1
|
Yang WP, Miao HJ, Wang G, Yang X, Wang X, Liu L, Duan XH, Guo LN. Photoinduced Aromatization-Driven Deconstructive Fluorosulfonylation of Spiro Dihydroquinazolinones. J Org Chem 2024; 89:18713-18722. [PMID: 39614825 DOI: 10.1021/acs.joc.4c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A catalyst-free photoinduced deconstructive fluorosulfonylation cascade of spiro dihydroquinazolinones with DABSO and NFSI is reported. This protocol features mild reaction conditions, good yields and excellent functional group tolerance, providing a practical approach to the quinazolin-4(1H)-one-functionalized aliphatic sulfonyl fluorides. In addition, the ease of gram-scale synthesis and the versatility of the SuFEx exchange highlight the application potential of this protocol.
Collapse
Affiliation(s)
- Wen-Peng Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gang Wang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Xiaoyu Yang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Xianjun Wang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Kim HR, Byun DP, Thakur K, Ritchie J, Xie Y, Holewinski R, Suazo KF, Stevens M, Liechty H, Tagirasa R, Jing Y, Andresson T, Johnson SM, Yoo E. Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines. ACS Chem Biol 2024; 19:1082-1092. [PMID: 38629450 PMCID: PMC11107811 DOI: 10.1021/acschembio.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Electrophilic small molecules with novel reactivity are powerful tools that enable activity-based protein profiling and covalent inhibitor discovery. Here, we report a reactive heterocyclic scaffold, 4-chloro-pyrazolopyridine (CPzP) for selective modification of proteins via a nucleophilic aromatic substitution (SNAr) mechanism. Chemoproteomic profiling reveals that CPzPs engage cysteines within functionally diverse protein sites including ribosomal protein S5 (RPS5), inosine monophosphate dehydrogenase 2 (IMPDH2), and heat shock protein 60 (HSP60). Through the optimization of appended recognition elements, we demonstrate the utility of CPzP for covalent inhibition of prolyl endopeptidase (PREP) by targeting a noncatalytic active-site cysteine. This study suggests that the proteome reactivity of CPzPs can be modulated by both electronic and steric features of the ring system, providing a new tunable electrophile for applications in chemoproteomics and covalent inhibitor design.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David P. Byun
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kalyani Thakur
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jennifer Ritchie
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yixin Xie
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ronald Holewinski
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Kiall F. Suazo
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Mckayla Stevens
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Hope Liechty
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Ravichandra Tagirasa
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yihang Jing
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Thorkell Andresson
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Steven M. Johnson
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Euna Yoo
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
5
|
Ivanov I, Vasileva A, Tasheva D, Dimitrova M. Isolation and characterization of natural inhibitors of post-proline specific peptidases from the leaves of Cotinus coggygria Scop. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116508. [PMID: 37264880 DOI: 10.1016/j.jep.2023.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cotinus coggygria has a number of applications in traditional medicine most of which are connected with its anti-inflammatory and anti-oxidant properties. Since inflammation and oxidative stress are recognized as triggering factors for cancer, anti-cancer activity has also been documented and the possible mechanisms of this activity are under investigation. Important components of C. coggygria extracts are shown to be hydrolysable gallotannins of which pentagalloyl-O-glucose has been studied in details. This compound inhibits various enzymes including prolyl oligopeptidase which is involved in tumorigenesis and tumour growth. According to our pilot studies, oligo-O-galloylglucoses with more than five galloyl residues are also presented in the herb of Bulgarian origin, but their activities have not been examined. AIM OF THE STUDY To establish an extraction method by which it is possible to concentrate high molecular hydrolysable gallotannins from dried leaves of Cotinus coggygria and to determine their inhibitory properties towards prolyl oligopeptidase and fibroblast activation protein α. MATERIALS AND METHODS Dried leaves of C. coggygria were extracted using different solvents in single-phase or biphasic systems under various extraction conditions. Main compounds of the extracts were identified by using high performance liquid chromatography and liquid chromatography - high resolution mass spectrometry. The extracts' inhibitory properties towards prolyl oligopeptidase and fibroblast activation protein α were studied on recombinant human enzymes by enzyme kinetic analyses using a fluorogenic substrate. RESULTS Ethyl acetate/water (pH 3.0) extraction of dried plant leaves proved to be the most efficient method for isolation of high molecular hydrolysable gallotannins which can be further concentrated by precipitation of dicyclohexylammonium salts in ethyl acetate. The main components of those extracts were oligo-O-galloyl glucoses with more than five gallic acid residues. They were shown to inhibit both enzymes studied but were about 30 times more effective inhibitors of prolyl oligopeptidase. CONCLUSIONS C. coggygria from Bulgarian origin is shown to possess a substantial quantity of oligo-O-galloyl glucoses with more than five gallic acid residues which has not been described thus far in the same herb from other sources. An extraction method useable for concentrating those compounds is established. They are found to inhibit prolyl oligopeptidase with a very good selectivity to fibroblast activation protein α. The previously described antitumor activity of this plant may be at least in part due to the inhibition of the above enzymes which has been shown to participate in the genesis and development of various types of tumors.
