inhibitory hydrogen-bonding node. These data reveal an LRRK2-specific regulatory mechanism, confirming that the kinase domain functions as a classical kinase that controls overall conformational dynamics in full-length LRRK2 and drives therapeutic strategies. Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein, and LRRK2 mutants are recognized risk factors for Parkinson’s disease (PD). Although the precise mechanisms that control LRRK2 regulation and function are unclear, the importance of the kinase domain is strongly implicated, since 2 of the 5 most common familial LRRK2 mutations (G2019S and I2020T) are localized to the conserved DFGψ motif in the kinase core, and kinase inhibitors are under development. Combining the concept of regulatory (R) and catalytic (C) spines with kinetic and cell-based assays, we discovered a major regulatory mechanism embedded within the kinase domain and show that the DFG motif serves as a conformational switch that drives LRRK2 activation. LRRK2 is quite unusual in that the highly conserved Phe in the DFGψ motif, which is 1 of the 4 R-spine residues, is replaced with tyrosine (DY2018GI). A Y2018F mutation creates a hyperactive phenotype similar to the familial mutation G2019S. The hydroxyl moiety of Y2018 thus serves as a “brake” that stabilizes an inactive conformation; simply removing it destroys a key hydrogen-bonding node. Y2018F, like the pathogenic mutant I2020T, spontaneously forms LRRK2-decorated microtubules in cells, while the wild type and G2019S require kinase inhibitors to form filaments. We also explored 3 different mechanisms that create kinase-dead pseudokinases, including D2017A, which further emphasizes the highly synergistic role of key hydrophobic and hydrophilic/charged residues in the assembly of active LRRK2. We thus hypothesize that LRRK2 harbors a classical protein kinase switch mechanism that drives the dynamic activation of full-length LRRK2.
Collapse
|
8
|
Lewis PA. Leucine rich repeat kinase 2: a paradigm for pleiotropy. J Physiol 2019; 597:3511-3521. [PMID: 31124140 DOI: 10.1113/jp276163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The LRRK2 gene, coding for leucine rich repeat kinase 2 (LRRK2), is a key player in the genetics of Parkinson's disease. Despite extensive efforts, LRRK2 has proved remarkably evasive with regard to attempts to understand both the role it plays in disease and its normal physiological function. At least part of why LRRK2 has been so difficult to define is that it appears to be many things to many cellular functions and diseases - a pleiotropic actor at both the genetic and the molecular level. Gaining greater insight into the mechanisms and pathways allowing LRRK2 to act in this manner will have implications for our understanding of the role of genes in the aetiology of complex disease, the molecular underpinnings of signal transduction pathways in the cell, and drug discovery in the genome era.
Collapse
Affiliation(s)
- Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
9
|
Weykopf B, Haupt S, Jungverdorben J, Flitsch LJ, Hebisch M, Liu G, Suzuki K, Belmonte JCI, Peitz M, Blaess S, Till A, Brüstle O. Induced pluripotent stem cell-based modeling of mutant LRRK2-associated Parkinson's disease. Eur J Neurosci 2019; 49:561-589. [PMID: 30656775 PMCID: PMC7114274 DOI: 10.1111/ejn.14345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Recent advances in cell reprogramming have enabled assessment of disease-related cellular traits in patient-derived somatic cells, thus providing a versatile platform for disease modeling and drug development. Given the limited access to vital human brain cells, this technology is especially relevant for neurodegenerative disorders such as Parkinson's disease (PD) as a tool to decipher underlying pathomechanisms. Importantly, recent progress in genome-editing technologies has provided an ability to analyze isogenic induced pluripotent stem cell (iPSC) pairs that differ only in a single genetic change, thus allowing a thorough assessment of the molecular and cellular phenotypes that result from monogenetic risk factors. In this review, we summarize the current state of iPSC-based modeling of PD with a focus on leucine-rich repeat kinase 2 (LRRK2), one of the most prominent monogenetic risk factors for PD linked to both familial and idiopathic forms. The LRRK2 protein is a primarily cytosolic multi-domain protein contributing to regulation of several pathways including autophagy, mitochondrial function, vesicle transport, nuclear architecture and cell morphology. We summarize iPSC-based studies that contributed to improving our understanding of the function of LRRK2 and its variants in the context of PD etiopathology. These data, along with results obtained in our own studies, underscore the multifaceted role of LRRK2 in regulating cellular homeostasis on several levels, including proteostasis, mitochondrial dynamics and regulation of the cytoskeleton. Finally, we expound advantages and limitations of reprogramming technologies for disease modeling and drug development and provide an outlook on future challenges and expectations offered by this exciting technology.
