1
|
Rachappanavar V. Utilizing CRISPR-based genetic modification for precise control of seed dormancy: progress, obstacles, and potential directions. Mol Biol Rep 2025; 52:204. [PMID: 39907946 DOI: 10.1007/s11033-025-10285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Seed dormancy, a complex trait that is influenced by both nuclear and cytoplasmic factors, poses a significant challenge to agricultural productivity. Conventional dormancy-breaking techniques, including mechanical, physiological, and chemical methods, often yield inconsistent results, impair seed quality, and lack precision. This has necessitated exploration of more targeted and efficient approaches. CRISPR-based gene editing has emerged as a promising tool for the precise regulation of seed dormancy without compromising seed viability or sustainability. Although CRISPR has been successfully applied to modify genes that govern physiological traits in various crops, its use in dormancy regulation remains in the early stages. This review examines recent advancements in CRISPR-based approaches for modulating seed dormancy and discusses key gene targets, modification techniques, and the resulting effects. We also consider the future potential of CRISPR to enhance dormancy control across diverse crop species.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University, Solan, Himachal Pradesh, 173230, India.
| |
Collapse
|
2
|
Sakovina L, Vokhtantsev I, Akhmetova E, Vorobyeva M, Vorobjev P, Zharkov DO, Novopashina D. Photocleavable Guide crRNAs for a Light-Controllable CRISPR/Cas9 System. Int J Mol Sci 2024; 25:12392. [PMID: 39596457 PMCID: PMC11594570 DOI: 10.3390/ijms252212392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
The design of controllable and precise RNA-targeted CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) systems is an important problem of modern molecular biology and genetic technology. Herein, we have designed a series of photocleavable guide CRISPR RNAs (crRNA) and their 2'-modified (2'-fluoro and locked nucleic acid) analogs containing one or two 1-(2-nitrophenyl)-1,2-ethanediol photolabile linkers (PL). We have demonstrated that these crRNAs can be destroyed by relatively mild UVA irradiation with the rate constants 0.24-0.77 min-1 and that the photocleavage markedly slows down the action of Cas9 nuclease in the model in vitro system. Two PLs provide more rapid crRNA destruction than a single linker. PLs in the crRNA structure improve the specificity of DNA cleavage by Cas9 nuclease for the fully complementary target. The application of photocleavable crRNA in CRISPR/Cas9 genome editing permits the system to be switched off in a spatiotemporally controlled manner, thus alleviating its off-target effects.
Collapse
Affiliation(s)
- Lubov Sakovina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ivan Vokhtantsev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elizaveta Akhmetova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
| | - Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Darya Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (L.S.); (I.V.); (E.A.); (M.V.); (P.V.); (D.O.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Rahimi A, Sameei P, Mousavi S, Ghaderi K, Hassani A, Hassani S, Alipour S. Application of CRISPR/Cas9 System in the Treatment of Alzheimer's Disease and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9416-9431. [PMID: 38639864 DOI: 10.1007/s12035-024-04143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Alzheimer's, Parkinson's, and Huntington's are some of the most common neurological disorders, which affect millions of people worldwide. Although there have been many treatments for these diseases, there are still no effective treatments to treat or completely stop these disorders. Perhaps the lack of proper treatment for these diseases can be related to various reasons, but the poor results related to recent clinical research also prompted doctors to look for new treatment approaches. In this regard, various researchers from all over the world have provided many new treatments, one of which is CRISPR/Cas9. Today, the CRISPR/Cas9 system is mostly used for genetic modifications in various species. In addition, by using the abilities available in the CRISPR/Cas9 system, researchers can either remove or modify DNA sequences, which in this way can establish a suitable and useful treatment method for the treatment of genetic diseases that have undergone mutations. We conducted a non-systematic review of articles and study results from various databases, including PubMed, Medline, Web of Science, and Scopus, in recent years. and have investigated new treatment methods in neurodegenerative diseases with a focus on Alzheimer's disease. Then, in the following sections, the treatment methods were classified into three groups: anti-tau, anti-amyloid, and anti-APOE regimens. Finally, we discussed various applications of the CRISPR/Cas-9 system in Alzheimer's disease. Today, using CRISPR/Cas-9 technology, scientists create Alzheimer's disease models that have a more realistic phenotype and reveal the processes of pathogenesis; following the screening of defective genes, they establish treatments for this disease.
Collapse
Affiliation(s)
- Araz Rahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sana Mousavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Kimia Ghaderi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sepideh Hassani
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Lozupone M, Leccisotti I, Altamura M, Moretti MC, Bellomo A, Daniele A, Dibello V, Resta E, Panza F. Psychiatry and sensation: the epigenetic links. Epigenomics 2024; 16:1315-1327. [PMID: 39400085 PMCID: PMC11534141 DOI: 10.1080/17501911.2024.2410692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
A complex interaction among sensory, social and epigenetic determinants in psychiatric conditions was described across all age strata. The high prevalence of mental disorders in individuals with sensory deficits might be attributed to the interaction among social isolation, cognitive functioning and sensory processing. The epigenetic implications of such interactions were examined: environmental and social factors can affect gene expression and impact the pathogenesis of psychiatric disorders also through sensory processing. This article discussed the role of social determinants, in other words, social isolation, loneliness and chronic stress, in promoting psychiatric disorders and, in a vicious circle, sensory deficits (vision, hearing, olfaction and somatosensation). We emphasized the importance of integrating social, sensory and epigenetic factors to target different treatments for psychiatric conditions.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine & Neuroscience “DiBraiN”, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Ivana Leccisotti
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Maria Claudia Moretti
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, 00147, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, 00147, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain & Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, 1105 1081 HV, the Netherlands
| | - Emanuela Resta
- Translational Medicine & Health System Management, Department of Economy, University of Foggia, Foggia, 71122, Italy
| | - Francesco Panza
- Department of Interdisciplinary Medicine, “Cesare Frugoni” Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
5
|
