1
|
Agrawal P, Arya H, Senthil Kumar G. Structure-based identification of small-molecule inhibitors that target the DIII domain of the Dengue virus glycoprotein E pan-serotypically. PLoS One 2024; 19:e0311548. [PMID: 39453957 PMCID: PMC11508475 DOI: 10.1371/journal.pone.0311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/18/2024] [Indexed: 10/27/2024] Open
Abstract
Dengue viral infection is caused by the Dengue virus, which spreads to humans through the bite of infected mosquitos. Dengue affects over half of the global population, with an estimated 500 million infections per year. Despite this, no effective treatment is currently available, however, several promising candidates are undergoing pre-clinical/clinical testing. The existence of four major serotypes is an important challenge in the development of drugs and vaccines to combat Dengue virus infection. Hence, the drug/vaccine thereby developed should neutralize all the four serotypes equally. However, there is no pan-serotype specific treatment for Dengue virus, thereby emphasizing the need for the identification of novel drug-like compounds that can target all serotypes of the Dengue virus equally. To this end, we employed virtual screening methodologies to find drug-like compounds that target the domain III of glycoprotein E. Most importantly, domain III of E protein is involved in viral fusion with the host membrane and is also targeted by neutralizing antibodies. Our study found two small molecule drug-like compounds (out of the 3 million compounds screened) having similar binding affinity with all four serotypes. The compounds thereby identified exhibit favourable drug like properties and can be developed as a treatment for Dengue virus.
Collapse
Affiliation(s)
- Prakhar Agrawal
- Integrative Structural Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Hemant Arya
- Integrative Structural Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ganesan Senthil Kumar
- Integrative Structural Biology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
2
|
Li Z, Liu H, He Z, Chakravarty A, Golden RP, Jiang Z, You I, Yue H, Donovan KA, Du G, Che J, Tse J, Che I, Lu W, Fischer ES, Zhang T, Gray NS, Yang PL. Discovery of Potent Degraders of the Dengue Virus Envelope Protein. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405829. [PMID: 39145423 PMCID: PMC11516100 DOI: 10.1002/advs.202405829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Indexed: 08/16/2024]
Abstract
Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here, it is reported that the development of small molecule degraders of the envelope (E) protein of dengue virus. Two classes of bivalent E-degraders are developed by linking two previously reported E-binding small molecules, GNF-2, and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E-degrader with ABL inhibitory activity while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof of concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class of direct-acting antiviral drugs.
Collapse
Affiliation(s)
- Zhengnian Li
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Han‐Yuan Liu
- Department of Microbiology and ImmunologyStanford University School of Medicine279 Campus DrivePalo AltoCA94305USA
| | - Zhixiang He
- Department of Cancer BiologyDana‐Farber Cancer Institute450 Brookline AvenueBoston02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBoston02115USA
| | - Antara Chakravarty
- Department of Microbiology and ImmunologyStanford University School of Medicine279 Campus DrivePalo AltoCA94305USA
| | - Ryan P. Golden
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Zixuan Jiang
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Inchul You
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | | | - Katherine A. Donovan
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBoston02115USA
| | - Guangyan Du
- Department of Cancer BiologyDana‐Farber Cancer Institute450 Brookline AvenueBoston02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBoston02115USA
| | - Jianwei Che
- Department of Cancer BiologyDana‐Farber Cancer Institute450 Brookline AvenueBoston02215USA
| | - Jason Tse
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Isaac Che
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Wenchao Lu
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Eric S. Fischer
- Department of Cancer BiologyDana‐Farber Cancer Institute450 Brookline AvenueBoston02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBoston02115USA
| | - Tinghu Zhang
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Nathanael S. Gray
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Priscilla L. Yang
- Department of Microbiology and ImmunologyStanford University School of Medicine279 Campus DrivePalo AltoCA94305USA
| |
Collapse
|
3
|
Liu HY, Li Z, Reindl T, He Z, Qiu X, Golden RP, Donovan KA, Bailey A, Fischer ES, Zhang T, Gray NS, Yang PL. Broad-spectrum activity against mosquito-borne flaviviruses achieved by a targeted protein degradation mechanism. Nat Commun 2024; 15:5179. [PMID: 38898037 PMCID: PMC11187112 DOI: 10.1038/s41467-024-49161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Viral genetic diversity presents significant challenges in developing antivirals with broad-spectrum activity and high barriers to resistance. Here we report development of proteolysis targeting chimeras (PROTACs) targeting the dengue virus envelope (E) protein through coupling of known E fusion inhibitors to ligands of the CRL4CRBN E3 ubiquitin ligase. The resulting small molecules block viral entry through inhibition of E-mediated membrane fusion and interfere with viral particle production by depleting intracellular E in infected Huh 7.5 cells. This activity is retained in the presence of point mutations previously shown to confer partial resistance to the parental inhibitors due to decreased inhibitor-binding. The E PROTACs also exhibit broadened spectrum of activity compared to the parental E inhibitors against a panel of mosquito-borne flaviviruses. These findings encourage further exploration of targeted protein degradation as a differentiated and potentially advantageous modality for development of broad-spectrum direct-acting antivirals.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Theresia Reindl
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xueer Qiu
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan P Golden
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Adam Bailey
- Department of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Priscilla L Yang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Li Z, Liu HY, He Z, Chakravarty A, Golden RP, Jiang Z, You I, Yue H, Donovan KA, Du G, Che J, Tse J, Che I, Lu W, Fischer ES, Zhang T, Gray NS, Yang PL. Discovery of Potent Degraders of the Dengue Virus Envelope Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596987. [PMID: 38854003 PMCID: PMC11160776 DOI: 10.1101/2024.06.01.596987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here we report the development of small molecule degraders of the envelope (E) protein of dengue virus. We developed two classes of bivalent E-degraders, linking two previously reported E-binding small molecules, GNF-2 and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E degrader with ABL inhibition while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof-of-concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class antiviral drugs.
Collapse
Affiliation(s)
- Zhengnian Li
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Han-Yuan Liu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Antara Chakravarty
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Ryan P. Golden
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Zixuan Jiang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Inchul You
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Jason Tse
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Isaac Che
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Priscilla L. Yang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
5
|
Bourgeois NM, Wei L, Ho NNT, Neal ML, Seferos D, Tongogara T, Mast FD, Aitchison JD, Kaushansky A. Multiple receptor tyrosine kinases regulate dengue infection of hepatocytes. Front Cell Infect Microbiol 2024; 14:1264525. [PMID: 38585651 PMCID: PMC10995305 DOI: 10.3389/fcimb.2024.1264525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Dengue is an arboviral disease causing severe illness in over 500,000 people each year. Currently, there is no way to constrain dengue in the clinic. Host kinase regulators of dengue virus (DENV) infection have the potential to be disrupted by existing therapeutics to prevent infection and/or disease progression. Methods To evaluate kinase regulation of DENV infection, we performed kinase regression (KiR), a machine learning approach that predicts kinase regulators of infection using existing drug-target information and a small drug screen. We infected hepatocytes with DENV in vitro in the presence of a panel of 38 kinase inhibitors then quantified the effect of each inhibitor on infection rate. We employed elastic net regularization on these data to obtain predictions of which of 291 kinases are regulating DENV infection. Results Thirty-six kinases were predicted to have a functional role. Intriguingly, seven of the predicted kinases - EPH receptor A4 (EPHA4), EPH receptor B3 (EPHB3), EPH receptor B4 (EPHB4), erb-b2 receptor tyrosine kinase 2 (ERBB2), fibroblast growth factor receptor 2 (FGFR2), Insulin like growth factor 1 receptor (IGF1R), and ret proto-oncogene (RET) - belong to the receptor tyrosine kinase (RTK) family, which are already therapeutic targets in the clinic. We demonstrate that predicted RTKs are expressed at higher levels in DENV infected cells. Knockdown of EPHB4, ERBB2, FGFR2, or IGF1R reduces DENV infection in hepatocytes. Finally, we observe differential temporal induction of ERBB2 and IGF1R following DENV infection, highlighting their unique roles in regulating DENV. Discussion Collectively, our findings underscore the significance of multiple RTKs in DENV infection and advocate further exploration of RTK-oriented interventions against dengue.