Collapse
Affiliation(s)
- Ivaylo Ivanov
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 2, Zdrave Str., Sofia, 1431, Bulgaria.
| | - Anelia Vasileva
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 2, Zdrave Str., Sofia, 1431, Bulgaria
| | - Donka Tasheva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1, J. Bourchier blvd., Sofia, 1164, Bulgaria
| | - Mashenka Dimitrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - Bulgarian Academy of Sciences, "Acad. G. Bonchev" Str., Bl. 25, Sofia, 1113, Bulgaria
| |
Collapse
|
6
|
Castellani B, Eleuteri M, Di Bona S, Cruciani G, Desantis J, Goracci L. VHL-Modified PROteolysis TArgeting Chimeras (PROTACs) as a Strategy to Evade Metabolic Degradation in In Vitro Applications. J Med Chem 2023; 66:13148-13171. [PMID: 37699425 DOI: 10.1021/acs.jmedchem.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are tripartite molecules consisting of a linker connecting a ligand for a protein of interest to an E3 ligase recruiter, whose rationale relies on proteasome-based protein degradation. PROTACs have expanded as a therapeutic strategy to open new avenues for unmet medical needs. Leveraging our expertise, we undertook a series of in vitro experiments aimed at elucidating PROTAC metabolism. In particular, we focused on PROTACs recruiting the von Hippel-Lindau (VHL) E3 ligase. After high-resolution mass spectrometry measurements, a characteristic metabolite with mass reduction of 200 units was detected and successively confirmed as a product deriving from the cleavage of the VHL ligand moiety. Subsequently, we identified hepatic and extrahepatic prolyl endopeptidases as the main putative metabolic enzymes involved. Finally, we designed and synthesized analogs of the VHL ligands that we further exploited for the synthesis of novel VHL-directed PROTACs with an improved metabolic stability in in vitro applications.
Collapse
Affiliation(s)
| | - Michela Eleuteri
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | | | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Jenny Desantis
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| |
Collapse
|
7
|
Carneiro SN, Khasnavis SR, Lee J, Butler TW, Majmudar JD, Am Ende CW, Ball ND. Sulfur(VI) fluorides as tools in biomolecular and medicinal chemistry. Org Biomol Chem 2023; 21:1356-1372. [PMID: 36662157 PMCID: PMC9929716 DOI: 10.1039/d2ob01891h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Recent advances in the synthesis of sulfur(VI)-fluorides has enabled incredible growth in their application in biomolecular chemistry. This review aims to serve as a primer highlighting synthetic strategies toward a diversity of S(VI) fluorides and their application in chemical biology, bioconjugation, and medicinal chemistry.
Collapse
Affiliation(s)
- Sabrina N Carneiro
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Jisun Lee
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Todd W Butler
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | | | - Nicholas D Ball
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| |
Collapse
|
8
|
Erchinger JE, Hoogesteger R, Laskar R, Dutta S, Hümpel C, Rana D, Daniliuc CG, Glorius F. EnT-Mediated N-S Bond Homolysis of a Bifunctional Reagent Leading to Aliphatic Sulfonyl Fluorides. J Am Chem Soc 2023; 145:2364-2374. [PMID: 36652725 DOI: 10.1021/jacs.2c11295] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sulfur(VI) fluoride exchange (SuFEx) gives rise to a plethora of high-valent sulfur linkages; however, the availability of (aliphatic) sulfonyl fluoride manifolds lag behind, owing to the limited sources of introducing the SO2F moiety via a classical two-electron approach. Recently, radical-based methodologies have emerged as a complementary strategy to increase the diversity of accessible click partners. In this work, synthesis of a bench-stable sulfamoyl fluoride reagent is presented, which may undergo sigma-bond homolysis upon visible-light-induced sensitization to form protected β-amino sulfonyl fluorides from alkene feedstocks. Notably, this offers an appealing strategy to access various building blocks for peptido sulfonyl fluorides, relevant in a medicinal chemistry context, as well as an intriguing entry to β-ammonium sulfonates and β-sultams, from alkenes. Densely functionalized 1,3-sultones were obtained by employing allyl alcohols as substrates. Surprisingly, allyl chloride-derived β-imino sulfonyl fluoride underwent S-O bond formation and ring closure to yield rigid cyclopropyl β-imino sulfonate ester under SuFEx conditions. Furthermore, by engaging a thiol-based hydrogen atom donor in the reaction, the reactivity of the same reagent can be tuned toward the direct synthesis of aliphatic sulfonyl fluorides. Mechanistic experiments indicate an energy transfer (EnT)-mediated process. The transient sulfonyl fluoride radical adds to the alkene and product formation occurs upon either radical-radical coupling or hydrogen atom transfer (HAT), respectively.