Allemailem KS, Almatroudi A, Alrumaihi F, Alradhi AE, Theyab A, Algahtani M, Alhawas MO, Dobie G, Moawad AA, Rahmani AH, Khan AA. Current Updates of CRISPR/Cas System and Anti-CRISPR Proteins: Innovative Applications to Improve the Genome Editing Strategies. Int J Nanomedicine 2024; 19:10185-10212. [PMID: 39399829 PMCID: PMC11471075 DOI: 10.2147/ijn.s479068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated sequence (CRISPR/Cas) system is a cutting-edge genome-editing tool employed to explore the functions of normal and disease-related genes. The CRISPR/Cas system has a remarkable diversity in the composition and architecture of genomic loci and Cas protein sequences. Owing to its excellent efficiency and specificity, this system adds an outstanding dimension to biomedical research on genetic manipulation of eukaryotic cells. However, safe, efficient, and specific delivery of this system to target cells and tissues and their off-target effects are considered critical bottlenecks for the therapeutic applications. Recently discovered anti-CRISPR proteins (Acr) play a significant role in limiting the effects of this system. Acrs are relatively small proteins that are highly specific to CRISPR variants and exhibit remarkable structural diversity. The in silico approaches, crystallography, and cryo-electron microscopy play significant roles in elucidating the mechanisms of action of Acrs. Acrs block the CRISPR/Cas system mainly by employing four mechanisms: CRISPR/Cas complex assembly interruption, target-binding interference, target cleavage prevention, and degradation of cyclic oligonucleotide signaling molecules. Engineered CRISPR/Cas systems are frequently used in gene therapy, diagnostics, and functional genomics. Understanding the molecular mechanisms underlying Acr action may help in the safe and effective use of CRISPR/Cas tools for genetic modification, particularly in the context of medicine. Thus, attempts to regulate prokaryotic CRISPR/Cas surveillance complexes will advance the development of antimicrobial drugs and treatment of human diseases. In this review, recent updates on CRISPR/Cas systems, especially CRISPR/Cas9 and Acrs, and their novel mechanistic insights are elaborated. In addition, the role of Acrs in the novel applications of CRISPP/Cas biotechnology for precise genome editing and other applications is discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | | | - Gasim Dobie
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Gizan, 82911, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena 07743, Germany
- Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
6
|
Foster MP, Benedek MJ, Billings TD, Montgomery JS. Dynamics in Cre-loxP site-specific recombination. Curr Opin Struct Biol 2024; 88:102878. [PMID: 39029281 PMCID: PMC11616326 DOI: 10.1016/j.sbi.2024.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
Cre recombinase is a phage-derived enzyme that has found utility for precise manipulation of DNA sequences. Cre recognizes and recombines pairs of loxP sequences characterized by an inverted repeat and asymmetric spacer. Cre cleaves and religates its DNA targets such that error-prone repair pathways are not required to generate intact DNA products. Major obstacles to broader applications are lack of knowledge of how Cre recognizes its targets, and how its activity is controlled. The picture emerging from high resolution methods is that the dynamic properties of both the enzyme and its DNA target are important determinants of its activity in both sequence recognition and DNA cleavage. Improved understanding of the role of dynamics in the key steps along the pathway of Cre-loxP recombination should significantly advance our ability to both redirect Cre to new sequences and to control its DNA cleavage activity in the test tube and in cells.
Collapse
Affiliation(s)
- Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Matthew J Benedek
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Tyler D Billings
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Allemailem KS, Almatroudi A, Rahmani AH, Alrumaihi F, Alradhi AE, Alsubaiyel AM, Algahtani M, Almousa RM, Mahzari A, Sindi AAA, Dobie G, Khan AA. Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies. Int J Nanomedicine 2024; 19:5335-5363. [PMID: 38859956 PMCID: PMC11164216 DOI: 10.2147/ijn.s455574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | - Rand Mohammad Almousa
- Department of Education, General Directorate of Education, Qassim 52361, Saudi Arabia
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan 82911, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
8
|
Zhao Y, Li X, Liu C, Jiang C, Guo X, Xu Q, Yin Z, Liu Z, Mu Y. Improving the Efficiency of CRISPR Ribonucleoprotein-Mediated Precise Gene Editing by Small Molecules in Porcine Fibroblasts. Animals (Basel) 2024; 14:719. [PMID: 38473105 DOI: 10.3390/ani14050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to verify whether small molecules can improve the efficiency of precision gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) ribonucleoprotein (RNP) in porcine cells. CRISPR associated 9 (Cas9) protein, small guide RNA (sgRNA), phosphorothioate-modified single-stranded oligonucleotides (ssODN), and different small molecules were used to generate precise nucleotide substitutions at the insulin (INS) gene by homology-directed repair (HDR) in porcine fetal fibroblasts (PFFs). These components were introduced into PFFs via electroporation, followed by polymerase chain reaction (PCR) for the target site. All samples were sequenced and analyzed, and the efficiencies of different small molecules at the target site were compared. The results showed that the optimal concentrations of the small molecules, including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A, for in vitro-cultured PFFs' viability were determined. Compared with the control group, the single small molecules including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A increased the efficiency of HDR-mediated precise gene editing from 1.71-fold to 2.28-fold, respectively. There are no benefits in using the combination of two small molecules, since none of the combinations improved the precise gene editing efficiency compared to single small molecules. In conclusion, these results suggested that a single small molecule can increase the efficiency of CRISPR RNP-mediated precise gene editing in porcine cells.
Collapse
Affiliation(s)
- Yunjing Zhao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaochen Guo
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhi Yin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Bhushan B, Singh K, Kumar S, Bhardwaj A. Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders. Curr Gene Ther 2024; 25:34-45. [PMID: 38738727 DOI: 10.2174/0115665232292246240426125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anjali Bhardwaj
- Department of Pharmaceutics, Durga College of Pharmacy, Sambhal, Uttar Pradesh, India
| |
Collapse
|
10
|
Shu R, Hammett M, Evtimov V, Pupovac A, Nguyen N, Islam R, Zhuang J, Lee S, Kang T, Lee K, Nisbet I, Hudson P, Lee JY, Boyd R, Trounson A. Engineering T cell receptor fusion proteins using nonviral CRISPR/Cas9 genome editing for cancer immunotherapy. Bioeng Transl Med 2023; 8:e10571. [PMID: 38023726 PMCID: PMC10658519 DOI: 10.1002/btm2.10571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 12/01/2023] Open
Abstract
Manufacture of chimeric antigen receptor (CAR)-T cells usually involves the use of viral delivery systems to achieve high transgene expression. However, it can be costly and may result in random integration of the CAR into the genome, creating several disadvantages including variation in transgene expression, functional gene silencing and potential oncogenic transformation. Here, we optimized the method of nonviral, CRISPR/Cas9 genome editing using large donor DNA delivery, knocked-in an anti-tumor single chain variable fragment (scFv) into the N-terminus of CD3ε and efficiently generated fusion protein (FP) T cells. These cells displayed FP integration within the TCR/CD3 complex, lower variability in gene expression compared to CAR-T cells and good cell expansion after transfection. CD3ε FP T cells were predominantly CD8+ effector memory T cells, and exhibited anti-tumor activity in vitro and in vivo. Dual targeting FP T cells were also generated through the incorporation of scFvs into other CD3 subunits and CD28. Compared to viral-based methods, this method serves as an alternative and versatile way of generating T cells with tumor-targeting receptors for cancer immunotherapy.