Collapse
Affiliation(s)
- Natasha M. Bourgeois
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Nhi N. T. Ho
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Denali Seferos
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Tinotenda Tongogara
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Huang GG, Wang HY, Wang XH, Yang T, Zhang XM, Feng CL, Zhao WM, Tang W. Atranorin inhibits Zika virus infection in human glioblastoma cell line SNB-19 via targeting Zika virus envelope protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155343. [PMID: 38290230 DOI: 10.1016/j.phymed.2024.155343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Zika virus (ZIKV) is a single-stranded RNA flavivirus transmitted by mosquitoes. Its infection is associated with neurological complications such as neonatal microcephaly and adult Guillain-Barré syndrome, posing a serious threat to the health of people worldwide. Therefore, there is an urgent need to develop effective anti-ZIKV drugs. Atranorin is a lichen secondary metabolite with a wide range of biological activities, including anti-inflammatory, antibacterial and antioxidant, etc. However, the antiviral activity of atranorin and underlying mechanism has not been fully elucidated. PURPOSE We aimed to determine the anti-ZIKV activity of atranorin in human glioma cell line SNB-19 and investigate the potential mechanism from the perspective of viral life cycle and the host cell functions. METHODS We first established ZIKV-infected human glioma cells (SNB-19) model and used Western Blot, RT-qPCR, immunofluorescence, fluorescence-activated cell sorting (FACS) and plaque assay to evaluate the anti-ZIKV activity of atranorin. Then we assessed the regulation effect of atranorin on ZIKV induced IFN signal pathway activation by RT-qPCR. Afterward, we introduced time-of-addition assay, viral adsorption assay, viral internalization assay and transferrin uptake assay to define which step of ZIKV lifecycle is influenced by atranorin. Finally, we performed virus infectivity assay, molecular docking and thermal shift assay to uncover the target protein of atranorin on ZIKV. RESULTS Our study showed that atranorin could protect SNB-19 cells from ZIKV infection, as evidenced by inhibited viral protein expression and progeny virus yield. Meanwhile, atranorin attenuated the activation of IFN signal pathway and downstream inflammatory response that induced by ZIKV infection. The results of time-of-addition assay indicated that atranorin acted primarily by disturbing the viral entry process. After ruling out the effect of atranorin on AXL receptor tyrosine kinase (AXL) dependent virus adsorption and clathrin-mediated endocytosis, we confirmed that atranorin directly targeted the viral envelope protein and lowered ZIKV infectivity by thermal shift assay and virus infectivity assay respectively. CONCLUSION We found atranorin inhibits ZIKV infection in SNB-19 cells via targeting ZIKV envelope protein. Our study provided an experimental basis for the further development of atranorin and a reference for antiviral drug discovery from natural resources.
Collapse
Affiliation(s)
- Guan-Gen Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hao-Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Han Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Meng Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Chun-Lan Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Wei-Min Zhao
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
7
|
Kushwaha ND, Mohan J, Kushwaha B, Ghazi T, Nwabuife JC, Koorbanally N, Chuturgoon AA. A comprehensive review on the global efforts on vaccines and repurposed drugs for combating COVID-19. Eur J Med Chem 2023; 260:115719. [PMID: 37597435 DOI: 10.1016/j.ejmech.2023.115719] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
The recently discovered coronavirus, known as SARS-CoV-2, is a highly contagious and potentially lethal viral infection that was declared a pandemic by the World Health Organization on March 11, 2020. Since the beginning of the pandemic, an unprecedented number of COVID-19 vaccine candidates have been investigated for their potential to manage the pandemic. Herein, we reviewed vaccine development and the associated research effort, both traditional and forward-looking, to demonstrate the advantages and disadvantages of their technology, in addition to their efficacy limitations against mutant SARS-CoV-2. Moreover, we report repurposed drug discovery, which mainly focuses on virus-based and host-based targets, as well as their inhibitors. SARS-CoV-2 targets include the main protease (Mpro), and RNA-dependent RNA-polymerase (RdRp), which are the most well-studied and conserved across coronaviruses, enabling the development of broad-spectrum inhibitors of these enzymes.
Collapse
Affiliation(s)
- Narva Deshwar Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Jivanka Mohan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Babita Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neil Koorbanally
- School of Chemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
8
|
Escudero-Flórez M, Torres-Hoyos D, Miranda-Brand Y, Boudreau RL, Gallego-Gómez JC, Vicente-Manzanares M. Dengue Virus Infection Alters Inter-Endothelial Junctions and Promotes Endothelial-Mesenchymal-Transition-Like Changes in Human Microvascular Endothelial Cells. Viruses 2023; 15:1437. [PMID: 37515125 PMCID: PMC10386726 DOI: 10.3390/v15071437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Dengue virus (DENV) is a pathogenic arbovirus that causes human disease. The most severe stage of the disease (severe dengue) is characterized by vascular leakage, hypovolemic shock, and organ failure. Endothelial dysfunction underlies these phenomena, but the causal mechanisms of endothelial dysfunction are poorly characterized. This study investigated the role of c-ABL kinase in DENV-induced endothelial dysfunction. Silencing c-ABL with artificial miRNA or targeting its catalytic activity with imatinib revealed that c-ABL is required for the early steps of DENV infection. DENV-2 infection and conditioned media from DENV-infected cells increased endothelial expression of c-ABL and CRKII phosphorylation, promoted expression of mesenchymal markers, e.g., vimentin and N-cadherin, and decreased the levels of endothelial-specific proteins, e.g., VE-cadherin and ZO-1. These effects were reverted by silencing or inhibiting c-ABL. As part of the acquisition of a mesenchymal phenotype, DENV infection and treatment with conditioned media from DENV-infected cells increased endothelial cell motility in a c-ABL-dependent manner. In conclusion, DENV infection promotes a c-ABL-dependent endothelial phenotypic change that leads to the loss of intercellular junctions and acquisition of motility.
Collapse
Affiliation(s)
- Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - David Torres-Hoyos
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Yaneth Miranda-Brand
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Ryan L. Boudreau
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
9
|
Roa-Linares VC, Escudero-Flórez M, Vicente-Manzanares M, Gallego-Gómez JC. Host Cell Targets for Unconventional Antivirals against RNA Viruses. Viruses 2023; 15:v15030776. [PMID: 36992484 PMCID: PMC10058429 DOI: 10.3390/v15030776] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The recent COVID-19 crisis has highlighted the importance of RNA-based viruses. The most prominent members of this group are SARS-CoV-2 (coronavirus), HIV (human immunodeficiency virus), EBOV (Ebola virus), DENV (dengue virus), HCV (hepatitis C virus), ZIKV (Zika virus), CHIKV (chikungunya virus), and influenza A virus. With the exception of retroviruses which produce reverse transcriptase, the majority of RNA viruses encode RNA-dependent RNA polymerases which do not include molecular proofreading tools, underlying the high mutation capacity of these viruses as they multiply in the host cells. Together with their ability to manipulate the immune system of the host in different ways, their high mutation frequency poses a challenge to develop effective and durable vaccination and/or treatments. Consequently, the use of antiviral targeting agents, while an important part of the therapeutic strategy against infection, may lead to the selection of drug-resistant variants. The crucial role of the host cell replicative and processing machinery is essential for the replicative cycle of the viruses and has driven attention to the potential use of drugs directed to the host machinery as therapeutic alternatives to treat viral infections. In this review, we discuss small molecules with antiviral effects that target cellular factors in different steps of the infectious cycle of many RNA viruses. We emphasize the repurposing of FDA-approved drugs with broad-spectrum antiviral activity. Finally, we postulate that the ferruginol analog (18-(phthalimide-2-yl) ferruginol) is a potential host-targeted antiviral.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Juan C Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
10
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
11
|
Alipoor R, Ranjbar R. Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review. Biol Chem 2022; 404:569-584. [PMID: 36490203 DOI: 10.1515/hsz-2022-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread all over the world. In this respect, traditional medicinal chemistry, repurposing, and computational approaches have been exploited to develop novel medicines for treating this condition. The effectiveness of chemicals and testing methods in the identification of new promising therapies, and the extent of preparedness for future pandemics, have been further highly advantaged by recent breakthroughs in introducing noble small compounds for clinical testing purposes. Currently, numerous studies are developing small-molecule (SM) therapeutic products for inhibiting SARS-CoV-2 infection and replication, as well as managing the disease-related outcomes. Transmembrane serine protease (TMPRSS2)-inhibiting medicinal products can thus prevent the entry of the SARS-CoV-2 into the cells, and constrain its spreading along with the morbidity and mortality due to the coronavirus disease 2019 (COVID-19), particularly when co-administered with inhibitors such as chloroquine (CQ) and dihydroorotate dehydrogenase (DHODH). The present review demonstrates that the clinical-stage therapeutic agents, targeting additional viral proteins, might improve the effectiveness of COVID-19 treatment if applied as an adjuvant therapy side-by-side with RNA-dependent RNA polymerase (RdRp) inhibitors.
