1
|
Singh G, Malik P, Khurana S, Mithun, Markan P, Diskit T, Singh KN, Gill BS, Baliyan D. Chalcone derived bis-organosilane and its magnetic nanoparticles: Unveiling precision in selective Cu(II) ion detection and elucidating biocompatibility. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125124. [PMID: 39303335 DOI: 10.1016/j.saa.2024.125124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The escalating concern regarding the adverse effects of metal ion toxicity on both human health and environmental ecosystems necessitates the development of efficient detection methodologies. This study presents a focused investigation on the selective and sensitive detection of Cu(II) ions employing hybrid magnetic nanoparticles derived from chalcone-based bis-organosilane. These nanoparticles exhibit a notably low detection limit in the nano-scale range, rendering the sensor highly sensitive to Copper(II) ion detection while maintaining robust anti-interference capabilities, even in the presence of diverse metal ions. Real sample analysis confirms the sensor's efficacy in detecting Cu(II) ions below WHO-prescribed levels. Computational analyses reveal molecular interactions and biological activities, including potent antibacterial and antioxidant properties, suggesting promising applications. Furthermore, the biological effectiveness of chalcone-derived bis-organosilane is investigated, unveiling notable antibacterial efficacy and also exhibiting potential as a scavenger of free radicals, indicating promising applications in both antibacterial and antioxidant domains.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Pooja Malik
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Sumesh Khurana
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Mithun
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Pallavi Markan
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Tsering Diskit
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - K N Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Baljinder Singh Gill
- Department of Biochemistry, Central University of Punjab, Bathinda 151401, India
| | - Deepanjali Baliyan
- Department of Biochemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
2
|
Lou QM, Lai FF, Li JW, Mao KJ, Wan HT, He Y. Mechanisms of cuproptosis and its relevance to distinct diseases. Apoptosis 2024; 29:981-1006. [PMID: 38824478 DOI: 10.1007/s10495-024-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Copper is a trace element required by the organism, but once the level of copper exceeds the threshold, it becomes toxic and even causes death. The underlying mechanisms of copper-induced death are inconclusive, with different studies showing different opinions on the mechanism of copper-induced death. Multiple investigations have shown that copper induces oxidative stress, endoplasmic reticulum stress, nucleolar stress, and proteasome inhibition, all of which can result in cell death. The latest research elucidates a copper-dependent death and denominates it as cuproptosis. Cuproptosis takes place through the combination of copper and lipoylated proteins of the tricarboxylic acid cycle, triggering agglomeration of lipoylated proteins and loss of iron-sulfur cluster proteins, leading to proteotoxic stress and ultimately death. Given the toxicity and necessity of copper, abnormal levels of copper lead to diseases such as neurological diseases and cancer. The development of cancer has a high demand for copper, neurological diseases involve the change of copper contents and the binding of copper to proteins. There is a close relationship between these two kinds of diseases and copper. Here, we summarize the mechanisms of copper-related death, and the association between copper and diseases, to better figure out the influence of copper in cell death and diseases, thus advancing the clinical remedy of these diseases.
Collapse
Affiliation(s)
- Qiao-Mei Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei-Fan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing-Wei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kun-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Tong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Abu-Serie MM, Barakat A, Ramadan S, Habashy NH. Superior cuproptotic efficacy of diethyldithiocarbamate-Cu 4O 3 nanoparticles over diethyldithiocarbamate-Cu 2O nanoparticles in metastatic hepatocellular carcinoma. Front Pharmacol 2024; 15:1388038. [PMID: 39076585 PMCID: PMC11284037 DOI: 10.3389/fphar.2024.1388038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024] Open
Abstract
Metastatic hepatocellular carcinoma (HC) is a serious health concern. The stemness of cancer stem cells (CSCs) is a key driver for HC tumorigenesis, apoptotic resistance, and metastasis, and functional mitochondria are critical for its maintenance. Cuproptosis is Cu-dependent non-apoptotic pathway (mitochondrial dysfunction) via inactivating mitochondrial enzymes (pyruvate dehydrogenase "PDH" and succinate dehydrogenase "SDH"). To effectively treat metastatic HC, it is necessary to induce selective cuproptosis (for halting cancer stemness genes) with selective oxidative imbalance (for increasing cell susceptibility to cuproptosis and inducing non-CSCs death). Herein, two types of Cu oxide nanoparticles (Cu4O3 "C(I + II)" NPs and Cu2O "C(I)" NPs) were used in combination with diethyldithiocarbamate (DD, an aldehyde dehydrogenase "ALDH" inhibitor) for comparative anti-HC investigation. DC(I + II) NPs exhibited higher cytotoxicity, mitochondrial membrane potential, and anti-migration impact than DC(I) NPs in the treated human HC cells (HepG2 and/or Huh7). Moreover, DC(I + II) NPs were more effective than DC(I) NPs in the treatment of HC mouse groups. This was mediated via higher selective accumulation of DC(I + II) NPs in only tumor tissues and oxidant activity, causing stronger selective inhibition of mitochondrial enzymes (PDH, SDH, and ALDH2) than DC(I)NPs. This effect resulted in more suppression of tumor and metastasis markers as well as stemness gene expressions in DC(I + II) NPs-treated HC mice. In addition, both nanocomplexes normalized liver function and hematological parameters. The computational analysis found that DC(I + II) showed higher binding affinity to most of the tested enzymes. Accordingly, DC(I + II) NPs represent a highly effective therapeutic formulation compared to DC(I) NPs for metastatic HC.
Collapse
Affiliation(s)
- Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherif Ramadan
- Chemistry Department, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Benha University, Benha, Egypt
| | - Noha Hassan Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Shi M, Kang M, Liu P, Zhou H, Pei M, Zhang G, Yang X. Thienopyrimidine-derived multifunctional fluorescence sensor for the detection of Cu 2+, Fe 3+, and PPi in different solvents. LUMINESCENCE 2024; 39:e4744. [PMID: 38682162 DOI: 10.1002/bio.4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 05/01/2024]
Abstract
Hydrazine substituted thienopyrimidine, a new fluorophore, was used to synthesize a novel Schiff base R1 as a chemosensor via the condensation with p-formyltriphenylamine, and the structure was confirmed using nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) analysis. When treated with Cu2+ in dimethylsulfoxide (DMSO)/H2O buffer, R1 showed a phenomenon of fluorescence quenching, which was reversible with the action of ethylenediaminetetraacetic acid (EDTA). When treated with Fe3+ in dimethylformamide (DMF)/H2O buffer, R1 exhibited the same phenomenon, but fluorescence was recovered with inorganic pyrophosphate (PPi) quantitatively. The complexation ratios for R1-Cu2+ and R1-Fe3+ were both 1:2, which were manifested by MS titrations and corresponding Job's plots. The limits of detection of R1 for Cu2+ and Fe3+ were 3.11 × 10-8 and 1.24 × 10-7 M, respectively. The sensing mechanism of R1 toward Cu2+ and Fe3+ was confirmed using density functional theory calculations and electrostatic potential analysis. Test strips of R1 were fabricated successfully for on-site detection of Cu2+ and Fe3+. In addition, R1 was applied to recognize Cu2+ and Fe3+ in actual water samples with satisfactory recovery.