Collapse
Affiliation(s)
- Runzhe Shu
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Maree Hammett
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Vera Evtimov
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Aleta Pupovac
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Nhu‐Y Nguyen
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Rasa Islam
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Junli Zhuang
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | | | | | | | - Ian Nisbet
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Peter Hudson
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | | | - Richard Boyd
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
| | - Alan Trounson
- Cartherics Pty Ltd.Notting HillAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonAustralia
| |
Collapse
|
11
|
Nevola R, Beccia D, Rosato V, Ruocco R, Mastrocinque D, Villani A, Perillo P, Imbriani S, Delle Femine A, Criscuolo L, Alfano M, La Montagna M, Russo A, Marfella R, Cozzolino D, Sasso FC, Rinaldi L, Marrone A, Adinolfi LE, Claar E. HBV Infection and Host Interactions: The Role in Viral Persistence and Oncogenesis. Int J Mol Sci 2023; 24:7651. [PMID: 37108816 PMCID: PMC10145402 DOI: 10.3390/ijms24087651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Despite the advent of vaccines and potent antiviral agents able to suppress viral replication, recovery from chronic HBV infection is still an extremely difficult goal to achieve. Complex interactions between virus and host are responsible for HBV persistence and the risk of oncogenesis. Through multiple pathways, HBV is able to silence both innate and adaptive immunological responses and become out of control. Furthermore, the integration of the viral genome into that of the host and the production of covalently closed circular DNA (cccDNA) represent reservoirs of viral persistence and account for the difficult eradication of the infection. An adequate knowledge of the virus-host interaction mechanisms responsible for viral persistence and the risk of hepatocarcinogenesis is necessary for the development of functional cures for chronic HBV infection. The purpose of this review is, therefore, to analyze how interactions between HBV and host concur in the mechanisms of infection, persistence, and oncogenesis and what are the implications and the therapeutic perspectives that follow.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| |
Collapse
|
12
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, Khan AA. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1257-1287. [PMID: 36209487 PMCID: PMC9759771 DOI: 10.1002/cac2.12366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023]
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9), an adaptive microbial immune system, has been exploited as a robust, accurate, efficient and programmable method for genome targeting and editing. This innovative and revolutionary technique can play a significant role in animal modeling, in vivo genome therapy, engineered cell therapy, cancer diagnosis and treatment. The CRISPR/Cas9 endonuclease system targets a specific genomic locus by single guide RNA (sgRNA), forming a heteroduplex with target DNA. The Streptococcus pyogenes Cas9/sgRNA:DNA complex reveals a bilobed architecture with target recognition and nuclease lobes. CRISPR/Cas9 assembly can be hijacked, and its nanoformulation can be engineered as a delivery system for different clinical utilizations. However, the efficient and safe delivery of the CRISPR/Cas9 system to target tissues and cancer cells is very challenging, limiting its clinical utilization. Viral delivery strategies of this system may have many advantages, but disadvantages such as immune system stimulation, tumor promotion risk and small insertion size outweigh these advantages. Thus, there is a desperate need to develop an efficient non-viral physical delivery system based on simple nanoformulations. The delivery strategies of CRISPR/Cas9 by a nanoparticle-based system have shown tremendous potential, such as easy and large-scale production, combination therapy, large insertion size and efficient in vivo applications. This review aims to provide in-depth updates on Streptococcus pyogenic CRISPR/Cas9 structure and its mechanistic understanding. In addition, the advances in its nanoformulation-based delivery systems, including lipid-based, polymeric structures and rigid NPs coupled to special ligands such as aptamers, TAT peptides and cell-penetrating peptides, are discussed. Furthermore, the clinical applications in different cancers, clinical trials and future prospects of CRISPR/Cas9 delivery and genome targeting are also discussed.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health SciencesCollege of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| |
Collapse
|
13
|
Kayesh MEH, Hashem MA, Kohara M, Tsukiyama-Kohara K. In vivo Delivery Tools for Clustered Regularly Interspaced Short Palindromic Repeat/Associated Protein 9-Mediated Inhibition of Hepatitis B Virus Infection: An Update. Front Microbiol 2022; 13:953218. [PMID: 35847068 PMCID: PMC9284033 DOI: 10.3389/fmicb.2022.953218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health problem despite the availability of an effective prophylactic HBV vaccine. Current antiviral therapies are unable to fully cure chronic hepatitis B (CHB) because of the persistent nature of covalently closed circular DNA (cccDNA), a replicative template for HBV, which necessitates the development of alternative therapeutic approaches. The CRISPR/Cas system, a newly emerging genome editing tool, holds great promise for genome editing and gene therapy. Several in vitro and/or in vivo studies have demonstrated the effectiveness of HBV-specific clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (CRISPR/Cas9) systems in cleaving HBV DNA and cccDNA. Although recent advances in CRISPR/Cas technology enhance its prospects for clinical application against HBV infection, in vivo delivery of the CRISPR/Cas9 system at targets sites remains a major challenge that needs to be resolved before its clinical application in gene therapy for CHB. In the present review, we discuss CRISPR/Cas9 delivery tools for targeting HBV infection, with a focus on the development of adeno-associated virus vectors and lipid nanoparticle (LNP)-based CRISPR/Cas ribonucleoprotein (RNP) delivery to treat CHB. In addition, we discuss the importance of delivery tools in the enhancement of the antiviral efficacy of CRISPR/Cas9 against HBV infection.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
- *Correspondence: Mohammad Enamul Hoque Kayesh,
| | - Md Abul Hashem
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
- Kyoko Tsukiyama-Kohara,
| |
Collapse
|
14
|
Martinez MG, Combe E, Inchauspe A, Mangeot PE, Delberghe E, Chapus F, Neveu G, Alam A, Carter K, Testoni B, Zoulim F. CRISPR-Cas9 Targeting of Hepatitis B Virus Covalently Closed Circular DNA Generates Transcriptionally Active Episomal Variants. mBio 2022; 13:e0288821. [PMID: 35389262 PMCID: PMC9040760 DOI: 10.1128/mbio.02888-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection persists due to the lack of therapies that effectively target the HBV covalently closed circular DNA (cccDNA). We used HBV-specific guide RNAs (gRNAs) and CRISPR-Cas9 and determined the fate of cccDNA after gene editing. We set up a ribonucleoprotein (RNP) delivery system in HBV-infected HepG2-NTCP cells. HBV parameters after Cas9 editing were analyzed. Southern blot (SB) analysis and DNA/RNA sequencing (DNA/RNA-seq) were performed to determine the consequences of cccDNA editing and transcriptional activity of mutated cccDNA. Treatment of infected cells with HBV-specific gRNAs showed that CRISPR-Cas9 can efficiently affect HBV replication. The appearance of episomal HBV DNA variants after dual gRNA treatment was observed by PCR, SB analysis, and DNA/RNA-seq. These transcriptionally active variants are the products of simultaneous Cas9-induced double-strand breaks in two target sites, followed by repair and religation of both short and long fragments. Following suppression of HBV DNA replicative intermediates by nucleoside analogs, mutations and formation of smaller transcriptionally active HBV variants were still observed, suggesting that established cccDNA is accessible to CRISPR-Cas9 editing. Targeting HBV DNA with CRISPR-Cas9 leads to cleavage followed by appearance of episomal HBV DNA variants. Effects induced by Cas9 were sustainable after RNP degradation/loss of detection, suggesting permanent changes in the HBV genome instead of transient effects due to transcriptional interference. IMPORTANCE Hepatitis B virus infection can develop into chronic infection, cirrhosis, and hepatocellular carcinoma. Treatment of chronic hepatitis B requires novel approaches to directly target the viral minichromosome, which is responsible for the persistence of the disease. Designer nuclease approaches represent a promising strategy to treat chronic infectious diseases; however, comprehensive knowledge about the fate of the HBV minichromosome is needed before this potent tool can be used as a potential therapeutic approach. This study provides an in-depth analysis of CRISPR-Cas9 targeting of HBV minichromosome.