Collapse
Affiliation(s)
- Reza Alipoor
- Student Research Committee , Hormozgan University of Medical Sciences , Bandar Abbas , Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
Abd Wahab NZ, Ibrahim N. Styrylpyrone Derivative (SPD) Extracted from Goniothalamus umbrosus Binds to Dengue Virus Serotype-2 Envelope Protein and Inhibits Early Stage of Virus Replication. Molecules 2022; 27:molecules27144566. [PMID: 35889438 PMCID: PMC9316064 DOI: 10.3390/molecules27144566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
A study was conducted to investigate the anti-viral effect of a styrylpyrone derivative (SPD) called goniothalamin and the effects on the dengue virus serotype 2 (DENV-2) replication cycle. The SPD was prepared from the root of Goniothalamus umbrosus after purification with petroleum ether. The isolated SPD was then subjected to gas chromatography–mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses for structure validation. The cytotoxicity of the SPD was evaluated using a cell viability assay, while the anti-viral activity of the SPD towards DENV-2 was confirmed by conducting a foci reduction assay which involved virus yield reduction, time-of-addition, and time removal assays. Transcriptomic analysis via quantitative real-time polymerase chain reaction (qRT-PCR) using the DENV-2 E gene was conducted to investigate the level of gene transcript. Immunocytochemistry analysis was used to investigate the effects of SPD treatment on protein E expression. Finally, software molecular docking of the SPD and E protein was also performed. The cytotoxicity assay confirmed that the SPD was not toxic to Vero cells, even at the highest concentration tested. In the time-of-addition assay, more than 80% foci reduction was observed when SPDs were administered at 2 h post-infection (hpi), and the reduction percentage then dropped with the delay of the treatment time, suggesting the inhibition of the early replication cycle. However, the time removal assay showed that more than 80% reduction could only be observed after 96 h post-treatment with the SPD. Treatment with the SPD reduced the progeny infectivity when treated for 24 h and was dose-dependent. The result showed that transcript level of the E gene in infected cells treated with the SPD was reduced compared to infected cells without treatment. In immunocytochemistry analysis, the DENV-2 E protein exhibited similar expression trends, shown by the gene transcription level. Molecular docking showed that the SPD can interact with E protein through hydrogen bonds and other interactions. Overall, this study showed that SPDs have the potential to be anti-DENV-2 via a reduction in viral progeny infectivity and a reduction in the expression of the DENV-2 E gene and protein at different phases of viral replication. SPDs should be further researched to be developed into an effective anti-viral treatment, particularly for early-phase dengue viral infection.
Collapse
Affiliation(s)
- Noor Zarina Abd Wahab
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia
- Correspondence: ; Tel.: +60-096688574
| | - Nazlina Ibrahim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
13
|
De S, Aamna B, Sahu R, Parida S, Behera SK, Dan AK. Seeking heterocyclic scaffolds as antivirals against dengue virus. Eur J Med Chem 2022; 240:114576. [PMID: 35816877 PMCID: PMC9250831 DOI: 10.1016/j.ejmech.2022.114576] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/20/2022]
Abstract
Dengue is one of the most typical viral infection categorized in the Neglected Tropical Diseases (NTDs). It is transmitted via the female Aedes aegypti mosquito to humans and majorly puts risk to the lives of more than half of the world. Recent advancements in medicinal chemistry have led to the design and development of numerous potential heterocyclic scaffolds as antiviral drug candidates for the inhibition of the dengue virus (DENV). Thus, in this review, we have discussed the significance of inhibitory and antiviral activities of nitrogen, oxygen, and mixed (nitrogen-sulfur and nitrogen-oxygen) heterocyclic scaffolds that are published in the last seven years (2016–2022). Furthermore, we have also discussed the probable mechanisms of action and the diverse structure-activity relationships (SARs) of the heterocyclic scaffolds. In addition, this review has elaborately outlined the mechanism of viral infection and the life cycle of DENV in the host cells. The wide set of heterocycles and their SARs will aid in the development of pharmaceuticals that will allow the researchers to synthesize the promising anti-dengue drug candidate in the future.
Collapse
|
14
|
Debnath SK, Debnath M, Srivastava R, Omri A. Drugs repurposing for SARS-CoV-2: new insight of COVID-19 druggability. Expert Rev Anti Infect Ther 2022; 20:1187-1204. [PMID: 35615888 DOI: 10.1080/14787210.2022.2082944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The ongoing epidemic of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) creates a massive panic worldwide due to the absence of effective medicines. Developing a new drug or vaccine is time-consuming to pass safety and efficacy testing. Therefore, repurposing drugs have been introduced to treat COVID-19 until effective drugs are developed. AREA COVERED A detailed search of repurposing drugs against SARS-CoV-2 was carried out using the PubMed database, focusing on articles published 2020 years onward. A different class of drugs has been described in this article to target hosts and viruses. Based on the previous pandemic experience of SARS-CoV and MERS, several antiviral and antimalarial drugs are discussed here. This review covers the failure of some repurposed drugs that showed promising activity in the earlier CoV-pandemic but were found ineffective against SARS-CoV-2. All these discussions demand a successful drug development strategy for screening and identifying an effective drug for better management of COVID-19. The drug development strategies described here will serve a new scope of research for academicians and researchers. EXPERT OPINION Repurposed drugs have been used since COVID-19 to eradicate disease propagation. Drugs found effective for MERS and SARS may not be effective against SARS-CoV-2. Drug libraries and artificial intelligence are helpful tools to screen and identify different molecules targeting viruses or hosts.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug & Vaccine Delivery Systems Facility, Laurentian University, Sudbury, Canada
| |
Collapse
|
15
|
Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J Biol Chem 2022; 298:101957. [PMID: 35452675 PMCID: PMC9123278 DOI: 10.1016/j.jbc.2022.101957] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.
Collapse
|
16
|
Shimu MSS, Mahmud S, Tallei TE, Sami SA, Adam AA, Acharjee UK, Paul GK, Emran TB, Zaman S, Uddin MS, Saleh MA, Alshehri S, Ghoneim MM, Alruwali M, Obaidullah AJ, Jui NR, Kim J, Kim B. Phytochemical Compound Screening to Identify Novel Small Molecules against Dengue Virus: A Docking and Dynamics Study. Molecules 2022; 27:molecules27030653. [PMID: 35163918 PMCID: PMC8840231 DOI: 10.3390/molecules27030653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The spread of the Dengue virus over the world, as well as multiple outbreaks of different serotypes, has resulted in a large number of deaths and a medical emergency, as no viable medications to treat Dengue virus patients have yet been found. In this paper, we provide an in silico virtual screening and molecular dynamics-based analysis to uncover efficient Dengue infection inhibitors. Based on a Google search and literature mining, a large phytochemical library was generated and employed as ligand molecules. In this investigation, the protein target NS2B/NS3 from Dengue was employed, and around 27 compounds were evaluated in a docking study. Phellodendroside (−63 kcal/mole), quercimeritrin (−59.5 kcal/mole), and quercetin-7-O-rutinoside (−54.1 kcal/mole) were chosen based on their binding free energy in MM-GBSA. The tested compounds generated numerous interactions at Lys74, Asn152, and Gln167 residues in the active regions of NS2B/NS3, which is needed for the protein’s inhibition. As a result, the stable mode of docked complexes is defined by various descriptors from molecular dynamics simulations, such as RMSD, SASA, Rg, RMSF, and hydrogen bond. The pharmacological properties of the compounds were also investigated, and no toxicity was found in computational ADMET properties calculations. As a result, this computational analysis may aid fellow researchers in developing innovative Dengue virus inhibitors.
Collapse
Affiliation(s)
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Trina Ekwati Tallei
- Department of Biology, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Saad Ahmed Sami
- Department of Pharmacy, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Uzzal Kumar Acharjee
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
- Correspondence: (U.K.A.); (M.A.S.); (B.K.)