Collapse
Affiliation(s)
- Manman Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Han Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
6
|
Feng Q, Huo C, Wang M, Huang H, Zheng X, Xie M. Research progress on cuproptosis in cancer. Front Pharmacol 2024; 15:1290592. [PMID: 38357312 PMCID: PMC10864558 DOI: 10.3389/fphar.2024.1290592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Cuproptosis is a recently discovered form of cell death that is mediated by copper (Cu) and is a non-apoptotic form of cell death related to oligomerization of lipoylated proteins and loss of Fe-S protein clusters. Since its discovery, cuproptosis has been extensively studied by researchers for its mechanism and potential applications in the treatment of cancer. Therefore, this article reviews the specific mechanism of cuproptosis currently studied, as well as its principles and strategies for use in anti-cancer treatment, with the aim of providing a reference for cuproptosis-based cancer therapy.
Collapse
Affiliation(s)
- Qingbo Feng
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chenyu Huo
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Maijian Wang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Handong Huang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingbin Zheng
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ming Xie
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Xia Y, Wang WX. Bioimaging tools reveal copper processing in fish cells by mitophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023:106633. [PMID: 37451870 DOI: 10.1016/j.aquatox.2023.106633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As an essential trace metal, copper (Cu) regulation, distribution and detoxification among different cellular organelles remain much unknown. In the current study, bioimaging tool was used in visualizing the locations of Cu among different organelles in fish fin cells isolated from rabbitfish Siganus fuscescens. Exposure concentration of Cu directly affected the Cu bioaccumulation and toxicity. When the exposure dosage of Cu reached 100 µM, it began to damage the cells and affect the cell viability after 10 min of exposure. Remarkably, while various Cu concentrations (50∼150 µM) initially reduced the cell viability, they did not lead to a further loss in viability over extended exposure period. Upon entry to the cells, Cu was mainly targeted to the mitochondria whose number, size and network responded immediately to the incoming Cu. However, Cu toxicity did not increase time-dependently, strongly indicating that these mitochondria damaged by Cu could be removed and its cytotoxicity could be relieved. Bioimaging results showed that lysosomes interacted with the mitochondria, which were subsequently digested within a few minutes. Meanwhile the lysosomal number increased, and the size and pH of lysosomes decreased. These reactions were in line with the observed mitophagy, suggesting that mitochondrial Cu could be detoxified, and the damaged mitochondria were removed by lysosome via mitophagy. By further purifying the cellular organelles, the mitochondrial and lysosomal Cu amounts were quantified and found to be in line with the imaging results. The present study suggested that excessive mitochondrial Cu could be removed via mitophagy to relieve the Cu toxicity.
Collapse
Affiliation(s)
- Yiteng Xia
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
8
|
Liao M, Li C, Hu C, Ding J. Copper-binding proteins genes set predicting the overall survival and immune infiltration in hepatocellular carcinoma by bioinformatic analysis. Biochem Biophys Rep 2023; 34:101466. [PMID: 37125079 PMCID: PMC10130086 DOI: 10.1016/j.bbrep.2023.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Abnormal Copper (Cu) accumulation shared a close association with hepatocellular carcinoma (HCC), but the regulatory role of Copper-binding proteins in HCC remains largely unknown. The aim of study was to identify the potential regulatory role of Cu-binding proteins, including copper homeostasis maintainer and the downstream effectors of Cu, in the progression of HCC. We conducted a comprehensive bioinformatic analysis of Cu-binding proteins in HCC using data from TCGA and ICGC database. Univariate cox regression analysis was conducted, and four prognostic Cu-binding proteins was identified to be differentially expressed between the normal liver tissues and HCC tissues. In addition, the Cu-binding proteins-based predictive signature (CuPscore) model was generated using the least absolute shrinkage and selection operator (LASSO) cox regression model. Here, we identified the crucial prognostic value of CuPscore in HCC. The pathological stage and CuPscore were independent risk factors for the prognosis of HCC patients. Pathological stage and CuPscore-based nomogram model exhibited great performance in predicting the prognosis of HCC patients. We also observed that the CuPscore shared a close association with several immunomodulatory molecules and the proportion of several tumor infiltrating immune cells, suggesting a potential value of CuPscore in predicting the response to immunotherapy in HCC. Our results demonstrated the prognostic value of Cu-binding proteins and its correlation with immune microenvironment in HCC, providing a therapeutic basis for the precision medicine strategy through targeting Cu-binding proteins in HCC.
Collapse
Affiliation(s)
- Manyu Liao
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Cong Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Clinical Center for Liver Cancer, Capital Medical University, Beijing, 100069, China
- Department of Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, 100069, China
- Corresponding author. Department of General Surgery, Beijing Youan Hospital, Capital Medical University, 100069, No. 8, West Toutiao, Outside You'anmen, Fengtai District, Beijing, China.