Collapse
Affiliation(s)
- Beatrice Weykopf
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Life & Brain GmbHCellomics UnitBonnGermany
- Precision Neurology Program & Advanced Center for Parkinson's Disease ResearchHarvard Medical School and Brigham & Women's HospitalBostonMassachusetts
| | | | - Johannes Jungverdorben
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Memorial Sloan Kettering Cancer CenterNew York CityNew York
| | - Lea Jessica Flitsch
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Matthias Hebisch
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Guang‐Hui Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Keiichiro Suzuki
- Gene Expression LaboratoryThe Salk Institute for Biological StudiesLa JollaCalifornia
| | | | - Michael Peitz
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Sandra Blaess
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Andreas Till
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Life & Brain GmbHCellomics UnitBonnGermany
| | - Oliver Brüstle
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| |
Collapse
|
10
|
Structure and nucleotide-induced conformational dynamics of the Chlorobium tepidum Roco protein. Biochem J 2019; 476:51-66. [PMID: 30538153 DOI: 10.1042/bcj20180803] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022]
Abstract
The LRR (leucine-rich repeat)-Roc (Ras of complex proteins)-COR (C-terminal of Roc) domains are central to the action of nearly all Roco proteins, including the Parkinson's disease-associated protein LRRK2 (leucine-rich repeat kinase 2). We previously demonstrated that the Roco protein from Chlorobium tepidum (CtRoco) undergoes a dimer-monomer cycle during the GTPase reaction, with the protein being mainly dimeric in the nucleotide-free and GDP (guanosine-5'-diphosphate)-bound states and monomeric in the GTP (guanosine-5'-triphosphate)-bound state. Here, we report a crystal structure of CtRoco in the nucleotide-free state showing for the first time the arrangement of the LRR-Roc-COR. This structure reveals a compact dimeric arrangement and shows an unanticipated intimate interaction between the Roc GTPase domains in the dimer interface, involving residues from the P-loop, the switch II loop, the G4 region and a loop which we named the 'Roc dimerization loop'. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) is subsequently used to highlight structural alterations induced by individual steps along the GTPase cycle. The structure and HDX-MS data propose a pathway linking nucleotide binding to monomerization and relaying the conformational changes via the Roc switch II to the LRR and COR domains. Together, this work provides important new insights in the regulation of the Roco proteins.
Collapse
|
11
|
Abstract
The LRRK2 gene is a major contributor to genetic risk for Parkinson's disease and understanding the biology of the leucine-rich repeat kinase 2 (LRRK2, the protein product of this gene) is an important goal in Parkinson's research. LRRK2 is a multi-domain, multi-activity enzyme and has been implicated in a wide range of signalling events within the cell. Because of the complexities of the signal transduction pathways in which LRRK2 is involved, it has been challenging to generate a clear idea as to how mutations and disease associated variants in this gene are altered in disease. Understanding the events in which LRRK2 is involved at a systems level is therefore critical to fully understand the biology and pathobiology of this protein and is the subject of this review.