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
- Correspondence: (U.K.A.); (M.A.S.); (B.K.)
| | - Sultan Alshehri
- Department of Pharamaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharamcy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwali
- Department of Pharmacy Practice, College of Pharamcy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nabilah Rahman Jui
- Department of Biochemistry and Biotechnology, University of Science and Technology, Chittagong 4202, Bangladesh;
| | - Junghwan Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea
- Correspondence: (U.K.A.); (M.A.S.); (B.K.)
| |
Collapse
|
17
|
Lin CS, Huang SH, Yan BY, Lai HC, Lin CW. Effective Antiviral Activity of the Tyrosine Kinase Inhibitor Sunitinib Malate against Zika Virus. Infect Chemother 2021; 53:730-740. [PMID: 34951532 PMCID: PMC8731257 DOI: 10.3947/ic.2021.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Zika virus (ZIKV), a mosquito-borne flavivirus, causes the outbreaks of Latin America in 2015 - 2016, with the incidence of neurological complications. Sunitinib malate, an orally bioavailable malate salt of the tyrosine kinase inhibitor, is suggested as a broad-spectrum antiviral agent against emerging viruses like severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Materials and Methods This study investigated the antiviral efficacy and antiviral mechanisms of sunitinib malate against ZIKV infection using cytopathic effect reduction, virus yield, and time-of-addition assays. Results Sunitinib malate concentration-dependently reduced ZIKV-induced cytopathic effect, the expression of viral proteins, and ZIKV yield in supernatant with 50% inhibitory concentration (IC50) value of 0.015 μM, and the selectivity index of greater than 100 against ZIKV infection, respectively. Sunitinib malate had multiple antiviral actions during entry and post-entry stages of ZIKV replication. Sunitinib malate treatment at entry stage significantly reduced the levels of ZIKV RNA replication with the reduction of (+) RNA to (-) RNA ratio and the production of new intracellular infectious particles in infected cells. The treatment at post-entry stage caused a concentration-dependent increase in the levels of ZIKV (+) RNA and (-) RNA in infected cells, along with enlarging the ratio of (+) RNA to (-) RNA, but caused a pointed increase in the titer of intracellular infectious particles by 0.01 and 0.1 μM, and a substantial decrease in the titer of intracellular infectious particles by 1 μM. Conclusion The study discovered the antiviral actions of sunitinib malate against ZIKV infection, demonstrating a repurposed, host-targeted approach to identify potential antiviral drugs for treating emerging and global viral diseases.
Collapse
Affiliation(s)
- Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Su-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Bo-Yu Yan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
Kalogirou AS, East MP, Laitinen T, Torrice CD, Maffuid KA, Drewry DH, Koutentis PA, Johnson GL, Crona DJ, Asquith CRM. Synthesis and Evaluation of Novel 1,2,6-Thiadiazinone Kinase Inhibitors as Potent Inhibitors of Solid Tumors. Molecules 2021; 26:molecules26195911. [PMID: 34641454 PMCID: PMC8513058 DOI: 10.3390/molecules26195911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
A focused series of substituted 4H-1,2,6-thiadiazin-4-ones was designed and synthesized to probe the anti-cancer properties of this scaffold. Insights from previous kinase inhibitor programs were used to carefully select several different substitution patterns. Compounds were tested on bladder, prostate, pancreatic, breast, chordoma, and lung cancer cell lines with an additional skin fibroblast cell line as a toxicity control. This resulted in the identification of several low single digit micro molar compounds with promising therapeutic windows, particularly for bladder and prostate cancer. A number of key structural features of the 4H-1,2,6-thiadiazin-4-one scaffold are discussed that show promising scope for future improvement.
Collapse
Affiliation(s)
- Andreas S. Kalogirou
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenis Str., Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus;
- Correspondence: (A.S.K.); (C.R.M.A.); Tel.: +357-22-559655 (A.S.K.); +1-919-491-3177 (C.R.M.A.)
| | - Michael P. East
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (M.P.E.); (G.L.J.)
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Chad D. Torrice
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.D.T.); (K.A.M.); (D.J.C.)
| | - Kaitlyn A. Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.D.T.); (K.A.M.); (D.J.C.)
| | - David H. Drewry
- Structural Genomics Consortium, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Gary L. Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (M.P.E.); (G.L.J.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel J. Crona
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.D.T.); (K.A.M.); (D.J.C.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher R. M. Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (M.P.E.); (G.L.J.)
- Correspondence: (A.S.K.); (C.R.M.A.); Tel.: +357-22-559655 (A.S.K.); +1-919-491-3177 (C.R.M.A.)
| |
Collapse
|
19
|
Abstract
Viral fusion glycoproteins catalyze membrane fusion during viral entry. Unlike most enzymes, however, they lack a conventional active site in which formation or scission of a specific covalent bond is catalyzed. Instead, they drive the membrane fusion reaction by cojoining highly regulated changes in conformation to membrane deformation. Despite the challenges in applying inhibitor design approaches to these proteins, recent advances in knowledge of the structures and mechanisms of viral fusogens have enabled the development of small-molecule inhibitors of both class I and class II viral fusion proteins. Here, we review well-validated inhibitors, including their discovery, targets, and mechanism(s) of action, while highlighting mechanistic similarities and differences. Together, these examples make a compelling case for small-molecule inhibitors as tools for probing the mechanisms of viral glycoprotein-mediated fusion and for viral glycoproteins as druggable targets.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| | - Priscilla L Yang
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| |
Collapse
|
20
|
Dowarah J, Marak BN, Yadav UCS, Singh VP. Potential drug development and therapeutic approaches for clinical intervention in COVID-19. Bioorg Chem 2021; 114:105016. [PMID: 34144277 PMCID: PMC8143914 DOI: 10.1016/j.bioorg.2021.105016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 01/25/2023]
Abstract
While the vaccination is now available to many countries and will slowly dissipate to others, effective therapeutics for COVID-19 is still illusive. The SARS-CoV-2 pandemic has posed an unprecedented challenge to researchers, scientists, and clinicians and affected the wellbeing of millions of people worldwide. Since the beginning of the pandemic, a multitude of existing anti-viral, antibiotic, antimalarial, and anticancer drugs have been tested, and some have shown potency in the treatment and management of COVID-19, albeit others failed to leave any positive impact and a few also became controversial as they showed mixed clinical outcomes. In the present article, we have brought together some of the candidate therapeutic drugs being repurposed or used in the clinical trials and discussed their clinical efficacy and safety for COVID-19.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Brilliant N Marak
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Ved Prakash Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India; Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
21
|
Naresh P, Pottabatula SS, Selvaraj J. Dengue virus entry/fusion inhibition by small bioactive molecules; A critical review. Mini Rev Med Chem 2021; 22:484-497. [PMID: 34353253 DOI: 10.2174/1389557521666210805105146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Many flaviviruses are remarkable human pathogens that can be transmitted by mosquitoes and ticks. Despite the availability of vaccines for viral infections such as yellow fever, Japanese encephalitis, and tick-borne encephalitis, flavivirus-like dengue is still a significant life-threatening illness worldwide. To date, there is no antiviral treatment for dengue therapy. Industry and the research community have been taking ongoing steps to improve anti-flavivirus treatment to meet this clinical need. The successful activity has been involved in the inhibition of the virus entry fusion process in the last two decades. In this study, the latest understanding of the use of small molecules used as fusion inhibitors has been comprehensively presented. We summarized the structure, the process of fusion of dengue virus E protein (DENV E), and the amino acids involved in the fusion process. Special attention has been given to small molecules that allow conformational changes to DENV E protein viz. blocking the pocket of βOG, which is important for fusion.
Collapse
Affiliation(s)
- Podila Naresh
- Department of Pharmaceutical Chemistry JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu. India
| | - Shyam Sunder Pottabatula
- Department of Pharmaceutical Chemistry JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu. India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu. India
| |
Collapse
|
22
|
Gallo FN, Enderle AG, Pardo LA, Leal ES, Bollini M. Challenges and perspectives in the discovery of dengue virus entry inhibitors. Curr Med Chem 2021; 29:719-740. [PMID: 34036904 DOI: 10.2174/0929867328666210521213118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022]
Abstract
Dengue virus (DENV) disease has become one of the major challenges in public health. Currently, there is no antiviral treatment for this infection. Since human transmission occurs via mosquitoes of the Aedes genus, most efforts have been focused on controlling this vector. However, these control strategies have not been totally successful, as reflected in the increasing number of DENV infections per year, becoming an endemic disease in more than 100 countries worldwide. Consequently, the development of a safe antiviral agent is urgently needed. In this sense, rational design approaches have been applied in the development of antiviral compounds that inhibit one or more steps in the viral replication cycle. The entry of viruses into host cells is an early and specific stage of infection. Targeting either viral components or cellular protein targets is an affordable and effective strategy for therapeutic intervention of viral infections. This review provides an extensive overview of the small organic molecules, peptides, and inorganic moieties that have been tested so far as DENV entry direct-acting antiviral agents. The latest advances based on computer-aided drug design (CADD) strategies and traditional medicinal chemistry approaches in the design and evaluation of DENV virus entry inhibitors will be discussed. Furthermore, physicochemical drug properties such as solubility, lipophilicity, stability, and current results of pre-clinical and clinical studies will also be discussed in detail.