| | - Caixia Hu
- Center of Oncology and Minimally Invasive Intervention, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jing Ding
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Clinical Center for Liver Cancer, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
9
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 2023; 13:1209156. [PMID: 37427098 PMCID: PMC10327296 DOI: 10.3389/fonc.2023.1209156] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Schulz V, Basu S, Freibert SA, Webert H, Boss L, Mühlenhoff U, Pierrel F, Essen LO, Warui DM, Booker SJ, Stehling O, Lill R. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol 2023; 19:206-217. [PMID: 36280795 PMCID: PMC10873809 DOI: 10.1038/s41589-022-01159-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
Ferredoxins comprise a large family of iron-sulfur (Fe-S) proteins that shuttle electrons in diverse biological processes. Human mitochondria contain two isoforms of [2Fe-2S] ferredoxins, FDX1 (aka adrenodoxin) and FDX2, with known functions in cytochrome P450-dependent steroid transformations and Fe-S protein biogenesis. Here, we show that only FDX2, but not FDX1, is involved in Fe-S protein maturation. Vice versa, FDX1 is specific not only for steroidogenesis, but also for heme a and lipoyl cofactor biosyntheses. In the latter pathway, FDX1 provides electrons to kickstart the radical chain reaction catalyzed by lipoyl synthase. We also identified lipoylation as a target of the toxic antitumor copper ionophore elesclomol. Finally, the striking target specificity of each ferredoxin was assigned to small conserved sequence motifs. Swapping these motifs changed the target specificity of these electron donors. Together, our findings identify new biochemical tasks of mitochondrial ferredoxins and provide structural insights into their functional specificity.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Somsuvro Basu
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
- Freelance Medical Communications Consultant, Brno, Czech Republic
| | - Sven-A Freibert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Holger Webert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Linda Boss
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Fabien Pierrel
- Univ. of Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Lars-O Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Douglas M Warui
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, USA
| | - Oliver Stehling
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| | - Roland Lill
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| |
Collapse
|
12
|
Garza NM, Swaminathan AB, Maremanda KP, Zulkifli M, Gohil VM. Mitochondrial copper in human genetic disorders. Trends Endocrinol Metab 2023; 34:21-33. [PMID: 36435678 PMCID: PMC9780195 DOI: 10.1016/j.tem.2022.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
Copper is an essential micronutrient that serves as a cofactor for enzymes involved in diverse physiological processes, including mitochondrial energy generation. Copper enters cells through a dedicated copper transporter and is distributed to intracellular cuproenzymes by copper chaperones. Mitochondria are critical copper-utilizing organelles that harbor an essential cuproenzyme cytochrome c oxidase, which powers energy production. Mutations in copper transporters and chaperones that perturb mitochondrial copper homeostasis result in fatal genetic disorders. Recent studies have uncovered the therapeutic potential of elesclomol, a copper ionophore, for the treatment of copper deficiency disorders such as Menkes disease. Here we review the role of copper in mitochondrial energy metabolism in the context of human diseases and highlight the recent developments in copper therapeutics.
Collapse
Affiliation(s)
- Natalie M Garza
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Abhinav B Swaminathan
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Krishna P Maremanda
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 2022; 7:378. [PMID: 36414625 PMCID: PMC9681860 DOI: 10.1038/s41392-022-01229-y] [Citation(s) in RCA: 383] [Impact Index Per Article: 191.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
As an essential micronutrient, copper is required for a wide range of physiological processes in virtually all cell types. Because the accumulation of intracellular copper can induce oxidative stress and perturbing cellular function, copper homeostasis is tightly regulated. Recent studies identified a novel copper-dependent form of cell death called cuproptosis, which is distinct from all other known pathways underlying cell death. Cuproptosis occurs via copper binding to lipoylated enzymes in the tricarboxylic acid (TCA) cycle, which leads to subsequent protein aggregation, proteotoxic stress, and ultimately cell death. Here, we summarize our current knowledge regarding copper metabolism, copper-related disease, the characteristics of cuproptosis, and the mechanisms that regulate cuproptosis. In addition, we discuss the implications of cuproptosis in the pathogenesis of various disease conditions, including Wilson's disease, neurodegenerative diseases, and cancer, and we discuss the therapeutic potential of targeting cuproptosis.
Collapse
Affiliation(s)
- Liyun Chen
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China ,grid.412017.10000 0001 0266 8918The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China. .,The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
14
|
Gupta G, Fadeel B. ToxPoint: Copper Is the New Showstopper. Toxicol Sci 2022; 189:3-4. [PMID: 36017664 PMCID: PMC9412172 DOI: 10.1093/toxsci/kfac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Govind Gupta
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
15
|
Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nat Commun 2022; 13:1789. [PMID: 35379825 PMCID: PMC8980022 DOI: 10.1038/s41467-022-29426-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity. Follicular and marginal zone B (FoB and MZB, respectively) cells have divergent metabolic characteristics. Here the authors show that deficiency of glutamate cysteine ligase (Gclc), the enzyme for glutathione synthesis, differentially impacts FoB and MZB homeostasis, while specifically impeding FoB activation and downstream antiviral immunity.
Collapse
|
16
|
Campos OA, Attar N, Cheng C, Vogelauer M, Mallipeddi NV, Schmollinger S, Matulionis N, Christofk HR, Merchant SS, Kurdistani SK. A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich's ataxia. SCIENCE ADVANCES 2021; 7:eabj9889. [PMID: 34919435 PMCID: PMC8682991 DOI: 10.1126/sciadv.abj9889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Disruptions to iron-sulfur (Fe-S) clusters, essential cofactors for a broad range of proteins, cause widespread cellular defects resulting in human disease. A source of damage to Fe-S clusters is cuprous (Cu1+) ions. Since histone H3 enzymatically produces Cu1+ for copper-dependent functions, we asked whether this activity could become detrimental to Fe-S clusters. Here, we report that histone H3–mediated Cu1+ toxicity is a major determinant of cellular functional pool of Fe-S clusters. Inadequate Fe-S cluster supply, due to diminished assembly as occurs in Friedreich’s ataxia or defective distribution, causes severe metabolic and growth defects in Saccharomyces cerevisiae. Decreasing Cu1+ abundance, through attenuation of histone cupric reductase activity or depletion of total cellular copper, restored Fe-S cluster–dependent metabolism and growth. Our findings reveal an interplay between chromatin and mitochondria in Fe-S cluster homeostasis and a potential pathogenic role for histone enzyme activity and Cu1+ in diseases with Fe-S cluster dysfunction.