Collapse
Affiliation(s)
| | - Emmanuel Combe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
| | - Aurore Inchauspe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
- Evotec, Lyon, France
| | - Philippe Emmanuel Mangeot
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR-5308, INSERM and Ecole Normale Superieure de Lyon, Lyon, France
| | - Elodie Delberghe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
| | - Fleur Chapus
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
| | | | | | | | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
15
|
Cao G, Xuan X, Zhang R, Hu J, Dong H. Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Front Cardiovasc Med 2021; 8:760140. [PMID: 34805315 PMCID: PMC8602679 DOI: 10.3389/fcvm.2021.760140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the vital role of genetic factors in human diseases have been widely recognized by scholars with the deepening of life science research, accompanied by the rapid development of gene-editing technology. In early years, scientists used homologous recombination technology to establish gene knock-out and gene knock-in animal models, and then appeared the second-generation gene-editing technology zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) that relied on nucleic acid binding proteins and endonucleases and the third-generation gene-editing technology that functioned through protein-nucleic acids complexes-CRISPR/Cas9 system. This holds another promise for refractory diseases and genetic diseases. Cardiovascular disease (CVD) has always been the focus of clinical and basic research because of its high incidence and high disability rate, which seriously affects the long-term survival and quality of life of patients. Because some inherited cardiovascular diseases do not respond well to drug and surgical treatment, researchers are trying to use rapidly developing genetic techniques to develop initial attempts. However, significant obstacles to clinical application of gene therapy still exists, such as insufficient understanding of the nature of cardiovascular disease, limitations of genetic technology, or ethical concerns. This review mainly introduces the types and mechanisms of gene-editing techniques, ethical concerns of gene therapy, the application of gene therapy in atherosclerosis and inheritable cardiovascular diseases, in-stent restenosis, and delivering systems.
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Sarma H, Islam NF, Prasad R, Prasad MNV, Ma LQ, Rinklebe J. Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR-Cas9 technology. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125493. [PMID: 34030401 DOI: 10.1016/j.jhazmat.2021.125493] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 05/15/2023]
Abstract
Rapid and drastic changes in the global climate today have given a strong impetus to developing newer climate-resilient phytoremediation approaches. These methods are of great public and scientific importance given the urgency of this environmental crisis. Climate change has adverse effects on the growth, outputs, phenology, and overall productivity of plants. Contamination of soil with metal(loid)s is a major worldwide problem. Some metal(loids) are carcinogenic pollutants that have a long half-life and are non-degradable in the environment. There are many instances of the potential link between chronic heavy metal exposure and human disease. The adaptation of plants in the changing environment is, however, a major concern in phytoremediation practice. The creation of climate-resistant metal hyperaccumulation plants using molecular techniques could provide new opportunities to mitigate these problems. Consequently, advancements in molecular science would accelerate our knowledge of adaptive plant remediation/resistance and plant production in the context of global warming. Genome modification using artificial nucleases has the potential to enhance phytoremediation by modifying genomes for a sustainable future. This review focuses on biotechnology to boost climate change tolerant metallicolous plants and the future prospects of such technology, particularly the CRISPR-Cas9 genome editing system, for enhancing phytoremediation of hazardous pollutants.
Collapse
Affiliation(s)
- Hemen Sarma
- Department of Botany, N N Saikia College, Titabar 785 630, Assam, India
| | - N F Islam
- Department of Botany, N N Saikia College, Titabar 785 630, Assam, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - M N V Prasad
- School of Life Sciences, University of Hyderabad, Hyderabad 500046 Telangana, India
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jörg Rinklebe
- Laboratory of Soil-, and Groundwater-Management, Institute of Soil Engineering, Waste and Water Science, Faculty of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Skrzyszowska M, Samiec M. Generating Cloned Goats by Somatic Cell Nuclear Transfer-Molecular Determinants and Application to Transgenics and Biomedicine. Int J Mol Sci 2021; 22:ijms22147490. [PMID: 34299109 PMCID: PMC8306346 DOI: 10.3390/ijms22147490] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
The domestic goat (Capra aegagrus hircus), a mammalian species with high genetic merit for production of milk and meat, can be a tremendously valuable tool for transgenic research. This research is focused on the production and multiplication of genetically engineered or genome-edited cloned specimens by applying somatic cell nuclear transfer (SCNT), which is a dynamically developing assisted reproductive technology (ART). The efficiency of generating the SCNT-derived embryos, conceptuses, and progeny in goats was found to be determined by a variety of factors controlling the biological, molecular, and epigenetic events. On the one hand, the pivotal objective of our paper was to demonstrate the progress and the state-of-the-art achievements related to the innovative and highly efficient solutions used for the creation of transgenic cloned does and bucks. On the other hand, this review seeks to highlight not only current goals and obstacles but also future challenges to be faced by the approaches applied to propagate genetically modified SCNT-derived goats for the purposes of pharmacology, biomedicine, nutritional biotechnology, the agri-food industry, and modern livestock breeding.
Collapse
|
18
|
Pang C, Fan KS, Wei L, Kolar MK. Gene therapy in wound healing using nanotechnology. Wound Repair Regen 2020; 29:225-239. [PMID: 33377593 DOI: 10.1111/wrr.12881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Wound healing is a complex and highly regulated process that is susceptible to a variety of failures leading to delayed wound healing or chronic wounds. This is becoming an increasingly global burden on the healthcare system. Treatment of wounds has evolved considerably to overcome barriers to wound healing especially within the field of regenerative medicine that focuses on the replacement of tissues or organs. Improved understanding of the pathophysiology of wound healing has enabled current advances in technology to allow better optimization of microenvironment within wounds. This approach may help tackle wounds that are difficult to treat and help reduce the global burden of the disease. This article provides an overview of the physiology in wound healing and the application of gene therapy using nanotechnology in the management of wounds.