Collapse
Affiliation(s)
- Facundo N Gallo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana G Enderle
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Lucas A Pardo
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, Canada
| | - Emilse S Leal
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
23
|
Abstract
Viral infections are a major health problem; therefore, there is an urgent need for novel therapeutic strategies. Antivirals used to target proteins encoded by the viral genome usually enhance drug resistance generated by the virus. A potential solution may be drugs acting at host-based targets since viruses are dependent on numerous cellular proteins and phosphorylation events that are crucial during their life cycle. Repurposing existing kinase inhibitors as antiviral agents would help in the cost and effectiveness of the process, but this strategy usually does not provide much improvement, and specific medicinal chemistry programs are needed in the field. Anyway, extensive use of FDA-approved kinase inhibitors has been quite useful in deciphering the role of host kinases in viral infection. The present perspective aims to review the state of the art of kinase inhibitors that target viral infections in different development stages.
Collapse
Affiliation(s)
- Javier García-Cárceles
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Caballero
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
24
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Raghuvanshi R, Bharate SB. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J Med Chem 2021; 65:893-921. [PMID: 33539089 DOI: 10.1021/acs.jmedchem.0c01467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
26
|
Naresh P, Selvaraj A, Shyam Sundar P, Murugesan S, Sathianarayanan S, Namboori P K K, Jubie S. Targeting a conserved pocket (n-octyl-β-D-glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors. J Biomol Struct Dyn 2020; 40:4866-4878. [PMID: 33345726 DOI: 10.1080/07391102.2020.1862707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dengue virus enters the cell by receptor-mediated endocytosis followed by a viral envelope (DENVE) protein-mediated membrane fusion. A small detergent molecule n-octyl-β-D-glucoside (βOG) occupies the hydrophobic pocket which is located in the hinge region plays a major role in the rearrangement. It has been reported that mutations occurred in this binding pocket lead to the alterations of pH threshold for fusion. In addition to this event, the protonation of histidine residues present in the hydrophobic pocket would also impart the conformational change of the E protein evidence this pocket as a promising target. The present study identified novel cinnamic acid analogs as significant blockers of the hydrophobic pocket through molecular modeling studies against DENVE. A library of seventy-two analogs of cinnamic acid was undertaken for the discovery process of DENV inhibitors. A Molecular docking study was used to analyze the binding mechanism between these compounds and DENV followed by ADMET prediction. Binding energies were predicted by the MMGBSA study. The Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. The compounds CA and SCA derivatives have been tested against HSV-1 & 2 viruses. From the computational results, the compounds CA1, CA2, SCA 60, SCA 57, SCA 37, SCA 58, and SCA 14 exhibited favorable interaction energy. The compounds have in-vitro antiviral activity; the results clearly indicate that the compounds showed the activity against both the viruses (HSV-1 & HSV-2). Our study provides valuable information on the discovery of small molecules DENVE inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Naresh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - A Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - P Shyam Sundar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - S Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, India
| | - S Sathianarayanan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Ponekkara, Kochi, Kerala, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research Lab, Amrita Vishwavidyapeetham, Coimbatore, Tamilnadu, India
| | - S Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| |
Collapse
|
27
|
Blázquez AB, Saiz JC. Potential for Protein Kinase Pharmacological Regulation in Flaviviridae Infections. Int J Mol Sci 2020; 21:E9524. [PMID: 33333737 PMCID: PMC7765220 DOI: 10.3390/ijms21249524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Protein kinases (PKs) are enzymes that catalyze the transfer of the terminal phosphate group from ATP to a protein acceptor, mainly to serine, threonine, and tyrosine residues. PK catalyzed phosphorylation is critical to the regulation of cellular signaling pathways that affect crucial cell processes, such as growth, differentiation, and metabolism. PKs represent attractive targets for drugs against a wide spectrum of diseases, including viral infections. Two different approaches are being applied in the search for antivirals: compounds directed against viral targets (direct-acting antivirals, DAAs), or against cellular components essential for the viral life cycle (host-directed antivirals, HDAs). One of the main drawbacks of DAAs is the rapid emergence of drug-resistant viruses. In contrast, HDAs present a higher barrier to resistance development. This work reviews the use of chemicals that target cellular PKs as HDAs against virus of the Flaviviridae family (Flavivirus and Hepacivirus), thus being potentially valuable therapeutic targets in the control of these pathogens.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain;
| | | |
Collapse
|
28
|
El Bairi K, Trapani D, Petrillo A, Le Page C, Zbakh H, Daniele B, Belbaraka R, Curigliano G, Afqir S. Repurposing anticancer drugs for the management of COVID-19. Eur J Cancer 2020; 141:40-61. [PMID: 33125946 PMCID: PMC7508523 DOI: 10.1016/j.ejca.2020.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023]
Abstract
Since its outbreak in the last December, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has rapidly spread worldwide at a pandemic proportion and thus is regarded as a global public health emergency. The existing therapeutic options for COVID-19 beyond the intensive supportive care are limited, with an undefined or modest efficacy reported so far. Drug repurposing represents an enthusiastic mechanism to use approved drugs outside the scope of their original indication and accelerate the discovery of new therapeutic options. With the emergence of COVID-19, drug repurposing has been largely applied for early clinical testing. In this review, we discuss some repurposed anticancer drugs for the treatment of COVID-19, which are under investigation in clinical trials or proposed for the clinical testing.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco.
| | | | - Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy; University of Study of Campania "L.Vanvitelli", Naples, Italy
| | - Cécile Le Page
- Research Institute of McGill University Health Center (RI-MUHC), Montréal, QC, Canada
| | - Hanaa Zbakh
- Center of Marine Sciences, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
| | - Rhizlane Belbaraka
- Department of Medical Oncology, "Bioscience et Santé" Research Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakesh, Morocco
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy; University of Milan, Department of Oncology and Hematology, Milan, Italy
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
29
|
Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020; 15:2391-2419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
30
|
Telehany SM, Humby MS, McGee TD, Riley SP, Jacobs A, Rizzo RC. Identification of Zika Virus Inhibitors Using Homology Modeling and Similarity-Based Screening to Target Glycoprotein E. Biochemistry 2020; 59:3709-3724. [PMID: 32876433 PMCID: PMC7598728 DOI: 10.1021/acs.biochem.0c00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The
World Health Organization has designated Zika virus (ZIKV)
as a dangerous, mosquito-borne pathogen that can cause severe developmental
defects. The primary goal of this work was identification of small
molecules as potential ZIKV inhibitors that target the viral envelope
glycoprotein (ZIKV E) involved in membrane fusion and viral entry.
A homology model of ZIKV E containing the small molecule β-octyl
glucoside (BOG) was constructed, on the basis of an analogous X-ray
structure from dengue virus, and >4 million commercially available
compounds were computationally screened using the program DOCK6. A
key feature of the screen involved the use of similarity-based scoring
to identify inhibitor candidates that make similar interaction energy
patterns (molecular footprints) as the BOG reference. Fifty-three
prioritized compounds underwent experimental testing using cytotoxicity,
cell viability, and tissue culture infectious dose 50% (TCID50) assays.
Encouragingly, relative to a known control (NITD008), six compounds
were active in both the cell viability assay and the TCID50 infectivity
assay, and they showed activity in a third caspase activity assay.
In particular, compounds 8 and 15 (tested
at 25 μM) and compound 43 (tested at 10 μM)
appeared to provide significant protection to infected cells, indicative
of anti-ZIKV activity. Overall, the study highlights how similarity-based
scoring can be leveraged to computationally identify potential ZIKV
E inhibitors that mimic a known reference (in this case BOG), and
the experimentally verified hits provide a strong starting point for
further refinement and optimization efforts.
Collapse
Affiliation(s)
- Stephen M Telehany
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Monica S Humby
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, United States
| | - T Dwight McGee
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sean P Riley
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, United States
| | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, United States
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, United States.,Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794, United States.,Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
31
|
Abstract
There is a large global unmet need for effective countermeasures to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). The development of novel antiviral drugs is expensive and too slow to meet the immediate need. The repurposing of drugs that are approved or are under advanced clinical investigation provides a cost- and time-effective therapeutic solution. This review summarizes the major repurposed approaches that have been proposed or are already being studied in clinical trials for COVID-19. Among these approaches are drugs that aim to reduce SARS-CoV-2 replication by targeting either viral enzymatic functions or cellular factors required for the viral life cycle. Drugs that modulate the host immune response to SARS-CoV-2 infection by boosting it to enhance viral clearance or by suppressing it to prevent excessive inflammation and tissue injury represent another category. Lastly, we discuss means to discover repurposed drugs and the ongoing challenges associated with the off-label use of existing drugs in the context of the COVID-19 outbreak.