Collapse
Affiliation(s)
- Alice Price
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building. 35, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
12
|
Tomkins JE, Dihanich S, Beilina A, Ferrari R, Ilacqua N, Cookson MR, Lewis PA, Manzoni C. Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins. Proteomics 2018; 18:e1700444. [PMID: 29513927 PMCID: PMC5992104 DOI: 10.1002/pmic.201700444] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/05/2018] [Indexed: 12/19/2022]
Abstract
Signal transduction cascades governed by kinases and GTPases are a critical component of the command and control of cellular processes, with the precise outcome partly determined by direct protein-protein interactions (PPIs). Here, we use the human ROCO proteins as a model for investigating PPI signaling events-taking advantage of the unique dual kinase/GTPase activities and scaffolding properties of these multidomain proteins. PPI networks are reported that encompass the human ROCO proteins, developed using two complementary approaches. First, using the recently developed weighted PPI network analysis (WPPINA) pipeline, a confidence-weighted overview of validated ROCO protein interactors is obtained from peer-reviewed literature. Second, novel ROCO PPIs are assessed experimentally via protein microarray screens. The networks derived from these orthologous approaches are compared to identify common elements within the ROCO protein interactome; functional enrichment analysis of this common core of the network identified stress response and cell projection organization as shared functions within this protein family. Despite the presence of these commonalities, the results suggest that many unique interactors and therefore some specialized cellular roles have evolved for different members of the ROCO proteins. Overall, this multi-approach strategy to increase the resolution of protein interaction networks represents a prototype for the utility of PPI data integration in understanding signaling biology.
Collapse
Affiliation(s)
- James E. Tomkins
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
| | - Sybille Dihanich
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Alexandra Beilina
- Laboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaUSA
| | - Raffaele Ferrari
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Nicolò Ilacqua
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Mark R. Cookson
- Laboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaUSA
| | - Patrick A. Lewis
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Claudia Manzoni
- School of PharmacyUniversity of ReadingWhiteknights CampusReadingUK
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| |
Collapse
|
13
|
Civiero L, Cogo S, Kiekens A, Morganti C, Tessari I, Lobbestael E, Baekelandt V, Taymans JM, Chartier-Harlin MC, Franchin C, Arrigoni G, Lewis PA, Piccoli G, Bubacco L, Cookson MR, Pinton P, Greggio E. PAK6 Phosphorylates 14-3-3γ to Regulate Steady State Phosphorylation of LRRK2. Front Mol Neurosci 2017; 10:417. [PMID: 29311810 PMCID: PMC5735978 DOI: 10.3389/fnmol.2017.00417] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/30/2017] [Indexed: 12/28/2022] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease (PD) and, as such, LRRK2 is considered a promising therapeutic target for age-related neurodegeneration. Although the cellular functions of LRRK2 in health and disease are incompletely understood, robust evidence indicates that PD-associated mutations alter LRRK2 kinase and GTPase activities with consequent deregulation of the downstream signaling pathways. We have previously demonstrated that one LRRK2 binding partner is P21 (RAC1) Activated Kinase 6 (PAK6). Here, we interrogate the PAK6 interactome and find that PAK6 binds a subset of 14-3-3 proteins in a kinase dependent manner. Furthermore, PAK6 efficiently phosphorylates 14-3-3γ at Ser59 and this phosphorylation serves as a switch to dissociate the chaperone from client proteins including LRRK2, a well-established 14-3-3 binding partner. We found that 14-3-3γ phosphorylated by PAK6 is no longer competent to bind LRRK2 at phospho-Ser935, causing LRRK2 dephosphorylation. To address whether these interactions are relevant in a neuronal context, we demonstrate that a constitutively active form of PAK6 rescues the G2019S LRRK2-associated neurite shortening through phosphorylation of 14-3-3γ. Our results identify PAK6 as the kinase for 14-3-3γ and reveal a novel regulatory mechanism of 14-3-3/LRRK2 complex in the brain.
Collapse
Affiliation(s)
- Laura Civiero
- Department of Biology, University of Padova, Padova, Italy
| | - Susanna Cogo
- Department of Biology, University of Padova, Padova, Italy
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | | | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Jean-Marc Taymans
- Université de Lille, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1172, Team “Early Stages of Parkinson's Disease”, Lille, France
| | - Marie-Christine Chartier-Harlin
- Université de Lille, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1172, Team “Early Stages of Parkinson's Disease”, Lille, France
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Patrick A. Lewis
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Giovanni Piccoli
- Center for Integrative Biology, University of Trento, Trento, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, MD, United States
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
14
|
The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions. Sci Rep 2017; 7:5377. [PMID: 28710481 PMCID: PMC5511190 DOI: 10.1038/s41598-017-05760-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.