Collapse
Affiliation(s)
- Johannes E Erchinger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Reece Hoogesteger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Ranjini Laskar
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Carla Hümpel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Debanjan Rana
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
9
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022; 61:e202207684. [DOI: 10.1002/anie.202207684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Mingqi Zhao
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Shuangshuang Ji
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
10
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Wang
- Fuzhou University College of Chemistry CHINA
| | | | - Mingqi Zhao
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Shuangshuang Ji
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Lu Lin
- Fuzhou University College of Chemistry CHINA
| | - Na Yang
- Fuzhou University College of Chemistry CHINA
| | | | - Jinshuai Song
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Saihu Liao
- Fuzhou University College of Chemistry 2 Xueyuan RoadUniversity Town 350108 Fuzhou CHINA
| |
Collapse
|
11
|
Wang P, Zhang H, Nie X, Xu T, Liao S. Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nat Commun 2022; 13:3370. [PMID: 35690603 PMCID: PMC9188602 DOI: 10.1038/s41467-022-31089-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides have attracted considerable and growing research interests from various disciplines, which raises a high demand for novel and effective methods to access this class of compounds. Radical flurosulfonylation is recently emerging as a promising approach for the synthesis of sulfonyl fluorides. However, the scope of applicable substrate and reaction types are severely restricted by limited known radical reagents. Here, we introduce a solid state, redox-active type of fluorosulfonyl radical reagents, 1-fluorosulfonyl 2-aryl benzoimidazolium triflate (FABI) salts, which enable the radical fluorosulfonylation of olefins under photoredox conditions. In comparison with the known radical precursor, gaseous FSO2Cl, FABI salts are bench-stable, easy to handle, affording high yields in the radical fluorosulfonylation of olefins with before challenging substrates. The advantage of FABIs is further demonstrated in the development of an alkoxyl-fluorosulfonyl difunctionalization reaction of olefins, which forges a facile access to useful β-alkoxyl sulfonyl fluorides and related compounds, and would thus benefit the related study in the context of chemical biology and drug discovery in the future.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China.
- Beijing National Laboratory of Molecular Science (BNLMS), 100190, Beijing, China.
| |
Collapse
|
12
|
Khan A, Waqas M, Khan M, Halim SA, Rehman NU, Al-Harrasi A. Identification of novel prolyl oligopeptidase inhibitors from resin of Boswella papyrifera (Del.) Hochst. and their mechanism: Virtual and biochemical studies. Int J Biol Macromol 2022; 213:751-767. [DOI: 10.1016/j.ijbiomac.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
|
13
|
Chen ZD, Zhou X, Yi JT, Diao HJ, Chen QL, Lu G, Weng J. Catalytic Decarboxylative Fluorosulfonylation Enabled by Energy-Transfer-Mediated Photocatalysis. Org Lett 2022; 24:2474-2478. [PMID: 35263111 DOI: 10.1021/acs.orglett.2c00459] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfonyl fluorides are useful building blocks in a wide array of fields. Herein, we report a catalytic decarboxylative fluorosulfonylation approach for converting abundant aliphatic carboxylic acids to the corresponding sulfonyl fluorides. This transformation is enabled by simple preactivation as aldoxime esters and energy-transfer-mediated photocatalysis. This operationally simple method proceeds with high functional-group tolerance under mild and redox-neutral conditions.
Collapse
Affiliation(s)
- Zhi-Da Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hong-Juan Diao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi-Long Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
14
|
Zolotov NN, Schepetkin IA, Voronina TA, Pozdnev VF, Khlebnikov AI, Krylova IV, Quinn MT. Therapeutic Effect of Novel Cyanopyrrolidine-Based Prolyl Oligopeptidase Inhibitors in Rat Models of Amnesia. Front Chem 2022; 9:780958. [PMID: 35004610 PMCID: PMC8727363 DOI: 10.3389/fchem.2021.780958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Prolyl oligopeptidase (POP) is a large cytosolic serine peptidase that is altered in patients with Alzheimer’s disease, Parkinsonian syndrome, muscular dystrophies, and other denervating diseases. Thus, POP may represent a relevant therapeutic target for treatment of neuropsychiatric disorders and neurodegenerative diseases. Here, we report the characterization of five novel cyanopyrrolidine-based compounds (BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, CbzGlnPrdN, and CbzAlaPrdN) and show that they are potent inhibitors of POP and are predicted to penetrate the blood-brain barrier (BBB). Indeed, we show that CbzMetPrdN penetrates the rat BBB and effectively inhibits POP in the brain when administered intraperitoneally. Furthermore, molecular modeling confirmed these compounds likely inhibit POP via interaction with the POP catalytic site. We evaluated protective effects of the cyanopyrrolidine-based POP inhibitors using scopolamine- and maximal electroshock-induced models of amnesia in rats and showed that BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, and CbzGlnPrdN significantly prolonged conditioned passive avoidance reflex (CPAR) retention time when administered intraperitoneally (1 and 2 mg/kg) before evaluation in both models of amnesia, although CbzAlaPrdN was not effective in scopolamine-induced amnesia. Our data support previous reports on the antiamnesic effects of prolinal-based POP inhibitors and indicate an important role of POP in the regulation of learning and memory processes in the CNS.
Collapse
Affiliation(s)
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | | | | | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, Russia.,Institute of Pharmacy, Altai State Medical University, Barnaul, Russia
| | | | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
15
|
Park JK, Oh J, Lee S. Electrochemical Synthesis of Sulfonyl Fluorides from Sulfonyl Hydrazides. Org Chem Front 2022. [DOI: 10.1039/d2qo00651k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of sulfonyl fluorides via the reaction of sulfonyl hydrazides and Et3N3HF under electrochemical conditions is reported. Various sulfonyl fluorides were obtained in good yields under a constant current...