Collapse
Affiliation(s)
- Oscar A. Campos
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Narsis Attar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan V. Mallipeddi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sabeeha S. Merchant
- QB3-Berkeley, University of California, Berkeley, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Siavash K. Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Ruiz LM, Libedinsky A, Elorza AA. Role of Copper on Mitochondrial Function and Metabolism. Front Mol Biosci 2021; 8:711227. [PMID: 34504870 PMCID: PMC8421569 DOI: 10.3389/fmolb.2021.711227] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Copper is essential for life processes like energy metabolism, reactive oxygen species detoxification, iron uptake, and signaling in eukaryotic organisms. Mitochondria gather copper for the assembly of cuproenzymes such as the respiratory complex IV, cytochrome c oxidase, and the antioxidant enzyme superoxide dismutase 1. In this regard, copper plays a role in mitochondrial function and signaling involving bioenergetics, dynamics, and mitophagy, which affect cell fate by means of metabolic reprogramming. In mammals, copper homeostasis is tightly regulated by the liver. However, cellular copper levels are tissue specific. Copper imbalances, either overload or deficiency, have been associated with many diseases, including anemia, neutropenia, and thrombocytopenia, as well as tumor development and cancer aggressivity. Consistently, new pharmacological developments have been addressed to reduce or exacerbate copper levels as potential cancer therapies. This review goes over the copper source, distribution, cellular uptake, and its role in mitochondrial function, metabolic reprograming, and cancer biology, linking copper metabolism with the field of regenerative medicine and cancer.
Collapse
Affiliation(s)
- Lina M Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Allan Libedinsky
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
18
|
Shafer CM, Tseng A, Allard P, McEvoy MM. Strength of Cu-efflux response in E. coli coordinates metal resistance in C. elegans and contributes to the severity of environmental toxicity. J Biol Chem 2021; 297:101060. [PMID: 34375643 PMCID: PMC8424214 DOI: 10.1016/j.jbc.2021.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022] Open
Abstract
Without effective homeostatic systems in place, excess copper (Cu) is universally toxic to organisms. While increased utilization of anthropogenic Cu in the environment has driven the diversification of Cu-resistance systems within enterobacteria, little research has focused on how this change in bacterial architecture impacts host organisms that need to maintain their own Cu homeostasis. Therefore, we utilized a simplified host–microbe system to determine whether the efficiency of one bacterial Cu-resistance system, increasing Cu-efflux capacity via the ubiquitous CusRS two-component system, contributes to the availability and subsequent toxicity of Cu in host Caenorhabditis elegans nematode. We found that a fully functional Cu-efflux system in bacteria increased the severity of Cu toxicity in host nematodes without increasing the C. elegans Cu-body burden. Instead, increased Cu toxicity in the host was associated with reduced expression of a protective metal stress-response gene, numr-1, in the posterior pharynx of nematodes where pharyngeal grinding breaks apart ingested bacteria before passing into the digestive tract. The spatial localization of numr-1 transgene activation and loss of bacterially dependent Cu-resistance in nematodes without an effective numr-1 response support the hypothesis that numr-1 is responsive to the bacterial Cu-efflux capacity. We propose that the bacterial Cu-efflux capacity acts as a robust spatial determinant for a host’s response to chronic Cu stress.
Collapse
Affiliation(s)
- Catherine M Shafer
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA
| | - Ashley Tseng
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA.
| | - Megan M McEvoy
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA; Department of Microbiology, Immunology and Molecular Genetics. University of California, Los Angeles, Los Angeles, CA.
| |
Collapse
|
19
|
Pan N, Bhatti MZ, Zhang W, Ni B, Fan X, Chen J. Transcriptome analysis reveals the encystment-related lncRNA expression profile and coexpressed mRNAs in Pseudourostyla cristata. Sci Rep 2021; 11:8274. [PMID: 33859278 PMCID: PMC8050308 DOI: 10.1038/s41598-021-87680-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/31/2021] [Indexed: 12/02/2022] Open
Abstract
Ciliated protozoans form dormant cysts for survival under adverse conditions. The molecular mechanisms regulating this process are critical for understanding how single-celled eukaryotes adapt to the environment. Despite the accumulated data on morphology and gene coding sequences, the molecular mechanism by which lncRNAs regulate ciliate encystment remains unknown. Here, we first detected and analyzed the lncRNA expression profile and coexpressed mRNAs in dormant cysts versus vegetative cells in the hypotrich ciliate Pseudourostyla cristata by high-throughput sequencing and qRT-PCR. A total of 853 differentially expressed lncRNAs were identified. Compared to vegetative cells, 439 and 414 lncRNAs were upregulated and downregulated, respectively, while 47 lncRNAs were specifically expressed in dormant cysts. A lncRNA-mRNA coexpression network was constructed, and the possible roles of lncRNAs were screened. Three of the identified lncRNAs, DN12058, DN20924 and DN30855, were found to play roles in fostering encystment via their coexpressed mRNAs. These lncRNAs can regulate a variety of physiological activities that are essential for encystment, including autophagy, protein degradation, the intracellular calcium concentration, microtubule-associated dynein and microtubule interactions, and cell proliferation inhibition. These findings provide the first insight into the potentially functional lncRNAs and their coexpressed mRNAs involved in the dormancy of ciliated protozoa and contribute new evidence for understanding the molecular mechanisms regulating encystment.
Collapse
Affiliation(s)
- Nan Pan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
20
|
Zhu X, Boulet A, Buckley KM, Phillips CB, Gammon MG, Oldfather LE, Moore SA, Leary SC, Cobine PA. Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes. eLife 2021; 10:64690. [PMID: 33591272 PMCID: PMC7924939 DOI: 10.7554/elife.64690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial carrier family protein SLC25A3 transports both copper and phosphate in mammals, yet in Saccharomyces cerevisiae the transport of these substrates is partitioned across two paralogs: PIC2 and MIR1. To understand the ancestral state of copper and phosphate transport in mitochondria, we explored the evolutionary relationships of PIC2 and MIR1 orthologs across the eukaryotic tree of life. Phylogenetic analyses revealed that PIC2-like and MIR1-like orthologs are present in all major eukaryotic supergroups, indicating an ancient gene duplication created these paralogs. To link this phylogenetic signal to protein function, we used structural modeling and site-directed mutagenesis to identify residues involved in copper and phosphate transport. Based on these analyses, we generated an L175A variant of mouse SLC25A3 that retains the ability to transport copper but not phosphate. This work highlights the utility of using an evolutionary framework to uncover amino acids involved in substrate recognition by mitochondrial carrier family proteins.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | | - Casey B Phillips
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Micah G Gammon
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Laura E Oldfather
- Department of Biological Sciences, Auburn University, Auburn, United States
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, United States
| |
Collapse
|
21
|
Oc S, Eraslan S, Kirdar B. Dynamic transcriptional response of Saccharomyces cerevisiae cells to copper. Sci Rep 2020; 10:18487. [PMID: 33116258 PMCID: PMC7595141 DOI: 10.1038/s41598-020-75511-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Copper is a crucial trace element for all living systems and any deficiency in copper homeostasis leads to the development of severe diseases in humans. The observation of extensive evolutionary conservation in copper homeostatic systems between human and Saccharomyces cerevisiae made this organism a suitable model organism for elucidating molecular mechanisms of copper transport and homeostasis. In this study, the dynamic transcriptional response of both the reference strain and homozygous deletion mutant strain of CCC2, which encodes a Cu2+-transporting P-type ATPase, were investigated following the introduction of copper impulse to reach a copper concentration which was shown to improve the respiration capacity of CCC2 deletion mutants. The analysis of data by using different clustering algorithms revealed significantly affected processes and pathways in response to a switch from copper deficient environment to elevated copper levels. Sulfur compound, methionine and cysteine biosynthetic processes were identified as significantly affected processes for the first time in this study. Stress response, cellular response to DNA damage, iron ion homeostasis, ubiquitin dependent proteolysis, autophagy and regulation of macroautophagy, DNA repair and replication, as well as organization of mitochondrial respiratory chain complex IV, mitochondrial organization and translation were identified as significantly affected processes in only CCC2 deleted strain. The integration of the transcriptomic data with regulome revealed the differences in the extensive re-wiring of dynamic transcriptional organization and regulation in these strains.