Collapse
|
15
|
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in a wide range of cellular processes, including the catabolic pathways collectively described as autophagy. In this chapter, the evidence linking LRRK2 to autophagy will be examined, along with how regulation of autophagy and lysosomal pathways may provide a nexus between the physiological function of this protein and the different diseases with which it has been associated. Data from cellular and animal models for LRRK2 function and dysfunction support a role in the regulation and control of autophagic pathways in the cell, although the extant results do not provide a clear indication as to whether LRRK2 is a positive or negative regulator of these pathways, and there are conflicting data as to the impact of mutations in LRRK2 causative for Parkinson's disease. Given that LRRK2 is a priority drug target for Parkinson's, the evidence suggesting that knockout or inhibition of LRRK2 can result in deregulation of autophagy may have important implications and is discussed in the context of our wider understanding of LRRK2.
Collapse
Affiliation(s)
- Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK.
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
16
|
Molecular Insights and Functional Implication of LRRK2 Dimerization. ADVANCES IN NEUROBIOLOGY 2017; 14:107-121. [DOI: 10.1007/978-3-319-49969-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Nguyen APT, Moore DJ. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity. ADVANCES IN NEUROBIOLOGY 2017; 14:71-88. [PMID: 28353279 DOI: 10.1007/978-3-319-49969-7_4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of Parkinson's disease (PD) with late-onset and autosomal-dominant inheritance. LRRK2 belongs to the ROCO superfamily of proteins, characterized by a Ras-of-complex (Roc) GTPase domain in tandem with a C-terminal-of-Roc (COR) domain. LRRK2 also contains a protein kinase domain adjacent to the Roc-COR tandem domain in addition to multiple repeat domains. Disease-causing familial mutations cluster within the Roc-COR tandem and kinase domains of LRRK2, where they act to either impair GTPase activity or enhance kinase activity. Familial LRRK2 mutations share in common the capacity to induce neuronal toxicity in cultured cells. While the contribution of the frequent G2019S mutation, located within the kinase domain, to kinase activity and neurotoxicity has been extensively investigated, the contribution of GTPase activity has received less attention. The GTPase domain has been shown to play an important role in regulating kinase activity, in dimerization, and in mediating the neurotoxic effects of LRRK2. Accordingly, the GTPase domain has emerged as a potential therapeutic target for inhibiting the pathogenic effects of LRRK2 mutations. Many important mechanisms remain to be elucidated, including how the GTPase cycle of LRRK2 is regulated, whether GTPase effectors exist for LRRK2, and how GTPase activity contributes to the overall functional output of LRRK2. In this review, we discuss the importance of the GTPase domain for LRRK2-linked PD focusing in particular on its regulation, function, and contribution to neurotoxic mechanisms.
Collapse
Affiliation(s)
- An Phu Tran Nguyen
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
18
|
Taymans JM, Greggio E. LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease, Where Do We Stand? Curr Neuropharmacol 2016; 14:214-25. [PMID: 26517051 PMCID: PMC4857626 DOI: 10.2174/1570159x13666151030102847] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
One of the most promising therapeutic targets for potential disease-modifying treatment of Parkinson's disease (PD) is leucine-rich repeat kinase 2 (LRRK2). Specifically, targeting LRRK2's kinase function has generated a lot of interest from both industry and academia. This work has yielded several published studies showing the feasibility of developing potent, selective and brain permeable LRRK2 kinase inhibitors. The availability of these experimental drugs is contributing to filling in the gaps in our knowledge on the safety and efficacy of LRRK2 kinase inhibition. Recent studies of LRRK2 kinase inhibition in preclinical models point to potential undesired effects in peripheral tissues such as lung and kidney. Also, while strategies are now emerging to measure target engagement of LRRK2 inhibitors, there remains an important need to expand efficacy studies in preclinical models of progressive PD. Future work in the LRRK2 inhibition field must therefore be directed towards developing molecules and treatment regimens which demonstrate efficacy in mammalian models of disease in conditions where safety liabilities are reduced to a minimum.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Jean-Pierre Aubert Research Center, UMR-S1172,rue Polonovski - 1 place de Verdun, 59045 Lille, France.