Collapse
|
16
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
17
|
Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro-Fluorosulfonylation of Alkynes. Angew Chem Int Ed Engl 2021; 60:22035-22042. [PMID: 34382306 DOI: 10.1002/anie.202109072] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 12/11/2022]
Abstract
Sulfonyl fluorides have widespread applications in many important fields, including ligation chemistry, chemical biology, and drug discovery. Therefore, new methods to increase the synthetic efficiency and expand the available structures of sulfonyl fluorides are highly in demand. Here, we introduce a new and powerful class of sulfonyl fluoride hubs, β-chloro alkenylsulfonyl fluorides (BCASF), which can be constructed via radical chloro-fluorosulfonyl difunctionalization of alkynes under photoredox conditions. BCASF molecules exhibit versatile reactivities and well undergo a series of transformations at the chloride site while keeping the sulfonyl fluoride group intact, including reduction, Suzuki coupling, Sonogashira coupling, as well as nucleophilic substitution with various nitrogen, oxygen, and sulfur nucleophiles. By using BCASF as a synthetic hub, a wide range of sulfonyl fluorides becomes readily accessible, such as cis alkenylsulfonyl fluorides, dienylsulfonyl fluorides, and ynenylsulfonyl fluorides, which are challenging or even not possible to synthesize before with the known methods. Moreover, further application of BCASF to the late-stage modification of peptides and drugs is also demonstrated.
Collapse
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuhao Hong
- Tan Kah Kee Innovation Laboratory (IKKEM) Center for Micro-nano Fabrication and Advanced Characterization, Xiamen University, Xiamen, 361102, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chenxi Mao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory of Molecular Science (BNLMS), Beijing, 100190, China
| |
Collapse
|
18
|
Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro‐Fluorosulfonylation of Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuhao Hong
- Tan Kah Kee Innovation Laboratory (IKKEM) Center for Micro-nano Fabrication and Advanced Characterization Xiamen University Xiamen 361102 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Chenxi Mao
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
19
|
Zhong T, Yi JT, Chen ZD, Zhuang QC, Li YZ, Lu G, Weng J. Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins. Chem Sci 2021; 12:9359-9365. [PMID: 34349907 PMCID: PMC8278970 DOI: 10.1039/d1sc02503a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
The development of efficient approaches to access sulfonyl fluorides is of great significance because of the widespread applications of these structural motifs in many areas, among which the emerging sulfur(vi) fluoride exchange (SuFEx) click chemistry is the most prominent. Here, we report the first three-component aminofluorosulfonylation of unactivated olefins by merging photoredox-catalyzed proton-coupled electron transfer (PCET) activation with radical relay processes. Various aliphatic sulfonyl fluorides featuring a privileged 5-membered heterocyclic core have been efficiently afforded under mild conditions with good functional group tolerance. The synthetic potential of the sulfonyl fluoride products has been examined by diverse transformations including SuFEx reactions and transition metal-catalyzed cross-coupling reactions. Mechanistic studies demonstrate that amidyl radicals, alkyl radicals and sulfonyl radicals are involved in this difunctionalization transformation.
Collapse
Affiliation(s)
- Tao Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhi-Da Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Quan-Can Zhuang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yong-Zhao Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
20
|
Gattringer J, Ndogo OE, Retzl B, Ebermann C, Gruber CW, Hellinger R. Cyclotides Isolated From Violet Plants of Cameroon Are Inhibitors of Human Prolyl Oligopeptidase. Front Pharmacol 2021; 12:707596. [PMID: 34322026 PMCID: PMC8311463 DOI: 10.3389/fphar.2021.707596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Traditional medicine and the use of herbal remedies are well established in the African health care system. For instance, Violaceae plants are used for antimicrobial or anti-inflammatory applications in folk medicine. This study describes the phytochemical analysis and bioactivity screening of four species of the violet tribe Allexis found in Cameroon. Allexis cauliflora, Allexis obanensis, Allexis batangae and Allexis zygomorpha were evaluated for the expression of circular peptides (cyclotides) by mass spectrometry. The unique cyclic cystine-rich motif was identified in several peptides of all four species. Knowing that members of this peptide family are protease inhibitors, the plant extracts were evaluated for the inhibition of human prolyl oligopeptidase (POP). Since all four species inhibited POP activity, a bioactivity-guided fractionation approach was performed to isolate peptide inhibitors. These novel cyclotides, alca 1 and alca 2 exhibited IC50 values of 8.5 and 4.4 µM, respectively. To obtain their amino acid sequence information, combinatorial enzymatic proteolysis was performed. The proteolytic fragments were evaluated in MS/MS fragmentation experiments and the full-length amino acid sequences were obtained by de novo annotation of fragment ions. In summary, this study identified inhibitors of the human protease POP, which is a drug target for inflammatory or neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | | | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
21
|
Knaup FH, Meyners C, Charalampidou A, Krajczy P, Purder PL, Ross T, Hausch F. Med Chem Remote: The Frontiers in Medicinal Chemistry 2021. ChemMedChem 2021; 16:2411-2416. [PMID: 34101362 DOI: 10.1002/cmdc.202100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/21/2022]
Abstract
Digital, but delicious! The Frontiers in Medicinal Chemistry 2021 meeting, originally intended to take place in Darmstadt, carried on as an online event from March 8-10 this year. Even with pandemic restrictions, the event co-presented by the Medicinal Chemistry Division of the German Chemical Society (GDCh), the German Pharmaceutical Society (DPhG), and the Swiss Chemical Society (SCS) proved to be a success, showcasing excellent speakers and facilitating participant interaction in an ingenious virtual setting. Over 350 participants from more than 10 countries gathered to discuss the latest trends and directions in medicinal chemistry, with sessions on molecular glues, covalent fragments, transient binding pockets and more. This report presents a summary of the key lectures and activities at the event.