Collapse
Affiliation(s)
- Sebnem Oc
- Department of Chemical Engineering, Bogazici University, Istanbul, 34342, Turkey. .,Division of Cardiovascular Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, Istanbul, 34342, Turkey.,Diagnosis Centre for Genetic Disorders, Koç University Hospital, Istanbul, 34010, Turkey
| | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University, Istanbul, 34342, Turkey
| |
Collapse
|
22
|
Cobine PA, Moore SA, Leary SC. Getting out what you put in: Copper in mitochondria and its impacts on human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118867. [PMID: 32979421 DOI: 10.1016/j.bbamcr.2020.118867] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.
Collapse
Affiliation(s)
- Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
23
|
Wohlgemuth F, Gomes RL, Singleton I, Rawson FJ, Avery SV. Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action. Front Microbiol 2020; 11:575157. [PMID: 33101251 PMCID: PMC7546784 DOI: 10.3389/fmicb.2020.575157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 01/29/2023] Open
Abstract
We developed a top-down strategy to characterize an antimicrobial, oxidizing sanitizer, which has diverse proposed applications including surface-sanitization of fresh foods, and with benefits for water resilience. The strategy involved finding quenchers of antimicrobial activity then antimicrobial mode of action, by identifying key chemical reaction partners starting from complex matrices, narrowing down reactivity to specific organic molecules within cells. The sanitizer electrolyzed-water (EW) retained partial fungicidal activity against the food-spoilage fungus Aspergillus niger at high levels of added soils (30–750 mg mL–1), commonly associated with harvested produce. Soil with high organic load (98 mg g–1) gave stronger EW inactivation. Marked inactivation by a complex organics mix (YEPD medium) was linked to its protein-rich components. Addition of pure proteins or amino acids (≤1 mg mL–1) fully suppressed EW activity. Mechanism was interrogated further with the yeast model, corroborating marked suppression of EW action by the amino acid methionine. Pre-culture with methionine increased resistance to EW, sodium hypochlorite, or chlorine-free ozonated water. Overexpression of methionine sulfoxide reductases (which reduce oxidized methionine) protected against EW. Fluoroprobe-based analyses indicated that methionine and cysteine inactivate free chlorine species in EW. Intracellular methionine oxidation can disturb cellular FeS-clusters and we showed that EW treatment impairs FeS-enzyme activity. The study establishes the value of a top-down approach for multi-level characterization of sanitizer efficacy and action. The results reveal proteins and amino acids as key quenchers of EW activity and, among the amino acids, the importance of methionine oxidation and FeS-cluster damage for antimicrobial mode-of-action.
Collapse
Affiliation(s)
| | - Rachel L Gomes
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Ian Singleton
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Frankie J Rawson
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
24
|
Steunou AS, Bourbon M, Babot M, Durand A, Liotenberg S, Yamaichi Y, Ouchane S. Increasing the copper sensitivity of microorganisms by restricting iron supply, a strategy for bio-management practices. Microb Biotechnol 2020; 13:1530-1545. [PMID: 32558275 PMCID: PMC7415376 DOI: 10.1111/1751-7915.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
Pollution by copper (Cu2+ ) extensively used as antimicrobial in agriculture and farming represents a threat to the environment and human health. Finding ways to make microorganisms sensitive to lower metal concentrations could help decreasing the use of Cu2 + in agriculture. In this respect, we showed that limiting iron (Fe) uptake makes bacteria much more susceptible to Cu2 + or Cd2+ poisoning. Using efflux mutants of the purple bacterium Rubrivivax gelatinosus, we showed that Cu+ and Cd2+ resistance relies on the expression of the Fur-regulated FbpABC and Ftr iron transporters. To support this conclusion, inactivation of these Fe-importers in the Cu+ or Cd2+ -ATPase efflux mutants gave rise to hypersensitivity towards these ions. Moreover, in metal overloaded cells the expression of FbpA, the periplasmic iron-binding component of the ferric ion transport FbpABC system was induced, suggesting that cells perceived an 'iron-starvation' situation and responded to it by inducing Fe-importers. In this context, the Fe-Sod activity increased in response to Fe homoeostasis dysregulation. Similar results were obtained for Vibrio cholerae and Escherichia coli, suggesting that perturbation of Fe-homoeostasis by metal excess appeared as an adaptive response commonly used by a variety of bacteria. The presented data support a model in which metal excess induces Fe-uptake to support [4Fe-4S] synthesis and thereby induce ROS detoxification system.