Collapse
Affiliation(s)
- Sirle Saul
- Department of Medicine, Division of Infectious Diseases and
Geographic Medicine, and Department of Microbiology and Immunology,
Stanford University School of Medicine, Stanford
University, 300 Pasteur Drive, Lane Building, Rm
L127, Stanford, California 94305, United
States
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and
Geographic Medicine, and Department of Microbiology and Immunology,
Stanford University School of Medicine, Stanford
University, 300 Pasteur Drive, Lane Building, Rm
L127, Stanford, California 94305, United
States
| |
Collapse
|
32
|
Troost B, Smit JM. Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 2020; 43:9-21. [PMID: 32795907 DOI: 10.1016/j.coviro.2020.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023]
Abstract
Despite the high disease burden of dengue virus, there is no approved antiviral treatment or broadly applicable vaccine to treat or prevent dengue virus infection. In the last decade, many antiviral compounds have been identified but only few have been further evaluated in pre-clinical or clinical trials. This review will give an overview of the direct-acting and host-directed antivirals identified to date. Furthermore, important parameters for further development that is, drug properties including efficacy, specificity and stability, pre-clinical animal testing, and combinational drug therapy will be discussed.
Collapse
Affiliation(s)
- Berit Troost
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
33
|
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020; 37:167. [PMID: 32778962 PMCID: PMC7417114 DOI: 10.1007/s11095-020-02851-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials. Here, we characterize more than 30 approved kinase inhibitors in terms of their antiviral potential, due to their measured potency against key kinases required for viral entry, metabolism, or reproduction. We also highlight inhibitors with potential to reverse pulmonary insufficiency because of their anti-inflammatory activity, cytokine suppression, or antifibrotic activity. Certain agents are projected to be dual-purpose drugs in terms of antiviral activity and alleviation of disease symptoms, however drug combination is also an option for inhibitors with optimal pharmacokinetic properties that allow safe and efficacious co-administration with other drugs, such as antiviral agents, IL-6 blocking agents, or other kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingwang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Choudhary S, Malik YS, Tomar S. Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in silico Structure-Based Virtual Screening Approach. Front Immunol 2020; 11:1664. [PMID: 32754161 PMCID: PMC7365927 DOI: 10.3389/fimmu.2020.01664] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 01/11/2023] Open
Abstract
The rapidly spreading, highly contagious and pathogenic SARS-coronavirus 2 (SARS-CoV-2) associated Coronavirus Disease 2019 (COVID-19) has been declared as a pandemic by the World Health Organization (WHO). The novel 2019 SARS-CoV-2 enters the host cell by binding of the viral surface spike glycoprotein (S-protein) to cellular angiotensin converting enzyme 2 (ACE2) receptor. The virus specific molecular interaction with the host cell represents a promising therapeutic target for identifying SARS-CoV-2 antiviral drugs. The repurposing of drugs can provide a rapid and potential cure toward exponentially expanding COVID-19. Thereto, high throughput virtual screening approach was used to investigate FDA approved LOPAC library drugs against both the receptor binding domain of spike protein (S-RBD) and ACE2 host cell receptor. Primary screening identified a few promising molecules for both the targets, which were further analyzed in details by their binding energy, binding modes through molecular docking, dynamics and simulations. Evidently, GR 127935 hydrochloride hydrate, GNF-5, RS504393, TNP, and eptifibatide acetate were found binding to virus binding motifs of ACE2 receptor. Additionally, KT203, BMS195614, KT185, RS504393, and GSK1838705A were identified to bind at the receptor binding site on the viral S-protein. These identified molecules may effectively assist in controlling the rapid spread of SARS-CoV-2 by not only potentially inhibiting the virus at entry step but are also hypothesized to act as anti-inflammatory agents, which could impart relief in lung inflammation. Timely identification and determination of an effective drug to combat and tranquilize the COVID-19 global crisis is the utmost need of hour. Further, prompt in vivo testing to validate the anti-SARS-CoV-2 inhibition efficiency by these molecules could save lives is justified.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Yashpal S. Malik
- Division of Biological Standardization, Indian Veterinary Research Institute, Bareilly, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
35
|
Exploring Evolutionary Constraints in the Proteomes of Zika, Dengue, and Other Flaviviruses to Find Fitness-Critical Sites. J Mol Evol 2020; 88:399-414. [DOI: 10.1007/s00239-020-09941-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
|
36
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Yang CC, Hu HS, Lin HM, Wu PS, Wu RH, Tian JN, Wu SH, Tsou LK, Song JS, Chen HW, Chern JH, Chen CT, Yueh A. A novel flavivirus entry inhibitor, BP34610, discovered through high-throughput screening with dengue reporter viruses. Antiviral Res 2019; 172:104636. [PMID: 31654671 DOI: 10.1016/j.antiviral.2019.104636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/24/2019] [Accepted: 10/20/2019] [Indexed: 12/01/2022]
Abstract
Dengue virus (DENV) is a global health problem that affects approximately 3.9 billion people worldwide. Since safety concerns were raised for the only licensed vaccine, Dengvaxia, and since the present treatment is only supportive care, the development of more effective therapeutic anti-DENV agents is urgently needed. In this report, we identified a potential small-molecule inhibitor, BP34610, via cell-based high-throughput screening (HTS) of 12,000 compounds using DENV-2 reporter viruses. BP34610 reduced the virus yields of type 2 DENV-infected cells with a 50% effective concentration (EC50) and selectivity index value of 0.48 ± 0.06 μM and 197, respectively. Without detectable cytotoxicity, the compound inhibited not only all four serotypes of DENV but also Japanese encephalitis virus (JEV). Time-of-addition experiments suggested that BP34610 may act at an early stage of DENV virus infection. Sequencing analyses of several individual clones derived from BP34610-resistant viruses revealed a consensus amino acid substitution (S397P) in the N-terminal stem region of the E protein. Introduction of S397P into the DENV reporter viruses conferred an over 14.8-fold EC90 shift for BP34610. Importantly, the combination of BP34610 with a viral replication inhibitor, ribavirin, displayed synergistic enhancement of anti-DENV-2 activity. Our results identify an effective small-molecule inhibitor, BP34610, which likely targets the DENV E protein. BP34610 could be developed as an anti-flavivirus agent in the future.
Collapse
Affiliation(s)
- Chi-Chen Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Han-Shu Hu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Hui-Mei Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Pei-Shan Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Ren-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Jia-Ni Tian
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC; Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Hsin-Wei Chen
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Jyh-Haur Chern
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC.
| |
Collapse
|
38
|
Ahammad F, Tengku Abd Rashid TR, Mohamed M, Tanbin S, Ahmad Fuad FA. Contemporary Strategies and Current Trends in Designing Antiviral Drugs against Dengue Fever via Targeting Host-Based Approaches. Microorganisms 2019; 7:E296. [PMID: 31466307 PMCID: PMC6780377 DOI: 10.3390/microorganisms7090296] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) is an arboviral human pathogen transmitted through mosquito bite that infects an estimated ~400 million humans (~5% of the global population) annually. To date, no specific therapeutics have been developed that can prevent or treat infections resulting from this pathogen. DENV utilizes numerous host molecules and factors for transcribing the single-stranded ~11 kb positive-sense RNA genome. For example, the glycosylation machinery of the host is required for viral particles to assemble in the endoplasmic reticulum. Since a variety of host factors seem to be utilized by the pathogens, targeting these factors may result in DENV inhibitors, and will play an important role in attenuating the rapid emergence of other flaviviruses. Many experimental studies have yielded findings indicating that host factors facilitate infection, indicating that the focus should be given to targeting the processes contributing to pathogenesis along with many other immune responses. Here, we provide an extensive literature review in order to elucidate the progress made in the development of host-based approaches for DENV viral infections, focusing on host cellular mechanisms and factors responsible for viral replication, aiming to aid the potential development of host-dependent antiviral therapeutics.