Collapse
Affiliation(s)
- Fabian H Knaup
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Anna Charalampidou
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Patryk Krajczy
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Patrick L Purder
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| | - Tatjana Ross
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
22
|
Computer-Aided Drug Discovery Identifies Alkaloid Inhibitors of Parkinson's Disease Associated Protein, Prolyl Oligopeptidase. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6687572. [PMID: 33897801 PMCID: PMC8052153 DOI: 10.1155/2021/6687572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/25/2020] [Accepted: 02/19/2021] [Indexed: 01/18/2023]
Abstract
Parkinson's disease is a common neurodegenerative disorder marked by the accumulation of the protein alpha synuclein. Studies have indicated the role of prolyl oligopeptidase (POP), a serine protease, in alpha synuclein accumulation. Therefore, POP emerges as an attractive medicinal target. Traditionally, most of the early medicines have been plant-based owing to their ready availability and negligible side effects. Alkaloids owing to their neurotransmitter modulatory, anti-amyloid, anti-oxidant, and anti-inflammatory activities have shown potential in neurodegenerative disease. In this work, we computationally evaluated alkaloid class of phytochemicals for their therapeutic efficacy against POP. Alkaloids were retrieved from the publically available database, Chemical Entities of Biological Interest (ChEBI), and screened for their drug likeness (Lipinski's rule of 5) and absorption, distribution, metabolism, and excretion, and toxicity (ADMET) in Discovery Studio by ensuring parameters suitable for a central nervous system disease such as blood-brain barrier (BBB) level set to ≤2, absorption level set to 0 and solubility level permitted set to 2, 3, or 4. Next, molecular docking was performed to learn about the affinity of the filtered alkaloids with the POP. Subsequently, molecular dynamic simulations were conducted to assess the reliability and stability of the alkaloid-protein complex. Our study identified metergoline, pipercallosine, celacinnine, lobeline, cystodytin G, lycoperine A, hookerianamide J, and martefragin A as putative lead compounds against POP. Among these, metergoline, pipercallosine, hookerianamide J, and lobeline showed the most promising results. These compounds demonstrated better or equivalent molecular docking scores in comparison to three POP inhibitors that had reached clinical trials, i.e., Z-321, S-17092, and JTP-4819. MD simulations indicated that these compounds remained intact at the active site while adhering to the binding mode and interaction patterns as that of the reported inhibitors. The research conducted here, therefore, provides evidence for conducting in vitro POP inhibitory studies of these newly identified plant-based POP inhibitors.
Collapse
|
23
|
Chen HR, Hu ZY, Qin HL, Tang H. A novel three-component reaction for constructing indolizine-containing aliphatic sulfonyl fluorides. Org Chem Front 2021. [DOI: 10.1039/d0qo01430c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A copper-catalyzed three-component reaction for transforming quinolines, isoquinolines and pyridines to a class of indolizine-containing alkyl sulfonyl fluorides was developed.
Collapse
Affiliation(s)
- Hong-Ru Chen
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Zhen-Yu Hu
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Hua-Li Qin
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Haolin Tang
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
24
|
The Inhibition of Prolyl Oligopeptidase as New Target to Counteract Chronic Venous Insufficiency: Findings in a Mouse Model. Biomedicines 2020; 8:biomedicines8120604. [PMID: 33322134 PMCID: PMC7764674 DOI: 10.3390/biomedicines8120604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
(1) Background: Chronic venous insufficiency (CVI) is a common disorder related to functional and morphological abnormalities of the venous system. Inflammatory processes and angiogenesis alterations greatly concur to the onset of varicose vein. KYP-2047 is a selective inhibitor of prolyl oligopeptidase (POP), a serine protease involved in the release of pro-angiogenic molecules. The aim of the present study is to evaluate the capacity of KYP-2047 to influence the angiogenic and inflammatory mechanisms involved in the pathophysiology of CVI. (2) Methods: An in vivo model of CVI-induced by saphene vein ligation (SVL) and a tissue block culture study were performed. Mice were subjected to SVL followed by KYP-2047 treatment (intraperitoneal, 10 mg/kg) for 7 days. Histological analysis, Masson's trichrome, Van Gieson staining, and mast cells evaluation were performed. Release of cytokines, nitric oxide synthase production, TGF-beta, VEGF, α-smooth muscle actin, PREP, Endoglin, and IL-8 quantification were investigated. (3) Results: KYP-2047 treatment ameliorated the histological abnormalities of the venous wall, reduced the collagen increase and modulated elastin content, lowered cytokines levels and prevented mast degranulation. Moreover, a decreased expression of TGF-beta, eNOS, VEGF, α-smooth muscle actin, IL-8, and PREP was observed in in vivo study; also a reduction in VEGF and Endoglin expression was confirmed in tissue block culture study. (4) Conclusions: For the first time, this research, highlighting the importance of POP as new target for vascular disorders, revealed the therapeutic potential of KYP-2047 as a helpful treatment for the management of CVI.