Collapse
Affiliation(s)
- Calver Pang
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Ka Siu Fan
- Faculty of Medicine, St. George's, University of London, London, United Kingdom
| | - Lanxuan Wei
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London, United Kingdom
| | - Mallappa K Kolar
- Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
19
|
Yang Y, Liu G, Chen X, Liu M, Zhan C, Liu X, Bai Z. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris. Enzyme Microb Technol 2020; 138:109556. [PMID: 32527526 DOI: 10.1016/j.enzmictec.2020.109556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Pichia pastoris is a methylotrophic yeast in which host heterologous expression of proteins has been developed owing to the strong inducible alcohol oxidase promoter (PAOX1). However, it is difficult to manipulate the genome in P. pastoris. Based on previous attempts to apply the CRISPR/Cas9 system in P. pastoris, a CRISPR/Cas9 system with episomal sgRNA plasmid was developed and 100 % genome editing efficiency, high multicopy gene editing and stable multigene editing were obtained without a sharp decline caused by multi-sgRNA. And 28/34 (∼82 %) sgRNAs tested were effective. The CGG may have a slightly higher and more stable cleavage efficiency than the other three NGG motifs, and a low GC content may be preferable for higher cleavage efficiency. This provides researchers with a stable genome editing tool that shows a high editing efficiency, shortening the experimentation period. Furthermore, we introduced dCas9 into P. pastoris and achieved target gene interference, expanding the CRISPR/Cas9 toolbox in P. pastoris.
Collapse
Affiliation(s)
- Yankun Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Guoqiang Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meng Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunjun Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Yu Y, Wu X, Guan N, Shao J, Li H, Chen Y, Ping Y, Li D, Ye H. Engineering a far-red light-activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors. SCIENCE ADVANCES 2020; 6:eabb1777. [PMID: 32923591 PMCID: PMC7455487 DOI: 10.1126/sciadv.abb1777] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/14/2020] [Indexed: 05/22/2023]
Abstract
It is widely understood that CRISPR-Cas9 technology is revolutionary, with well-recognized issues including the potential for off-target edits and the attendant need for spatiotemporal control of editing. Here, we describe a far-red light (FRL)-activated split-Cas9 (FAST) system that can robustly induce gene editing in both mammalian cells and mice. Through light-emitting diode-based FRL illumination, the FAST system can efficiently edit genes, including nonhomologous end joining and homology-directed repair, for multiple loci in human cells. Further, we show that FAST readily achieves FRL-induced editing of internal organs in tdTomato reporter mice. Finally, FAST was demonstrated to achieve FRL-triggered editing of the PLK1 oncogene in a mouse xenograft tumor model. Beyond extending the spectrum of light energies in optogenetic toolbox for CRISPR-Cas9 technologies, this study demonstrates how FAST system can be deployed for programmable deep tissue gene editing in both biological and biomedical contexts toward high precision and spatial specificity.
Collapse
Affiliation(s)
- Yuanhuan Yu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xin Wu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jiawei Shao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Huiying Li
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuxuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dali Li
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
21
|
Belling JN, Heidenreich LK, Tian Z, Mendoza AM, Chiou TT, Gong Y, Chen NY, Young TD, Wattanatorn N, Park JH, Scarabelli L, Chiang N, Takahashi J, Young SG, Stieg AZ, De Oliveira S, Huang TJ, Weiss PS, Jonas SJ. Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proc Natl Acad Sci U S A 2020; 117:10976-10982. [PMID: 32358194 PMCID: PMC7245081 DOI: 10.1073/pnas.1917125117] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in gene editing are leading to new medical interventions where patients' own cells are used for stem cell therapies and immunotherapies. One of the key limitations to translating these treatments to the clinic is the need for scalable technologies for engineering cells efficiently and safely. Toward this goal, microfluidic strategies to induce membrane pores and permeability have emerged as promising techniques to deliver biomolecular cargo into cells. As these technologies continue to mature, there is a need to achieve efficient, safe, nontoxic, fast, and economical processing of clinically relevant cell types. We demonstrate an acoustofluidic sonoporation method to deliver plasmids to immortalized and primary human cell types, based on pore formation and permeabilization of cell membranes with acoustic waves. This acoustofluidic-mediated approach achieves fast and efficient intracellular delivery of an enhanced green fluorescent protein-expressing plasmid to cells at a scalable throughput of 200,000 cells/min in a single channel. Analyses of intracellular delivery and nuclear membrane rupture revealed mechanisms underlying acoustofluidic delivery and successful gene expression. Our studies show that acoustofluidic technologies are promising platforms for gene delivery and a useful tool for investigating membrane repair.
Collapse
Affiliation(s)
- Jason N Belling
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Liv K Heidenreich
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Zhenhua Tian
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707
- Department of Aerospace Engineering, Mississippi State University, Starkville, MS 39762
| | - Alexandra M Mendoza
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tzu-Ting Chiou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
| | - Yao Gong
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Natalie Y Chen
- Department of Medicine and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Department of Human Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Thomas D Young
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Natcha Wattanatorn
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jae Hyeon Park
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Leonardo Scarabelli
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Naihao Chiang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jack Takahashi
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Adam Z Stieg
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Satiro De Oliveira
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Steven J Jonas
- California NanoSystems Institute, University of California, Los Angeles, CA 90095;
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095
| |
Collapse
|
22
|
Ashmore-Harris C, Fruhwirth GO. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin Transl Med 2020; 9:15. [PMID: 32034584 PMCID: PMC7007464 DOI: 10.1186/s40169-020-0268-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
The clinical application of ex vivo gene edited cell therapies first began a decade ago with zinc finger nuclease editing of autologous CD4+ T-cells. Editing aimed to disrupt expression of the human immunodeficiency virus co-receptor gene CCR5, with the goal of yielding cells resistant to viral entry, prior to re-infusion into the patient. Since then the field has substantially evolved with the arrival of the new editing technologies transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR), and the potential benefits of gene editing in the arenas of immuno-oncology and blood disorders were quickly recognised. As the breadth of cell therapies available clinically continues to rise there is growing interest in allogeneic and off-the-shelf approaches and multiplex editing strategies are increasingly employed. We review here the latest clinical trials utilising these editing technologies and consider the applications on the horizon.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Dept of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK
- Centre for Stem Cells & Regenerative Medicine, School of Basic and Medical Biosciences, Guy's Hospital, KCL, London, SE1 9RT, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Dept of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK.
| |
Collapse
|
23
|
Smargon AA, Shi YJ, Yeo GW. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol 2020; 22:143-150. [PMID: 32015437 PMCID: PMC8008746 DOI: 10.1038/s41556-019-0454-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Deployment of RNA-guided DNA endonuclease CRISPR-Cas technology has led to radical advances in biology. As the functional diversity of CRISPR-Cas and parallel systems is further explored, RNA manipulation is emerging as a powerful mode of CRISPR-based engineering. In this Perspective, we chart progress in the RNA-targeting CRISPR-Cas (RCas) field and illustrate how continuing evolution in scientific discovery translates into applications for RNA biology and insights into mysteries, obstacles, and alternative technologies that lie ahead.