| | - Elisa Greggio
- Department of Biology, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
19
|
Civiero L, Cirnaru MD, Beilina A, Rodella U, Russo I, Belluzzi E, Lobbestael E, Reyniers L, Hondhamuni G, Lewis PA, Van den Haute C, Baekelandt V, Bandopadhyay R, Bubacco L, Piccoli G, Cookson MR, Taymans JM, Greggio E. Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain. J Neurochem 2015; 135:1242-56. [PMID: 26375402 PMCID: PMC4715492 DOI: 10.1111/jnc.13369] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/01/2015] [Accepted: 09/04/2015] [Indexed: 12/23/2022]
Abstract
Leucine‐rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21‐activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21‐activated kinases are serine‐threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post‐mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock‐out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2‐mediated pathophysiology.
We propose p21‐activated kinase 6 (PAK6) as a novel interactor of leucine‐rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2‐linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.
Collapse
Affiliation(s)
- Laura Civiero
- Department of Biology, University of Padova, Padova, Italy
| | | | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, Maryland, USA
| | - Umberto Rodella
- Department of Biology, University of Padova, Padova, Italy.,Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Isabella Russo
- Department of Biology, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Department of Biology, University of Padova, Padova, Italy
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Lauran Reyniers
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Geshanthi Hondhamuni
- Department of Molecular Neuroscience UCL, Reta Lila Weston Institute of Neurological Studies, Institute of Neurology, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Reading, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Rina Bandopadhyay
- Department of Molecular Neuroscience UCL, Reta Lila Weston Institute of Neurological Studies, Institute of Neurology, London, UK
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | - Giovanni Piccoli
- San Raffaele Science Park and Università Vita-Salute San Raffaele, Milano, Italy
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, Maryland, USA
| | - Jean-Marc Taymans
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations. Biosci Rep 2015; 35:BSR20150128. [PMID: 26310572 PMCID: PMC4721548 DOI: 10.1042/bsr20150128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 12/30/2022] Open
Abstract
Ras of complex proteins (Roc) is a Ras-like GTP-binding domain that always occurs in tandem with the C-terminal of Roc (COR) domain and is found in bacteria, plants and animals. Recently, it has been shown that Roco proteins belong to the family of G-proteins activated by nucleotide (nt)-dependent dimerization (GADs). We investigated the RocCOR tandem from the bacteria Chlorobium tepidum with site-directed spin labelling and pulse EPR distance measurements to follow conformational changes during the Roco G-protein cycle. Our results confirm that the COR domains are a stable dimerization device serving as a scaffold for the Roc domains that, in contrast, are structurally heterogeneous and dynamic entities. Contrary to other GAD proteins, we observed only minor structural alterations upon binding and hydrolysis of GTP, indicating significant mechanistic variations within this protein class. Mutations in the most prominent member of the Roco family of proteins, leucine-rich repeat (LRR) kinase 2 (LRRK2), are the most frequent cause of late-onset Parkinson's disease (PD). Using a stable recombinant LRRK2 Roc-COR-kinase fragment we obtained detailed kinetic data for the G-protein cycle. Our data confirmed that dimerization is essential for efficient GTP hydrolysis and PD mutations in the Roc domain result in decreased GTPase activity. Previous data have shown that these LRRK2 PD-mutations are located in the interface between Roc and COR. Importantly, analogous mutations in the conserved C. tepidum Roc/COR interface significantly influence the structure and nt-induced conformational changes of the Roc domains.
Collapse
|