Collapse
|
25
|
Dunaevsky YE, Tereshchenkova VF, Oppert B, Belozersky MA, Filippova IY, Elpidina EN. Human proline specific peptidases: A comprehensive analysis. Biochim Biophys Acta Gen Subj 2020; 1864:129636. [DOI: 10.1016/j.bbagen.2020.129636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
|
26
|
Zhang X, Fang W, Lekkala R, Tang W, Qin H. An Easy, General and Practical Method for the Construction of Alkyl Sulfonyl Fluorides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Wan‐Yin Fang
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Wenjian Tang
- School of PharmacyAnhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical University Hefei 230032 People's Republic of China
| | - Hua‐Li Qin
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
27
|
Sharma S, Srivastav S, Singh G, Singh S, Malik R, Alam MM, Shaqiquzamman M, Ali S, Akhter M. In silico strategies for probing novel DPP-IV inhibitors as anti-diabetic agents. J Biomol Struct Dyn 2020; 39:2118-2132. [PMID: 32248758 DOI: 10.1080/07391102.2020.1751714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Identification of new DPP-IV inhibitors by integrating validated in silico approach is being presented herein. Novel hits were identified by combining pharmacophore and structure based virtual screening of ZINC and Knowledge Base in house database followed by ADME profiling, consensus docking studies. Six potential hits were identified and analysed for their synthetic accessibility score, novelty analysis and pan assay interference compounds filtration. Out of six, three hits viz., ZINC25060187, ZINC53746227 and KB-10 were analysed for stability studies using Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Dynamics (MD) simulation. The simulation studies of the identified hits revealed that these hits have good selectivity and stability in DPP-IV binding pocket. Important interactions with amino acids viz., Tyr547, Glu205 and Glu206 similar to co-crystallized ligand were also observed. One of the hits viz., KB-10 was synthesized and evaluated for its biological potential. The compound KB-10 showed good DPP-IV inhibition in both in vitro and in vivo studies with IC50: 22.69 µM. This study supports the fact that these techniques hold potential for efficient screening of compounds with unknown affinity for DPP-IV that could serve as candidates for therapeutic development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi, India.,Bioinformatics Infrastructure Facility, New Delhi, India
| | - Shubham Srivastav
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Garima Singh
- Bioinformatics Infrastructure Facility, New Delhi, India.,Department of Food Sciences, School of Interdisciplinary Sciences, New Delhi, India
| | - Smrita Singh
- Technology Board Department, Ministry of Science & Technology, New Delhi, India
| | - Ruchi Malik
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi, India
| | - Mohammad Shaqiquzamman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shakir Ali
- Bioinformatics Infrastructure Facility, New Delhi, India.,Department of Biochemistry, School of Chemical and Biological Sciences, New Delhi, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi, India.,Bioinformatics Infrastructure Facility, New Delhi, India
| |
Collapse
|
28
|
Wei L, Wen W, Rao L, Huang Y, Lei M, Liu K, Hu S, Song R, Ren Y, Wan J. Cov_FB3D: A De Novo Covalent Drug Design Protocol Integrating the BA-SAMP Strategy and Machine-Learning-Based Synthetic Tractability Evaluation. J Chem Inf Model 2020; 60:4388-4402. [PMID: 32233478 DOI: 10.1021/acs.jcim.9b01197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
De novo drug design actively seeks to use sets of chemical rules for the fast and efficient identification of structurally new chemotypes with the desired set of biological properties. Fragment-based de novo design tools have been successfully applied in the discovery of noncovalent inhibitors. Nevertheless, these tools are rarely applied in the field of covalent inhibitor design. Herein, we present a new protocol, called Cov_FB3D, which involves the in silico assembly of potential novel covalent inhibitors by identifying the active fragments in the covalently binding site of the target protein. In this protocol, we propose a BA-SAMP strategy, which combines the noncovalent moiety score with the X-Score as the molecular mechanism (MM) level, and the covalent candidate score with the PM7 as the QM level. The synthetic accessibility of each suggested compound could be further evaluated with machine-learning-based synthetic complexity evaluation (SCScore). An in-depth test of this protocol against the crystal structures of 15 covalent complexes consisting of BTK inhibitors, KRAS inhibitors, EGFR inhibitors, EphB1 inhibitors, MAGL inhibitors, and MAPK inhibitors revealed that most of these inhibitors could be de novo reproduced from the fragments by Cov_FB3D. The binding modes of most generated reference poses could accurately reproduce the known binding mode of most of the reference covalent adduct in the binding site (RMSD ≤ 2 Å). In particular, most of these inhibitors were ranked in the top 2%, using the BA-SAMP strategy. Notably, the novel human ALDOA inhibitor (T1) with potent inhibitory activity (0.34 ± 0.03 μM) and greater synthetic accessibility was successfully de novo designed by this protocol. The positive results confirm the abilities of Cov_FB3D protocol.