Collapse
Affiliation(s)
- Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yilan J Shi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1609. [PMID: 31797562 DOI: 10.1002/wnan.1609] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
Abstract
CRISPR-based genome editing technology has become an important potential therapeutic tool for various diseases. A vital challenge is to reach a safe, efficient, and clinically suitable delivery of a CRISPR-associated protein and a single-guide RNA. A possible translational approach to applying CRISPR-based technology is the use of viral vectors such as adeno-associated virus. However, such vectors give long-term exposure in vivo that may increase potential off-target effects as well as the risk of immunogenicity. Therefore, limitations to clinical applications are addressed using nonviral delivery systems such as nanoparticle-based delivery strategies. Today, the nanoparticle-based delivery approach is becoming more and more attractive in gene therapeutics because of its specific targeting, scale-up efficiency, efficacy of customization, minor stimulation of immune response, and minimal exposure to nucleases. In this review, we will present the most recent advances in developing innovations and potential advantages of the nanoparticle delivery system in CRISPR genome editing. We will also propose potential strategies of CRISPR-based technology for therapeutic and industrial applications. Our review will differ in focus from previous reviews and advance the literature on the subject by (a) focusing on the challenges of the CRISPR/Cas9 delivery system; (b) focusing on the application of nanoparticle-based delivery of CRISPR components (Cas9 and sgRNA), such as lipids and polymeric vectors; (c) discussing the potential nanoparticle-based delivery approaches for CRISPR/Cas9 application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Fengqian Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas
| | - Martin Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen Ther 2019; 11:123-130. [PMID: 31338391 PMCID: PMC6626072 DOI: 10.1016/j.reth.2019.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Regenerative medicine is a new and promising medical method aiming at treating patients with defective or dysfunctional tissues by maintaining or enhancing the biological activity of cells. The development of biomaterial-based technologies, such as cell scaffolds and carriers for drug delivery system, are highly required to promote the regenerative research and regenerative therapy. Nucleic acids are one of the most feasible factors to efficiently modify the biological activity of cells. The effective and stable delivery of nucleic acids into cells is highly required to succeed in the modification. Biomaterials-based non-viral carriers or biological carriers, like exosomes, play an important role in the efficient delivery of nucleic acids. This review introduces the examples of regenerative research and regenerative therapy based on the delivery of nucleic acids with biomaterials technologies and emphasizes their importance to accomplish regenerative medicine. Modifying the activity of cells is important for regenerative medicine. Various nucleic acids regulate gene expression to modify the activity of cells. Intracellular delivery system is vital to the nucleic acids-based modification. Biomaterials are useful for the intracellular delivery of nucleic acids.
Collapse
Key Words
- Biomaterials
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cas, CRISPR-associated systems
- Cell scaffold
- DDS, drug delivery system
- Drug delivery system
- ECM, extracellular matrix
- MSC, mesenchymal stem cells
- Nucleic acids
- PEG, polyethylene glycol
- PLGA, poly(d,l-lactic acid-co-glycolic acid)
- RISC, RNA-induced silencing complex
- RNAi, RNA interferince
- Regenerative research
- Regenerative therapy
- TALEN, transcription activator-like effector nuclease
- ZFN, zinc finger nucleases
- lncRNA, long non-coding RNA
- mRNA, messenger RNA
- miRNA, microRNA
- siRNA, small interfering RNA
Collapse
|
26
|
Ahmadzadeh V, Farajnia S, Baghban R, Rahbarnia L, Zarredar H. CRISPR-Cas system: Toward a more efficient technology for genome editing and beyond. J Cell Biochem 2019; 120:16379-16392. [PMID: 31219653 DOI: 10.1002/jcb.29140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Genome engineering technology is of great interest for biomedical research that enables scientists to make specific manipulation in the DNA sequence. Early methods for introducing double-stranded DNA breaks relies on protein-based systems. These platforms have enabled fascinating advances, but all are costly and time-consuming to engineer, preventing these from gaining high-throughput applications. The CRISPR-Cas9 system, co-opted from bacteria, has generated considerable excitement in gene targeting. In this review, we describe gene targeting techniques with an emphasis on recent strategies to improve the specificities of CRISPR-Cas systems for nuclease and non-nuclease applications.
Collapse
Affiliation(s)
- Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayyeh Baghban
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Ma X, Chen X, Jin Y, Ge W, Wang W, Kong L, Ji J, Guo X, Huang J, Feng XH, Fu J, Zhu S. Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Commun 2018; 9:1303. [PMID: 29610531 PMCID: PMC5880812 DOI: 10.1038/s41467-018-03760-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have potential applications in biological studies and regenerative medicine. However, precise genome editing in hPSCs remains time-consuming and labor-intensive. Here we demonstrate that the recently identified CRISPR-Cpf1 can be used to efficiently generate knockout and knockin hPSC lines. The unique properties of CRISPR-Cpf1, including shorter crRNA length and low off-target activity, are very attractive for many applications. In particular, we develop an unbiased drug-selection-based platform feasible for high-throughput screening in hPSCs and this screening system enables us to identify small molecules VE-822 and AZD-7762 that can promote CRISPR-Cpf1-mediated precise genome editing. Significantly, the combination of CRISPR-Cpf1 and small molecules provides a simple and efficient strategy for precise genome engineering. Precise genome editing in human pluripotent stem cells requires the development of methods for rapid and efficient genetic manipulation. Here, the authors screen for small molecules that enhance CRISPR-Cpf1-mediated genome engineering.
Collapse
Affiliation(s)
- Xiaojie Ma
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xi Chen
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yan Jin
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Wenyan Ge
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Weiyun Wang
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Linghao Kong
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xing Guo
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Junfen Fu
- The Children's Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Saiyong Zhu
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China. .,Stem Cell Institute, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
28
|
DeNizio JE, Schutsky EK, Berrios KN, Liu MY, Kohli RM. Harnessing natural DNA modifying activities for editing of the genome and epigenome. Curr Opin Chem Biol 2018; 45:10-17. [PMID: 29452938 DOI: 10.1016/j.cbpa.2018.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 12/27/2022]
Abstract
The introduction of site-specific DNA modifications to the genome or epigenome presents great opportunities for manipulating biological systems. Such changes are now possible through the combination of DNA-modifying enzymes with targeting modules, including dCas9, that can localize the enzymes to specific sites. In this review, we take a DNA modifying enzyme-centric view of recent advances. We highlight the variety of natural DNA-modifying enzymes-including DNA methyltransferases, oxygenases, deaminases, and glycosylases-that can be used for targeted editing and discuss how insights into the structure and function of these enzymes has further expanded editing potential by introducing enzyme variants with altered activities or by improving spatiotemporal control of modifications.