Collapse
Affiliation(s)
- Foysal Ahammad
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | | | - Maizan Mohamed
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Locked Bag 36, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Suriyea Tanbin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Fazia Adyani Ahmad Fuad
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia.
| |
Collapse
|
39
|
Li PC, Jang J, Hsia CY, Groomes PV, Lian W, de Wispelaere M, Pitts JD, Wang J, Kwiatkowski N, Gray NS, Yang PL. Small Molecules Targeting the Flavivirus E Protein with Broad-Spectrum Activity and Antiviral Efficacy in Vivo. ACS Infect Dis 2019; 5:460-472. [PMID: 30608640 DOI: 10.1021/acsinfecdis.8b00322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccines and antivirals to combat dengue, Zika, and other flavivirus pathogens present a major, unmet medical need. Vaccine development has been severely challenged by the antigenic diversity of these viruses and the propensity of non-neutralizing, cross-reactive antibodies to facilitate cellular infection and increase disease severity. As an alternative, direct-acting antivirals targeting the flavivirus envelope protein, E, have the potential to act via an analogous mode of action without the risk of antibody-dependent enhancement of infection and disease. We previously discovered that structurally diverse small molecule inhibitors of the dengue virus E protein exhibit varying levels of antiviral activity against other flaviviruses in cell culture. Here, we demonstrate that the broad-spectrum activity of several cyanohydrazones against dengue, Zika, and Japanese encephalitis viruses is due to specific inhibition of E-mediated membrane fusion during viral entry and provide proof of concept for pharmacological inhibition of E as an antiviral strategy in vivo.
Collapse
Affiliation(s)
- Pi-Chun Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Jaebong Jang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Chih-Yun Hsia
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Patrice V. Groomes
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Wenlong Lian
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Melissanne de Wispelaere
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jared D. Pitts
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Priscilla L. Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Res 2019; 164:147-153. [PMID: 30771406 DOI: 10.1016/j.antiviral.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
The recent emergence of Zika virus, a mosquito-borne flavivirus, in the Americas has shed light on the severe neurological diseases associated with infection, notably congenital microcephaly in newborns and Guillain-Barré syndrome in adults. Despite the recent focus on Zika virus, there are currently no approved vaccines or antiviral therapies available to treat or prevent infection. In this study we established a competitive amplified luminescent proximity homogeneous assay (ALPHAscreen) to identify small molecule inhibitors targeting the envelope protein of Zika virus (Zika E). We utilized this assay to screen two libraries of nearly 27,000 compounds and identified seven novel inhibitors of Zika E. Characterization of these primary screening leads demonstrated that inhibition of Zika virus occurs at non-cytotoxic concentrations for all seven lead compounds. In addition, we found that all seven lead compounds have potent activity against the closely related dengue virus 2 but not vesicular stomatitis virus, an unrelated enveloped virus. Biochemical experiments indicate that these compounds act by preventing E-mediated membrane fusion. This work highlights a new method for the discovery and optimization of direct-acting antivirals targeting the E protein of Zika and other flaviviruses.
Collapse
|
41
|
Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 2018; 163:156-178. [PMID: 30597183 DOI: 10.1016/j.antiviral.2018.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
In the context of the only available vaccine (DENGVAXIA) that was marketed in several countries, but poses higher risks to unexposed individuals, the development of antivirals for dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here recent progress in the field of DENV drug discovery made in academic laboratories and industry is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific immunopathology provoked by this acute viral infection, are described. New chemical classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus specific inhibitors. Challenges and opportunities in lead identification activities as well as the path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, collaborative public-public partnerships and open-access resources will greatly benefit both the DENV research community and DENV patients.
Collapse
|
42
|
Zakaria MK, Carletti T, Marcello A. Cellular Targets for the Treatment of Flavivirus Infections. Front Cell Infect Microbiol 2018; 8:398. [PMID: 30483483 PMCID: PMC6240593 DOI: 10.3389/fcimb.2018.00398] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
Classical antiviral therapy targets viral functions, mostly viral enzymes or receptors. Successful examples include precursor herpesvirus drugs, antiretroviral drugs that target reverse transcriptase and protease, influenza virus directed compounds as well as more recent direct antiviral agents (DAA) applied in the treatment of hepatitis C virus (HCV). However, from early times, the possibility of targeting the host cell to contain the infection has frequently re-emerged as an alternative and complementary antiviral strategy. Advantages of this approach include an increased threshold to the emergence of resistance and the possibility to target multiple viruses. Major pitfalls are related to important cellular side effects and cytotoxicity. In this mini-review, the concept of host directed antiviral therapy will be discussed with a focus on the most recent advances in the field of Flaviviruses, a family of important human pathogens for which we do not have antivirals available in the clinics.
Collapse
Affiliation(s)
- Mohammad Khalid Zakaria
- Laboratory of Molecular Virology, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Tea Carletti
- Laboratory of Molecular Virology, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
43
|
Robinson M, Schor S, Barouch-Bentov R, Einav S. Viral journeys on the intracellular highways. Cell Mol Life Sci 2018; 75:3693-3714. [PMID: 30043139 PMCID: PMC6151136 DOI: 10.1007/s00018-018-2882-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus-host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanford Schor
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
44
|
Lian W, Jang J, Potisopon S, Li PC, Rahmeh A, Wang J, Kwiatkowski NP, Gray NS, Yang PL. Discovery of Immunologically Inspired Small Molecules That Target the Viral Envelope Protein. ACS Infect Dis 2018; 4:1395-1406. [PMID: 30027735 DOI: 10.1021/acsinfecdis.8b00127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dengue virus is a major human pathogen that infects over 390 million people annually leading to approximately 500 000 hospitalizations due to severe dengue. Since the only marketed vaccine, Dengvaxia, has recently been shown to increase disease severity in those lacking natural immunity, antivirals to prevent or treat dengue infection represent a large, unmet medical need. Small molecules that target the dengue virus envelope protein, E, on the surface of the virion could act analogously to antibodies by engaging E extracellularly to block infection; however, a shortage of target-based assays suitable for screening and medicinal chemistry studies has limited efforts in this area. Here we demonstrate that the dengue E protein offers a tractable drug target for preventing dengue infection by developing a target-based assay using a recombinantly expressed dengue serotype 2 E protein. We performed a high-throughput screen of ∼20 000 compounds followed by secondary assays to confirm target-binding and antiviral activity and counter-screens to exclude compounds with nonspecific activities. These efforts yielded eight distinct chemical leads that inhibit dengue infection by binding to E and preventing E-mediated membrane fusion with potencies equal to or greater than previously described small molecule inhibitors of E. We show that a subset of these compounds inhibit viruses representative of the other three dengue serotypes and Zika virus. This work provides tools for discovery and optimization of direct-acting antivirals against dengue E and shows that this approach may be useful in developing antivirals with broad-spectrum activity against other flavivirus pathogens.
Collapse
Affiliation(s)
- Wenlong Lian
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jaebong Jang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Supanee Potisopon
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Pi-Chun Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Amal Rahmeh
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nicholas P. Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Priscilla L. Yang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
45
|
Pu SY, Wouters R, Schor S, Rozenski J, Barouch-Bentov R, Prugar LI, O'Brien CM, Brannan JM, Dye JM, Herdewijn P, De Jonghe S, Einav S. Optimization of Isothiazolo[4,3- b]pyridine-Based Inhibitors of Cyclin G Associated Kinase (GAK) with Broad-Spectrum Antiviral Activity. J Med Chem 2018; 61:6178-6192. [PMID: 29953812 DOI: 10.1021/acs.jmedchem.8b00613] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need for strategies to combat dengue and other emerging viral infections. We reported that cyclin G-associated kinase (GAK), a cellular regulator of the clathrin-associated host adaptor proteins AP-1 and AP-2, regulates intracellular trafficking of multiple unrelated RNA viruses during early and late stages of the viral lifecycle. We also reported the discovery of potent, selective GAK inhibitors based on an isothiazolo[4,3- b]pyridine scaffold, albeit with moderate antiviral activity. Here, we describe our efforts leading to the discovery of novel isothiazolo[4,3- b]pyridines that maintain high GAK affinity and selectivity. These compounds demonstrate improved in vitro activity against dengue virus, including in human primary dendritic cells, and efficacy against the unrelated Ebola and chikungunya viruses. Moreover, inhibition of GAK activity was validated as an important mechanism of antiviral action of these compounds. These findings demonstrate the potential utility of a GAK-targeted broad-spectrum approach for combating currently untreatable emerging viral infections.