Collapse
Affiliation(s)
- Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wuqiang Wen
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengting Lei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, People's Republic of China
| | - Saiya Hu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rongrong Song
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
29
|
Design and synthesis of selective and blood-brain barrier-permeable hydroxamate-based gelatinase inhibitors. Bioorg Chem 2020; 94:103365. [DOI: 10.1016/j.bioorg.2019.103365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/13/2019] [Indexed: 12/31/2022]
|
30
|
Sharma S, Srivastava S, Shrivastava A, Malik R, Almalki F, Saifullah K, Alam MM, Shaqiquzzaman M, Ali S, Akhter M. Mining of potential dipeptidyl peptidase-IV inhibitors as anti-diabetic agents using integrated in silico approaches. J Biomol Struct Dyn 2019; 38:5349-5361. [PMID: 31813365 DOI: 10.1080/07391102.2019.1701553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dipeptidyl peptidase-IV (DPP-IV) family of receptors possesses a large binding cavity that imparts promiscuity for number of ligand binding which is not common to other receptors. This feature increases the challenge of using computational methods to identify DPP-IV inhibitors, therefore using both pharmacophore and structure-based screening seems to be a reliable approach. Mining of novel DPP-IV inhibitors by integrating both of these in silico techniques was reported. Pharmacophore model (Model_008) obtained from structurally diverse reported compounds was used as a template for screening of MolMall database followed by structure-based screening against PDB ID: 5T4E. After absorption, distribution, metabolism and excretion (ADME) analysis of shortlisted compounds, consensus docking and molecular mechanics/generalized born surface area studies were carried out. The results of the docking studies obtained were comparable to that of the reference ligand. Out of nine hits identified, only one hit (ID MolMall-20062) was available which was procured through exchange program. Molecular dynamic simulation studies of the procured hit revealed its good selectivity and stability in DPP-IV binding pocket and interactions observed with important amino acids viz., Trp629, Lys544 and Arg125. Biological testing of the compound MolMall-20062 showed promising DPP-IV inhibition activity with IC50: 6.2 µM. Compound MolMall-20062 could be taken as a good lead for the development of DPP-IV inhibitors.AbbreviationsADMEabsorption, distribution, metabolism and excretionChEBIchemical entities of biological interestDPP-IVdipeptidyl peptidase IVDISCOtechdistance comparisonsHTVShigh throughput virtual screeningMDmolecular dynamicsMM-GBSAmolecular mechanics-generalized born surface areaOGTToral glucose tolerance testPBVSpharmacophore-based virtual screeningPDBprotein data bankRMSDroot mean square deviationROCreceiver operating characteristicsSPstandard precisionSBVSstructure-based virtual screeningVSvirtual screeningXPextra precisionCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shweta Sharma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Bioinformatics Infrastructure Facility, Jamia Hamdard, New Delhi, India
| | - Shubham Srivastava
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Apeksha Shrivastava
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Bioinformatics Infrastructure Facility, Jamia Hamdard, New Delhi, India
| | - Ruchi Malik
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | | | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Shaqiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shakir Ali
- Bioinformatics Infrastructure Facility, Jamia Hamdard, New Delhi, India.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Bioinformatics Infrastructure Facility, Jamia Hamdard, New Delhi, India
| |
Collapse
|
31
|
Kiss-Szemán AJ, Harmat V, Menyhárd DK. Achieving Functionality Through Modular Build-up: Structure and Size Selection of Serine Oligopeptidases. Curr Protein Pept Sci 2019; 20:1089-1101. [PMID: 31553292 DOI: 10.2174/1389203720666190925103339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/13/2019] [Accepted: 04/12/2019] [Indexed: 01/13/2023]
Abstract
Enzymes of the prolyl oligopeptidase family (S9 family) recognize their substrates not only by the specificity motif to be cleaved but also by size - they hydrolyze oligopeptides smaller than 30 amino acids. They belong to the serine-protease family, but differ from classical serine-proteases in size (80 kDa), structure (two domains) and regulation system (size selection of substrates). This group of enzymes is an important target for drug design as they are linked to amnesia, schizophrenia, type 2 diabetes, trypanosomiasis, periodontitis and cell growth. By comparing the structure of various members of the family we show that the most important features contributing to selectivity and efficiency are: (i) whether the interactions weaving the two domains together play a role in stabilizing the catalytic triad and thus their absence may provide for its deactivation: these oligopeptidases can screen their substrates by opening up, and (ii) whether the interaction-prone β-edge of the hydrolase domain is accessible and thus can guide a multimerization process that creates shielded entrance or intricate inner channels for the size-based selection of substrates. These cornerstones can be used to estimate the multimeric state and selection strategy of yet undetermined structures.
Collapse
Affiliation(s)
- Anna J Kiss-Szemán
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary.,MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modelling Research Group, Eotvos Lorand University, Budapest, Hungary
| |
Collapse
|
32
|
Xu R, Xu T, Yang M, Cao T, Liao S. A rapid access to aliphatic sulfonyl fluorides. Nat Commun 2019; 10:3752. [PMID: 31434898 PMCID: PMC6704106 DOI: 10.1038/s41467-019-11805-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023] Open
Abstract
The past few years have witnessed a fast-growing research interest on the study of sulfonyl fluorides as reactive probes in chemical biology and molecular pharmacology, which raises an urgent need for the development of effective synthetic methods to expand the toolkit. Herein, we present the invention of a facile and general approach for the synthesis of aliphatic sulfonyl fluorides via visible-light-mediated decarboxylative fluorosulfonylethylation. The method is based on abundant carboxylic acid feed stock, applicable to various alkyl carboxylic acids including primary, secondary, and tertiary acids, and is also suitable for the modification of natural products like amino acids, peptides, as well as drugs, forging a rapid, metal-free approach to build sulfonyl fluoride compound libraries of considerable structural diversity. Further diversification of the SO2F-containing products is also demonstrated, which allows for access to a range of pharmaceutically important motifs such as sultam, sulfonate, and sulfonamide. Sulfonyl fluorides are important probes in chemical biology and molecular pharmacology. Here, the authors report a mild visible light-mediated decarboxylative fluorosulfonylethylation for the synthesis of aliphatic sulfonyl fluorides from a wide range of carboxylic acids, including natural products and drug derivatives.