Collapse
Affiliation(s)
- Jamie E DeNizio
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily K Schutsky
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiara N Berrios
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Yun Liu
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10. [PMID: 29083112 DOI: 10.1002/wsbm.1408] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/27/2022]
Abstract
Genome-editing therapeutics are poised to treat human diseases. As we enter clinical trials with the most promising CRISPR-Cas9 and CRISPR-Cas12a (Cpf1) modalities, the risks associated with administering these foreign biomolecules into human patients become increasingly salient. Preclinical discovery with CRISPR-Cas9 and CRISPR-Cas12a systems and foundational gene therapy studies indicate that the host immune system can mount undesired responses against the administered proteins and nucleic acids, the gene-edited cells, and the host itself. These host defenses include inflammation via activation of innate immunity, antibody induction in humoral immunity, and cell death by T-cell-mediated cytotoxicity. If left unchecked, these immunological reactions can curtail therapeutic benefits and potentially lead to mortality. Ways to assay and reduce the immunogenicity of Cas9 and Cas12a proteins are therefore critical for ensuring patient safety and treatment efficacy, and for bringing us closer to realizing the vision of permanent genetic cures. WIREs Syst Biol Med 2018, 10:e1408. doi: 10.1002/wsbm.1408 This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Translational, Genomic, and Systems Medicine > Translational Medicine Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Wei Leong Chew
- Synthetic Biology, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Shvets AA, Kolomeisky AB. Mechanism of Genome Interrogation: How CRISPR RNA-Guided Cas9 Proteins Locate Specific Targets on DNA. Biophys J 2017; 113:1416-1424. [PMID: 28978436 DOI: 10.1016/j.bpj.2017.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
The ability to precisely edit and modify a genome opens endless opportunities to investigate fundamental properties of living systems as well as to advance various medical techniques and bioengineering applications. This possibility is now close to reality due to a recent discovery of the adaptive bacterial immune system, which is based on clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that utilize RNA to find and cut the double-stranded DNA molecules at specific locations. Here we develop a quantitative theoretical approach to analyze the mechanism of target search on DNA by CRISPR RNA-guided Cas9 proteins, which is followed by a selective cleavage of nucleic acids. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the target search is presented. It is found that the location of specific sites on DNA by CRISPR Cas9 proteins is governed by binding first to protospacer adjacent motif sequences on DNA, which is followed by reversible transitions into DNA interrogation states. In addition, the search dynamics is strongly influenced by the off-target cutting. Our theoretical calculations allow us to explain the experimental observations and to give experimentally testable predictions. Thus, the presented theoretical model clarifies some molecular aspects of the genome interrogation by CRISPR RNA-guided Cas9 proteins.
Collapse
Affiliation(s)
- Alexey A Shvets
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anatoly B Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas.
| |
Collapse
|
31
|
Refining strategies to translate genome editing to the clinic. Nat Med 2017; 23:415-423. [PMID: 28388605 DOI: 10.1038/nm.4313] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022]
Abstract
Recent progress in developing programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas nucleases, have paved the way for gene editing to enter clinical practice. This translation is a result of combining high nuclease activity with high specificity and successfully applying this technology in various preclinical disease models, including infectious disease, primary immunodeficiencies, hemoglobinopathies, hemophilia and muscular dystrophy. Several clinical gene-editing trials, both ex vivo and in vivo, have been initiated in the past 2 years, including studies that aim to knockout genes as well as to add therapeutic transgenes. Here we discuss the advances made in the gene-editing field in recent years, and specify priorities that need to be addressed to expand therapeutic genome editing to further disease entities.
Collapse
|
32
|
Tang W, Hu JH, Liu DR. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun 2017; 8:15939. [PMID: 28656978 PMCID: PMC5493748 DOI: 10.1038/ncomms15939] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/12/2017] [Indexed: 01/01/2023] Open
Abstract
Programmable sequence-specific genome editing agents such as CRISPR-Cas9 have greatly advanced our ability to manipulate the human genome. Although canonical forms of genome-editing agents and programmable transcriptional regulators are constitutively active, precise temporal and spatial control over genome editing and transcriptional regulation activities would enable the more selective and potentially safer use of these powerful technologies. Here, by incorporating ligand-responsive self-cleaving catalytic RNAs (aptazymes) into guide RNAs, we developed a set of aptazyme-embedded guide RNAs that enable small molecule-controlled nuclease-mediated genome editing and small molecule-controlled base editing, as well as small molecule-dependent transcriptional activation in mammalian cells.
Collapse
Affiliation(s)
- Weixin Tang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Johnny H. Hu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - David R. Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| |
Collapse
|
33
|
Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, Leong KW. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chem Rev 2017. [PMID: 28640612 DOI: 10.1021/acs.chemrev.6b00799] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome editing offers promising solutions to genetic disorders by editing DNA sequences or modulating gene expression. The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) technology can be used to edit single or multiple genes in a wide variety of cell types and organisms in vitro and in vivo. Herein, we review the rapidly developing CRISPR/Cas9-based technologies for disease modeling and gene correction and recent progress toward Cas9/guide RNA (gRNA) delivery based on viral and nonviral vectors. We discuss the relative merits of delivering the genome editing elements in the form of DNA, mRNA, or protein, and the opportunities of combining viral delivery of a transgene encoding Cas9 with nonviral delivery of gRNA. We highlight the lessons learned from nonviral gene delivery in the past three decades and consider their applicability for CRISPR/Cas9 delivery. We also include a discussion of bioinformatics tools for gRNA design and chemical modifications of gRNA. Finally, we consider the extracellular and intracellular barriers to nonviral CRISPR/Cas9 delivery and propose strategies that may overcome these barriers to realize the clinical potential of CRISPR/Cas9-based genome editing.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Ciaran M Lee
- Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Syandan Chakraborty
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) and Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 31116, Korea
| | - Gang Bao
- Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| |
Collapse
|
34
|
Rees HA, Komor AC, Yeh WH, Caetano-Lopes J, Warman M, Edge ASB, Liu DR. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun 2017; 8:15790. [PMID: 28585549 PMCID: PMC5467206 DOI: 10.1038/ncomms15790] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
We recently developed base editing, a genome-editing approach that enables the programmable conversion of one base pair into another without double-stranded DNA cleavage, excess stochastic insertions and deletions, or dependence on homology-directed repair. The application of base editing is limited by off-target activity and reliance on intracellular DNA delivery. Here we describe two advances that address these limitations. First, we greatly reduce off-target base editing by installing mutations into our third-generation base editor (BE3) to generate a high-fidelity base editor (HF-BE3). Next, we purify and deliver BE3 and HF-BE3 as ribonucleoprotein (RNP) complexes into mammalian cells, establishing DNA-free base editing. RNP delivery of BE3 confers higher specificity even than plasmid transfection of HF-BE3, while maintaining comparable on-target editing levels. Finally, we apply these advances to deliver BE3 RNPs into both zebrafish embryos and the inner ear of live mice to achieve specific, DNA-free base editing in vivo. Third-generation base editors consist of a catalytically disabled Cas9 fused to a cytidine deaminase and a base excision repair inhibitor, enabling efficient, precise editing of individual base pairs in DNA. Here the authors describe engineering and protein delivery of base editors to improve their DNA specificity and enable specific base editing in live animals.