Collapse
Affiliation(s)
- Anne Soisig Steunou
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Marie‐Line Bourbon
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Marion Babot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Anne Durand
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Sylviane Liotenberg
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Yoshiharu Yamaichi
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Soufian Ouchane
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| |
Collapse
|
25
|
The Preservative Sorbic Acid Targets Respiration, Explaining the Resistance of Fermentative Spoilage Yeast Species. mSphere 2020; 5:5/3/e00273-20. [PMID: 32461271 PMCID: PMC7253596 DOI: 10.1128/msphere.00273-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A small number (10 to 20) of yeast species cause major spoilage in foods. Spoilage yeasts of soft drinks are resistant to preservatives like sorbic acid, and they are highly fermentative, generating large amounts of carbon dioxide gas. Conversely, many yeast species derive energy from respiration only, and most of these are sorbic acid sensitive and so prevented from causing spoilage. This led us to hypothesize that sorbic acid may specifically inhibit respiration. Tests with respirofermentative yeasts showed that sorbic acid was more inhibitory to both Saccharomyces cerevisiae and Zygosaccharomyces bailii during respiration (of glycerol) than during fermentation (of glucose). The respiration-only species Rhodotorula glutinis was equally sensitive when growing on either carbon source, suggesting that ability to ferment glucose specifically enables sorbic acid-resistant growth. Sorbic acid inhibited the respiration process more strongly than fermentation. We present a data set supporting a correlation between the level of fermentation and sorbic acid resistance across 191 yeast species. Other weak acids, C2 to C8, inhibited respiration in accordance with their partition coefficients, suggesting that effects on mitochondrial respiration were related to membrane localization rather than cytosolic acidification. Supporting this, we present evidence that sorbic acid causes production of reactive oxygen species, the formation of petite (mitochondrion-defective) cells, and Fe-S cluster defects. This work rationalizes why yeasts that can grow in sorbic acid-preserved foods tend to be fermentative in nature. This may inform more-targeted approaches for tackling these spoilage organisms, particularly as the industry migrates to lower-sugar drinks, which could favor respiration over fermentation in many spoilage yeasts.IMPORTANCE Spoilage by yeasts and molds is a major contributor to food and drink waste, which undermines food security. Weak acid preservatives like sorbic acid help to stop spoilage, but some yeasts, commonly associated with spoilage, are resistant to sorbic acid. Different yeasts generate energy for growth by the processes of respiration and/or fermentation. Here, we show that sorbic acid targets the process of respiration, so fermenting yeasts are more resistant. Fermentative yeasts are also those usually found in spoilage incidents. This insight helps to explain the spoilage of sorbic acid-preserved foods by yeasts and can inform new strategies for effective control. This is timely as the sugar content of products like soft drinks is being lowered, which may favor respiration over fermentation in key spoilage yeasts.
Collapse
|
26
|
Gudekar N, Shanbhag V, Wang Y, Ralle M, Weisman GA, Petris MJ. Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess. Sci Rep 2020; 10:7856. [PMID: 32398691 PMCID: PMC7217913 DOI: 10.1038/s41598-020-64521-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/16/2020] [Indexed: 11/30/2022] Open
Abstract
Copper (Cu) is an essential, yet potentially toxic nutrient, as illustrated by inherited diseases of copper deficiency and excess. Elevated expression of the ATP7A Cu exporter is known to confer copper tolerance, however, the contribution of metal-binding metallothioneins is less clear. In this study, we investigated the relative contributions of ATP7A and the metallothioneins MT-I and MT-II to cell viability under conditions of Cu excess or deficiency. Although the loss of ATP7A increased sensitivity to low Cu concentrations, the absence of MTs did not significantly affect Cu tolerance. However, the absence of all three proteins caused a synthetic lethal phenotype due to extreme Cu sensitivity, indicating that MTs are critical for Cu tolerance only in the absence of ATP7A. A lack of MTs resulted in the trafficking of ATP7A from the trans-Golgi complex in a Cu-dependent manner, suggesting that MTs regulate the delivery of Cu to ATP7A. Under Cu deficiency conditions, the absence of MTs and / or ATP7A enhanced cell proliferation compared to wild type cells, suggesting that these proteins compete with essential Cu-dependent pathways when Cu is scarce. These studies reveal new roles for ATP7A and metallothioneins under both Cu deficiency and excess.
Collapse
Affiliation(s)
- Nikita Gudekar
- The Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vinit Shanbhag
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- The Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Yanfang Wang
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- The Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Martina Ralle
- The Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Gary A Weisman
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- The Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Michael J Petris
- The Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- The Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- The Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
- The Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
27
|
Evaluation of Saccharomyces cerevisiae Wine Yeast Competitive Fitness in Enologically Relevant Environments by Barcode Sequencing. G3-GENES GENOMES GENETICS 2020; 10:591-603. [PMID: 31792006 PMCID: PMC7003103 DOI: 10.1534/g3.119.400743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When a wine yeast is inoculated into grape juice the potential variation in juice composition that confronts it is huge. Assessing the performance characteristics of the many commercially available wine yeasts in the many possible grape juice compositions is a daunting task. To this end we have developed a barcoded Saccharomyces cerevisiae wine yeast collection to facilitate the task of performance assessment that will contribute to a broader understanding of genotype-phenotype relations. Barcode sequencing of mixed populations is used to monitor strain abundance in different grape juices and grape juice-like environments. Choice of DNA extraction method is shown to affect strain-specific barcode count in this highly related set of S. cerevisiae strains; however, the analytical approach is shown to be robust toward strain dependent variation in DNA extraction efficiency. Of the 38 unique compositional variables assessed, resistance to copper and SO2 are found to be dominant discriminatory factors in wine yeast performance. Finally, a comparison of competitive fitness profile with performance in single inoculum fermentations reveal strain dependent correspondence of yeast performance using these two different approaches.
Collapse
|
28
|
Copper Utilization, Regulation, and Acquisition by Aspergillus fumigatus. Int J Mol Sci 2019; 20:ijms20081980. [PMID: 31018527 PMCID: PMC6514546 DOI: 10.3390/ijms20081980] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
Copper is an essential micronutrient for the opportunistic human pathogen, Aspergillus fumigatus. Maintaining copper homeostasis is critical for survival and pathogenesis. Copper-responsive transcription factors, AceA and MacA, coordinate a complex network responsible for responding to copper in the environment and determining which response is necessary to maintain homeostasis. For example, A. fumigatus uses copper exporters to mitigate the toxic effects of copper while simultaneously encoding copper importers and small molecules to ensure proper supply of the metal for copper-dependent processes such a nitrogen acquisition and respiration. Small molecules called isocyanides recently found to be produced by A. fumigatus may bind copper and partake in copper homeostasis similarly to isocyanide copper chelators in bacteria. Considering that the host uses copper as a microbial toxin and copper availability fluctuates in various environmental niches, understanding how A. fumigatus maintains copper homeostasis will give insights into mechanisms that facilitate the development of invasive aspergillosis and its survival in nature.