Collapse
Affiliation(s)
- Ruting Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Tianxiao Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Tianpeng Cao
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Saihu Liao
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
33
|
Ward DJ, Van de Langemheen H, Koehne E, Kreidenweiss A, Liskamp RMJ. Highly tunable thiosulfonates as a novel class of cysteine protease inhibitors with anti-parasitic activity against Schistosoma mansoni. Bioorg Med Chem 2019; 27:2857-2870. [PMID: 31126821 DOI: 10.1016/j.bmc.2019.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 11/18/2022]
Abstract
The development of a new class of cysteine protease inhibitors utilising the thiosulfonate moiety as an SH specific electrophile is described. This moiety has been introduced into suitable amino acid derived building blocks, which were incorporated into peptidic sequences leading to very potent i.e. sub micromolar inhibitors of the cysteine protease papain in the same range as the vinyl sulfone based inhibitor K11777. Therefore, their inhibitory effect on Schistosoma mansoni, a human blood parasite, that expresses several cysteine proteases, was evaluated. The homophenylalanine side chain containing compounds 27-30 and especially 36 showed promising activities compared with K11777 and warrant further investigations of these peptidic thiosulfonate inhibitors as new potential anti-parasitic compounds.
Collapse
Affiliation(s)
- D J Ward
- School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - H Van de Langemheen
- School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - E Koehne
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, D-72074 Tübingen, Germany
| | - A Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, D-72074 Tübingen, Germany.
| | - R M J Liskamp
- School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| |
Collapse
|
34
|
Shrivastava A, Srivastava S, Malik R, Alam MM, Shaqiquzamman M, Akhter M. Identification of novel small molecule non-peptidomimetic inhibitor for prolyl oligopeptidase through in silico and in vitro approaches. J Biomol Struct Dyn 2019; 38:1292-1305. [DOI: 10.1080/07391102.2019.1602078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Apeksha Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Shubham Srivastava
- Department of Pharmacy School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan, India
| | - Ruchi Malik
- Department of Pharmacy School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan, India
| | - M. Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - M. Shaqiquzamman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| |
Collapse
|
35
|
Martín‐Gago P, Olsen CA. Arylfluorosulfate-Based Electrophiles for Covalent Protein Labeling: A New Addition to the Arsenal. Angew Chem Int Ed Engl 2018; 58:957-966. [PMID: 30024079 PMCID: PMC6518939 DOI: 10.1002/anie.201806037] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/18/2018] [Indexed: 01/15/2023]
Abstract
Selective covalent modification of a targeted protein is a powerful tool in chemical biology and drug discovery, with applications ranging from identification and characterization of proteins and their functions to the development of targeted covalent inhibitors. Most covalent ligands contain an affinity motif and an electrophilic warhead that reacts with a nucleophilic residue of the targeted protein. Because the electrophilic warhead is prone to react and modify off‐target nucleophiles, its reactivity should be balanced carefully to maximize target selectivity. Arylfluorosulfates have recently emerged as latent electrophiles for selective labeling of context‐specific tyrosine and lysine residues in protein pockets. Here, we review the recent but intense introduction of arylfluorosulfates into the arsenal of available warheads for selective covalent modification of proteins. We highlight the untapped potential of this functional group for use in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Pablo Martín‐Gago
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
36
|
Mangoni AA, Tuccinardi T, Collina S, Vanden Eynde JJ, Muñoz-Torrero D, Karaman R, Siciliano C, de Sousa ME, Prokai-Tatrai K, Rautio J, Guillou C, Gütschow M, Galdiero S, Liu H, Agrofoglio LA, Sabatier JM, Hulme C, Kokotos G, You Q, Gomes PAC. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-3. Molecules 2018; 23:E1596. [PMID: 29966350 PMCID: PMC6099979 DOI: 10.3390/molecules23071596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Jean Jacques Vanden Eynde
- Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium.
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Rafik Karaman
- Pharmaceutical & Medicinal Chemistry Department, Faculty of Pharmacy, Al-Quds University, POB 20002 Jerusalem, Palestine.
- Department of Sciences, University of Basilicata, Viadell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Maria Emília de Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências, Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal.
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, and the Institute for Healthy Aging, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Catherine Guillou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université de Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53115 Bonn, Germany.
| | - Stefania Galdiero
- Department of Pharmacy, CIRPEB-University of Naples "Federico II", Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Luigi A Agrofoglio
- ICOA UMR CNRS 6005, Universite d'Orleans, Rue de Chartres, 45067 Orleans CEDEX 2, France.
| | - Jean-Marc Sabatier
- Laboratory INSERM UMR 1097, Aix-Marseille University, 163, Parc Scientifique et Technologique de Luminy, Avenue de Luminy, Bâtiment TPR2, Case 939, Marseille 13288, France.
| | - Christopher Hulme
- Department of Pharmacology and Toxicology, and Department of Chemistry and Biochemistry, College of Pharmacy, The University of Arizona, Biological Sciences West Room 351, 1041 East Lowell Street, Tucson, AZ 85721, USA.
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Paula A C Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| |
Collapse
|