Collapse
Affiliation(s)
- Szu-Yuan Pu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology , Stanford University School of Medicine , Stanford , California 94305 , United States
| | - Randy Wouters
- Medicinal Chemistry, Rega Institute for Medical Research , KU Leuven , Herestraat 49, Bus 1041 , 3000 Leuven , Belgium
| | - Stanford Schor
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology , Stanford University School of Medicine , Stanford , California 94305 , United States
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research , KU Leuven , Herestraat 49, Bus 1041 , 3000 Leuven , Belgium
| | - Rina Barouch-Bentov
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology , Stanford University School of Medicine , Stanford , California 94305 , United States
| | - Laura I Prugar
- U.S. Army Medical Research Institute of Infectious Diseases , Viral Immunology Branch , Fort Detrick , Maryland 21702 , United States
| | - Cecilia M O'Brien
- U.S. Army Medical Research Institute of Infectious Diseases , Viral Immunology Branch , Fort Detrick , Maryland 21702 , United States
| | - Jennifer M Brannan
- U.S. Army Medical Research Institute of Infectious Diseases , Viral Immunology Branch , Fort Detrick , Maryland 21702 , United States
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases , Viral Immunology Branch , Fort Detrick , Maryland 21702 , United States
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research , KU Leuven , Herestraat 49, Bus 1041 , 3000 Leuven , Belgium
| | - Steven De Jonghe
- Medicinal Chemistry, Rega Institute for Medical Research , KU Leuven , Herestraat 49, Bus 1041 , 3000 Leuven , Belgium
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology , Stanford University School of Medicine , Stanford , California 94305 , United States
| |
Collapse
|
46
|
de Wispelaere M, Lian W, Potisopon S, Li PC, Jang J, Ficarro SB, Clark MJ, Zhu X, Kaplan JB, Pitts JD, Wales TE, Wang J, Engen JR, Marto JA, Gray NS, Yang PL. Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chem Biol 2018; 25:1006-1016.e8. [PMID: 29937406 DOI: 10.1016/j.chembiol.2018.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/23/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Abstract
Viral envelope proteins are required for productive viral entry and initiation of infection. Although the humoral immune system provides ample evidence for targeting envelope proteins as an antiviral strategy, there are few pharmacological interventions that have this mode of action. In contrast to classical antiviral targets such as viral proteases and polymerases, viral envelope proteins as a class do not have a well-conserved active site that can be rationally targeted with small molecules. We previously identified compounds that inhibit dengue virus by binding to its envelope protein, E. Here, we show that these small molecules inhibit dengue virus fusion and map the binding site of these compounds to a specific pocket on E. We further demonstrate inhibition of Zika, West Nile, and Japanese encephalitis viruses by these compounds, providing pharmacological evidence for the pocket as a target for developing broad-spectrum antivirals against multiple, mosquito-borne flavivirus pathogens.
Collapse
Affiliation(s)
| | - Wenlong Lian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Supanee Potisopon
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pi-Chun Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA
| | - Jaebong Jang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Department of Oncologic Pathology, Blais Proteomics Center, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA 02115, USA
| | - Margaret J Clark
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xuling Zhu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jenifer B Kaplan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jared D Pitts
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Department of Oncologic Pathology, Blais Proteomics Center, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA
| | - Priscilla L Yang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Abstract
Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.
Collapse
|
48
|
Abstract
There
is a large, global unmet need for the development of countermeasures
to combat intracellular pathogens. The development of novel antimicrobials
is expensive and slow and typically focuses on selective inhibition
of proteins encoded by a single pathogen, thereby providing a narrow
spectrum of coverage. The repurposing of approved drugs targeting
host functions required for microbial infections represents a promising
alternative. This review summarizes progress and challenges in the
repurposing of approved drugs as host-targeted broad-spectrum agents
for the treatment of intracellular pathogens. These strategies include
targeting both cellular factors required for infection by various
viruses, intracellular bacteria, and/or protozoa as well as factors
that modulate the host immune response to these microbial infections.
The repurposed approach offers complementary means to develop therapeutics
against existing and emerging intracellular microbial threats.
Collapse
Affiliation(s)
- Stanford Schor
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, School of Medicine, Stanford University, 300 Pasteur Drive, Lane Building Rm L127, Stanford, California 94305, United States
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, School of Medicine, Stanford University, 300 Pasteur Drive, Lane Building Rm L127, Stanford, California 94305, United States
| |
Collapse
|
49
|
Schor S, Einav S. Repurposing of Kinase Inhibitors as Broad-Spectrum Antiviral Drugs. DNA Cell Biol 2017; 37:63-69. [PMID: 29148875 DOI: 10.1089/dna.2017.4033] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The high cost of drug development and the narrow spectrum of coverage typically provided by direct-acting antivirals limit the scalability of this antiviral approach. This review summarizes progress and challenges in the repurposing of approved kinase inhibitors as host-targeted broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Stanford Schor
- 1 Division of Infectious Diseases and Geographic Medicine , Department of Medicine, Stanford, California.,2 Department of Microbiology and Immunology, Stanford University School of Medicine , Stanford, California
| | - Shirit Einav
- 1 Division of Infectious Diseases and Geographic Medicine , Department of Medicine, Stanford, California.,2 Department of Microbiology and Immunology, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
50
|
Bajpai VK, Chandra V, Kim NH, Rai R, Kumar P, Kim K, Aeron A, Kang SC, Maheshwari DK, Na M, Rather IA, Park YH. Ghost probiotics with a combined regimen: a novel therapeutic approach against the Zika virus, an emerging world threat. Crit Rev Biotechnol 2017; 38:438-454. [PMID: 28877637 DOI: 10.1080/07388551.2017.1368445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Zika virus (ZIKV) used to be an obscure flavivirus closely related to dengue virus (DENV). Transmission of this epidemic pathogen occurs mainly via mosquitoes, but it is also capable of placental and sexual transmission. Although the characteristics of these viruses are well defined, infections are unpredictable in terms of disease severity, unusual clinical manifestations, unexpected methods of transmission, long-term persistence, and the development of new strains. Recently, ZIKV has gained huge medical attention following the large-scale epidemics around the world, and reported cases of congenital abnormalities associated with Zika virus infections which have created a public health emergency of international concern. Despite continuous research on ZIKV, no specific treatment or vaccine has been developed, excepting a preventive strategy for congenital ZIKV infection. Probiotics, known as GRAS, are bacteria that confer various health beneficial effects, and have been shown to be effective at curing a number of viral diseases by modulating the immune system. Furthermore, probiotic preparations consisting of dead cells and cellular metabolites, so-called "Ghost probiotics", can also act as biological response modifiers. Here, we review available information on the epidemiology, transmission, and clinical features of ZIKV, and on treatment and prevention strategies. In addition, we emphasize the use of probiotics and plant-based natural remedies and describe their action mechanisms, and the green technologies for microbial conversion, which could contribute to the development of novel therapies that may reduce the pathogenicity of ZIKV. Accordingly, we draw attention to new findings, unanswered questions, unresolved issues, and controversies regarding ZIKV.
Collapse
Affiliation(s)
- Vivek K Bajpai
- a Department of Applied Microbiology and Biotechnology, School of Biotechnology , Yeungnam University , Gyeongsan , Gyeongbuk , Korea
| | - Vishal Chandra
- b Department of Biosciences , Integral University , Lucknow , India.,c Stephenson Cancer Center (SCC) , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Na-Hyung Kim
- d Department of Oriental Pharmacy , Wonkwang University , Iksan-city , Jeonbuk , Korea
| | - Rajni Rai
- e School of Biotechnology , Yeungnam University , Gyeongsan , Gyeongbuk , Korea
| | - Pradeep Kumar
- e School of Biotechnology , Yeungnam University , Gyeongsan , Gyeongbuk , Korea
| | - Kangmin Kim
- f Division of Biotechnology, College of Environmental and Bioresource Sciences , Chonbuk National University , Iksan-si , Jeonbuk , Korea
| | - Abhinav Aeron
- f Division of Biotechnology, College of Environmental and Bioresource Sciences , Chonbuk National University , Iksan-si , Jeonbuk , Korea
| | - Sun Chul Kang
- g Department of Biotechnology, College of Engineering , Daegu University , Gyeongsan , Gyeongbuk , Korea
| | - D K Maheshwari
- h Department of Botany and Microbiology , Gurukul Kangri University , Haridwar , India
| | - MinKyun Na
- i College of Pharmacy , Chungnam National University , Daejeon , Korea
| | - Irfan A Rather
- a Department of Applied Microbiology and Biotechnology, School of Biotechnology , Yeungnam University , Gyeongsan , Gyeongbuk , Korea
| | - Yong-Ha Park
- a Department of Applied Microbiology and Biotechnology, School of Biotechnology , Yeungnam University , Gyeongsan , Gyeongbuk , Korea
| |
Collapse
|