Collapse
|
29
|
Zinc Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Appl Environ Microbiol 2019; 85:AEM.01967-18. [PMID: 30824435 PMCID: PMC6495748 DOI: 10.1128/aem.01967-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
While zinc is an essential trace metal in biology, excess zinc is toxic to organisms. Previous studies have shown that zinc toxicity is associated with disruption of the [4Fe-4S] clusters in various dehydratases in Escherichia coli Here, we report that the intracellular zinc overload in E. coli cells inhibits iron-sulfur cluster biogenesis without affecting the preassembled iron-sulfur clusters in proteins. Among the housekeeping iron-sulfur cluster assembly proteins encoded by the gene cluster iscSUA-hscBA-fdx-iscX in E. coli cells, the scaffold IscU, the iron chaperone IscA, and ferredoxin have strong zinc binding activity in cells, suggesting that intracellular zinc overload inhibits iron-sulfur cluster biogenesis by binding to the iron-sulfur cluster assembly proteins. Mutations of the conserved cysteine residues to serine in IscA, IscU, or ferredoxin completely abolish the zinc binding activity of the proteins, indicating that zinc can compete with iron or iron-sulfur cluster binding in IscA, IscU, and ferredoxin and block iron-sulfur cluster biogenesis. Furthermore, intracellular zinc overload appears to emulate the slow-growth phenotype of the E. coli mutant cells with deletion of the iron-sulfur cluster assembly proteins IscU, IscA, and ferredoxin. Our results suggest that intracellular zinc overload inhibits iron-sulfur cluster biogenesis by targeting the iron-sulfur cluster assembly proteins IscU, IscA, and ferredoxin in E. coli cells.IMPORTANCE Zinc toxicity has been implicated in causing various human diseases. High concentrations of zinc can also inhibit bacterial cell growth. However, the underlying mechanism has not been fully understood. Here, we report that zinc overload in Escherichia coli cells inhibits iron-sulfur cluster biogenesis by targeting specific iron-sulfur cluster assembly proteins. Because iron-sulfur proteins are involved in diverse physiological processes, the zinc-mediated inhibition of iron-sulfur cluster biogenesis could be largely responsible for the zinc-mediated cytotoxicity. Our finding provides new insights on how intracellular zinc overload may inhibit cellular functions in bacteria.
Collapse
|
30
|
Sarode GV, Kim K, Kieffer DA, Shibata NM, Litwin T, Czlonkowska A, Medici V. Metabolomics profiles of patients with Wilson disease reveal a distinct metabolic signature. Metabolomics 2019; 15:43. [PMID: 30868361 PMCID: PMC6568258 DOI: 10.1007/s11306-019-1505-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/04/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Wilson disease (WD) is characterized by excessive intracellular copper accumulation in liver and brain due to defective copper biliary excretion. With highly varied phenotypes and a lack of biomarkers for the different clinical manifestations, diagnosis and treatment can be difficult. OBJECTIVE The aim of the present study was to analyze serum metabolomics profiles of patients with Wilson disease compared to healthy subjects, with the goal of identifying differentially abundant metabolites as potential biomarkers for this condition. METHODS Hydrophilic interaction liquid chromatography-quadrupole time of flight mass spectrometry was used to evaluate the untargeted serum metabolome of 61 patients with WD (26 hepatic and 25 neurologic subtypes, 10 preclinical) compared to 15 healthy subjects. We conducted analysis of covariance with potential confounders (body mass index, age, sex) as covariates and partial least-squares analysis. RESULTS After adjusting for clinical covariates and multiple testing, we identified 99 significantly different metabolites (FDR < 0.05) between WD and healthy subjects. Subtype comparisons also revealed significantly different metabolites compared to healthy subjects: WD hepatic subtype (67), WD neurologic subtype (57), WD hepatic-neurologic combined (77), and preclinical (36). Pathway analysis revealed these metabolites are involved in amino acid metabolism, the tricarboxylic acid cycle, choline metabolism, and oxidative stress. CONCLUSIONS Patients with WD are characterized by a distinct metabolomics profile providing new insights into WD pathogenesis and identifying new potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Gaurav V Sarode
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Dorothy A Kieffer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Noreene M Shibata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Tomas Litwin
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Czlonkowska
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
31
|
Vallières C, Raulo R, Dickinson M, Avery SV. Novel Combinations of Agents Targeting Translation That Synergistically Inhibit Fungal Pathogens. Front Microbiol 2018; 9:2355. [PMID: 30349511 PMCID: PMC6186996 DOI: 10.3389/fmicb.2018.02355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
A range of fungicides or antifungals are currently deployed to control fungi in agriculture or medicine, but resistance to current agents is growing so new approaches and molecular targets are urgently needed. Recently, different aminoglycoside antibiotics combined with particular transport inhibitors were found to produce strong, synergistic growth-inhibition of fungi, by synergistically increasing the error rate of mRNA translation. Here, focusing on translation fidelity as a novel target for combinatorial antifungal treatment, we tested the hypothesis that alternative combinations of agents known to affect the availability of functional amino acids would synergistically inhibit growth of major fungal pathogens. We screened 172 novel combinations against three phytopathogens (Rhizoctonia solani, Zymoseptoria tritici, and Botrytis cinerea) and three human pathogens (Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus), showing that 48 combinations inhibited strongly the growth of the pathogens; the growth inhibition effect was significantly greater with the agents combined than by a simple product of their individual effects at the same doses. Of these, 23 combinations were effective against more than one pathogen, including combinations comprising food-and-drug approved compounds, e.g., quinine with bicarbonate, and quinine with hygromycin. These combinations [fractional inhibitory combination (FIC) index ≤0.5] gave up to 100% reduction of fungal growth yield at concentrations of agents which, individually, had negligible effect. No synergy was evident against bacterial, plant or mammalian cells, indicating specificity for fungi. Mode-of-action analyses for quinine + hygromycin indicated that synergistic mistranslation was the antifungal mechanism. That mechanism was not universal as bicarbonate exacerbated quinine action by increasing drug uptake. The study unveils chemical combinations and a target process with potential for control of diverse fungal pathogens, and suggests repurposing possibilities for several current therapeutics.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Roxane Raulo