Collapse
Affiliation(s)
- Holly A Rees
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Alexis C Komor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Wei-Hsi Yeh
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joana Caetano-Lopes
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Matthew Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Albert S B Edge
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| |
Collapse
|
35
|
Abstract
Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems employ the dual RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9-DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)-CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.
Collapse
Affiliation(s)
- Fuguo Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; ,
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; ,
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
36
|
Zhong K, Wang L, Li J, Van Cleuvenbergen S, Bartic C, Song K, Clays K. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4840-4846. [PMID: 28427260 DOI: 10.1021/acs.langmuir.7b00955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.
Collapse
Affiliation(s)
| | | | - Jiaqi Li
- IMEC , Kapeldreef 75, B-3001 Leuven, Belgium
| | | | | | - Kai Song
- Key Laboratory of Bio-inspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | |
Collapse
|
37
|
Bisaria N, Jarmoskaite I, Herschlag D. Lessons from Enzyme Kinetics Reveal Specificity Principles for RNA-Guided Nucleases in RNA Interference and CRISPR-Based Genome Editing. Cell Syst 2017; 4:21-29. [PMID: 28125791 PMCID: PMC5308874 DOI: 10.1016/j.cels.2016.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 12/09/2016] [Indexed: 12/26/2022]
Abstract
RNA-guided nucleases (RGNs) provide sequence-specific gene regulation through base-pairing interactions between a small RNA guide and target RNA or DNA. RGN systems, which include CRISPR-Cas9 and RNA interference (RNAi), hold tremendous promise as programmable tools for engineering and therapeutic purposes. However, pervasive targeting of sequences that closely resemble the intended target has remained a major challenge, limiting the reliability and interpretation of RGN activity and the range of possible applications. Efforts to reduce off-target activity and enhance RGN specificity have led to a collection of empirically derived rules, which often paradoxically include decreased binding affinity of the RNA-guided nuclease to its target. We consider the kinetics of these reactions and show that basic kinetic properties can explain the specificities observed in the literature and the changes in these specificities in engineered systems. The kinetic models described provide a foundation for understanding RGN targeting and a necessary conceptual framework for their rational engineering.
Collapse
Affiliation(s)
- Namita Bisaria
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Inga Jarmoskaite
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Guichard SM. CRISPR–Cas9 for Drug Discovery in Oncology. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1016/bs.armc.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Leitão AL, Costa MC, Enguita FJ. Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites. J Biotechnol 2016; 241:50-60. [PMID: 27845165 DOI: 10.1016/j.jbiotec.2016.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
Genome engineering is a branch of modern biotechnology composed of a cohort of protocols designed to construct and modify a genotype with the main objective of giving rise to a desired phenotype. Conceptually, genome engineering is based on the so called genome editing technologies, a group of genetic techniques that allow either to delete or to insert genetic information in a particular genomic locus. Ten years ago, genome editing tools were limited to virus-driven integration and homologous DNA recombination. However, nowadays the uprising of programmable nucleases is rapidly changing this paradigm. There are two main families of modern tools for genome editing depending on the molecule that controls the specificity of the system and drives the editor machinery to its place of action. Enzymes such as Zn-finger and TALEN nucleases are protein-driven genome editors; while CRISPR system is a nucleic acid-guided editing system. Genome editing techniques are still not widely applied for the design of new compounds with pharmacological activity, but they are starting to be considered as promising tools for rational genome manipulation in biotechnology applications. In this review we will discuss the potential applications of programmable nucleases for the metabolic engineering of secondary metabolites with biological activity.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Campus de Caparica, 2829-516 Caparica, Portugal; MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Marina C Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
40
|
MacDonald IC, Deans TL. Tools and applications in synthetic biology. Adv Drug Deliv Rev 2016; 105:20-34. [PMID: 27568463 DOI: 10.1016/j.addr.2016.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
Advances in synthetic biology have enabled the engineering of cells with genetic circuits in order to program cells with new biological behavior, dynamic gene expression, and logic control. This cellular engineering progression offers an array of living sensors that can discriminate between cell states, produce a regulated dose of therapeutic biomolecules, and function in various delivery platforms. In this review, we highlight and summarize the tools and applications in bacterial and mammalian synthetic biology. The examples detailed in this review provide insight to further understand genetic circuits, how they are used to program cells with novel functions, and current methods to reliably interface this technology in vivo; thus paving the way for the design of promising novel therapeutic applications.
Collapse
Affiliation(s)
- I Cody MacDonald
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
41
|
Finnigan GC, Thorner J. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence. G3 (BETHESDA, MD.) 2016; 6:2147-56. [PMID: 27185399 PMCID: PMC4938667 DOI: 10.1534/g3.116.029801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Genome editing exploiting CRISPR/Cas9 has been adopted widely in academia and in the biotechnology industry to manipulate DNA sequences in diverse organisms. Molecular engineering of Cas9 itself and its guide RNA, and the strategies for using them, have increased efficiency, optimized specificity, reduced inappropriate off-target effects, and introduced modifications for performing other functions (transcriptional regulation, high-resolution imaging, protein recruitment, and high-throughput screening). Moreover, Cas9 has the ability to multiplex, i.e., to act at different genomic targets within the same nucleus. Currently, however, introducing concurrent changes at multiple loci involves: (i) identification of appropriate genomic sites, especially the availability of suitable PAM sequences; (ii) the design, construction, and expression of multiple sgRNA directed against those sites; (iii) potential difficulties in altering essential genes; and (iv) lingering concerns about "off-target" effects. We have devised a new approach that circumvents these drawbacks, as we demonstrate here using the yeast Saccharomyces cerevisiae First, any gene(s) of interest are flanked upstream and downstream with a single unique target sequence that does not normally exist in the genome. Thereafter, expression of one sgRNA and cotransformation with appropriate PCR fragments permits concomitant Cas9-mediated alteration of multiple genes (both essential and nonessential). The system we developed also allows for maintenance of the integrated, inducible Cas9-expression cassette or its simultaneous scarless excision. Our scheme-dubbed mCAL for " M: ultiplexing of C: as9 at A: rtificial L: oci"-can be applied to any organism in which the CRISPR/Cas9 methodology is currently being utilized. In principle, it can be applied to install synthetic sequences into the genome, to generate genomic libraries, and to program strains or cell lines so that they can be conveniently (and repeatedly) manipulated at multiple loci with extremely high efficiency.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| |
Collapse
|
42
|
Periwal V. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Brief Bioinform 2016; 18:698-711. [DOI: 10.1093/bib/bbw052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/26/2022] Open
|
43
|
Singh A, Chakraborty D, Maiti S. CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering. Chem Soc Rev 2016; 45:6666-6684. [DOI: 10.1039/c6cs00197a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development and adaptation of CRISPR–Cas9 as a genome editing tool and chemical biology approaches for modulating its activity.
Collapse
Affiliation(s)
- Amrita Singh
- CSIR-Institute of Genomics and Integrative Biology
- New Delhi 110025
- India
| | | | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative Biology
- New Delhi 110025
- India
| |
Collapse
|