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
32
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Tamasi G, Donati A, Leone G, Magnani A, Cini R, Macchia E, Rossi C, Bonechi C. Grappa quality from the Chianti and Montepulciano areas (Tuscany, Italy): monitoring the leaching of copper from distillation columns. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriella Tamasi
- Department of Biotechnologies, Chemistry and Pharmacy; University of Siena; Via A.Moro 2 Siena I-53100 Italy
| | - Alessandro Donati
- Department of Biotechnologies, Chemistry and Pharmacy; University of Siena; Via A.Moro 2 Siena I-53100 Italy
| | - Gemma Leone
- Department of Biotechnologies, Chemistry and Pharmacy; University of Siena; Via A.Moro 2 Siena I-53100 Italy
| | - Agnese Magnani
- Department of Biotechnologies, Chemistry and Pharmacy; University of Siena; Via A.Moro 2 Siena I-53100 Italy
| | - Renzo Cini
- Department of Biotechnologies, Chemistry and Pharmacy; University of Siena; Via A.Moro 2 Siena I-53100 Italy
| | - Eugenio Macchia
- Green Engineering Srl; Belvedere 2 I-53034 Colle Val D'Elsa Siena Italy
| | - Claudio Rossi
- Department of Biotechnologies, Chemistry and Pharmacy; University of Siena; Via A.Moro 2 Siena I-53100 Italy
- Operative Unit; University of Siena; Campo Verde Calabria Italy
| | - Claudia Bonechi
- Department of Biotechnologies, Chemistry and Pharmacy; University of Siena; Via A.Moro 2 Siena I-53100 Italy
| |
Collapse
|
34
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
35
|
Tindall SM, Vallières C, Lakhani DH, Islahudin F, Ting KN, Avery SV. Heterologous Expression of a Novel Drug Transporter from the Malaria Parasite Alters Resistance to Quinoline Antimalarials. Sci Rep 2018; 8:2464. [PMID: 29410428 PMCID: PMC5802821 DOI: 10.1038/s41598-018-20816-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/22/2018] [Indexed: 12/15/2022] Open
Abstract
Antimalarial drug resistance hampers effective malaria treatment. Critical SNPs in a particular, putative amino acid transporter were recently linked to chloroquine (CQ) resistance in malaria parasites. Here, we show that this conserved protein (PF3D7_0629500 in Plasmodium falciparum; AAT1 in P. chabaudi) is a structural homologue of the yeast amino acid transporter Tat2p, which is known to mediate quinine uptake and toxicity. Heterologous expression of PF3D7_0629500 in yeast produced CQ hypersensitivity, coincident with increased CQ uptake. PF3D7_0629500-expressing cultures were also sensitized to related antimalarials; amodiaquine, mefloquine and particularly quinine. Drug sensitivity was reversed by introducing a SNP linked to CQ resistance in the parasite. Like Tat2p, PF3D7_0629500-dependent quinine hypersensitivity was suppressible with tryptophan, consistent with a common transport mechanism. A four-fold increase in quinine uptake by PF3D7_0629500 expressing cells was abolished by the resistance SNP. The parasite protein localised primarily to the yeast plasma membrane. Its expression varied between cells and this heterogeneity was used to show that high-expressing cell subpopulations were the most drug sensitive. The results reveal that the PF3D7_0629500 protein can determine the level of sensitivity to several major quinine-related antimalarials through an amino acid-inhibitable drug transport function. The potential clinical relevance is discussed.
Collapse
Affiliation(s)
- Sarah M Tindall
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Dev H Lakhani
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Farida Islahudin
- Faculty of Pharmacy, Universiti Kebangsaan, Kuala Lumpur, 50300, Malaysia
| | - Kang-Nee Ting
- Department of Biomedical Sciences, University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
36
|
Garcia-Santamarina S, Uzarska MA, Festa RA, Lill R, Thiele DJ. Cryptococcus neoformans Iron-Sulfur Protein Biogenesis Machinery Is a Novel Layer of Protection against Cu Stress. mBio 2017; 8:e01742-17. [PMID: 29089435 PMCID: PMC5666163 DOI: 10.1128/mbio.01742-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
Copper (Cu) ions serve as catalytic cofactors to drive key biochemical processes, and yet Cu levels that exceed cellular homeostatic control capacity are toxic. The underlying mechanisms for Cu toxicity are poorly understood. During pulmonary infection by the fungal pathogen Cryptococcus neoformans, host alveolar macrophages compartmentalize Cu to the phagosome, and the ability to detoxify Cu is critical for its survival and virulence. Here, we report that iron-sulfur (Fe-S) clusters are critical targets of Cu toxicity in both Saccharomyces cerevisiae and C. neoformans in a manner that depends on the accessibility of Cu to the Fe-S cofactor. To respond to this Cu-dependent Fe-S stress, C. neoformans induces the transcription of mitochondrial ABC transporter Atm1, which functions in cytosolic-nuclear Fe-S protein biogenesis in response to Cu and in a manner dependent on the Cu metalloregulatory transcription factor Cuf1. As Atm1 functions in exporting an Fe-S precursor from the mitochondrial matrix to the cytosol, C. neoformans cells depleted for Atm1 are sensitive to Cu even while the Cu-detoxifying metallothionein proteins are highly expressed. We provide evidence for a previously unrecognized microbial defense mechanism to deal with Cu toxicity, and we highlight the importance for C. neoformans of having several distinct mechanisms for coping with Cu toxicity which together could contribute to the success of this microbe as an opportunistic human fungal pathogen.IMPORTANCEC. neoformans is an opportunistic pathogen that causes lethal meningitis in over 650,000 people annually. The severity of C. neoformans infections is further compounded by the use of toxic or poorly effective systemic antifungal agents as well as by the difficulty of diagnosis. Cu is a natural potent antimicrobial agent that is compartmentalized within the macrophage phagosome and used by innate immune cells to neutralize microbial pathogens. While the Cu detoxification machinery of C. neoformans is essential for virulence, little is known about the mechanisms by which Cu kills fungi. Here we report that Fe-S cluster-containing proteins, including members of the Fe-S protein biogenesis machinery itself, are critical targets of Cu toxicity and therefore that this biosynthetic process provides an important layer of defense against high Cu levels. Given the role of Cu ionophores as antimicrobials, understanding how Cu is toxic to microorganisms could lead to the development of effective, broad-spectrum antimicrobials. Moreover, understanding Cu toxicity could provide additional insights into the pathophysiology of human diseases of Cu overload such as Wilson's disease.
Collapse
Affiliation(s)
| | - Marta A Uzarska
- Institut für Zytobiologie & Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Richard A Festa
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Roland Lill
- Institut für Zytobiologie & Zytopathologie, Philipps-Universität, Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Marburg, Germany
| | - Dennis J Thiele
- Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|