1
|
Zhao Y, Li W, Xu J, Bao L, Wu K, Shan R, Hu X, Fu Y, Zhao C. Endogenous retroviruses modulate the susceptibility of mice to Staphylococcus aureus-induced mastitis by activating cGAS-STING signaling. Int Immunopharmacol 2024; 142:113171. [PMID: 39312862 DOI: 10.1016/j.intimp.2024.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Recently studies showed that cow mastitis seriously affected the economic benefit of dairy industry and pathogen infection including S. aureus is the main cause of mastitis. However, there is still a lack of safe and effective treatment for S. aureus-induced mastitis due to its complex pathogenesis. Endogenous retroviruses (ERVs) have long been symbiotic with mammals, and most ERVs still have the ability to produces complementary DNA (cDNA) by reverse transcription, whose induction by commensal or pathogens can regulate host immunity and inflammatory responses through the cGAS-STING pathway. However, whether and how ERVs participate in the pathogenesis of S. aureus-induced mastitis still unclear. In this study, we found that S. aureus treatment increased the levels of ERVs and IFN-β. Inhibition the transcription of ERVs by emtricitabine alleviated S. aureus-induced mammary injury, reduced mammary bacterial burden, and inhibited the production of mammary proinflammatory factors including TNF-α, IL-1β and MPO activity. Moreover, inhibition of ERVs restored the function of blood-milk barrier caused by S. aureus. Next, we showed that S. aureus infection activated mammary cGAS-STING signaling pathway, which was mediated by ERVs, as evidenced by emtricitabine inhibited S. aureus-induced activation of the cGAS-STING pathway. Interestingly, inhibition of cGAS-STING by Ru.521 and H151 respectively, significantly alleviated S. aureus-induced mammary injury and inflammatory responses, which was associated with the inhibition of NF-κB and NLRP3 signaling pathways. In conclusion, our study revealed that ERVs regulate the development of S. aureus-induced mastitis in mice through NF-κB- and NLRP3-mediated inflammatory responses via the activation of cGAS-STING pathway, suggesting that targeting ERVs-cGAS-STING axis may be a potential approach for the treatment of S. aureus-induced mastitis.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Ruping Shan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China.
| |
Collapse
|
2
|
Phan J, Chen B, Zhao Z, Allies G, Iannaccone A, Paul A, Cansiz F, Spina A, Leven AS, Gellhaus A, Schadendorf D, Kimmig R, Mettlen M, Tasdogan A, Morrison SJ. Retrotransposons are co-opted to activate hematopoietic stem cells and erythropoiesis. Science 2024; 386:eado6836. [PMID: 39446896 PMCID: PMC11709122 DOI: 10.1126/science.ado6836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024]
Abstract
Hematopoietic stem cells (HSCs) and erythropoiesis are activated during pregnancy and after bleeding by the derepression of retrotransposons, including endogenous retroviruses and long interspersed nuclear elements. Retrotransposon transcription activates the innate immune sensors cyclic guanosine 3',5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and stimulator of interferon (IFN) genes (STING), which induce IFN and IFN-regulated genes in HSCs, increasing HSC division and erythropoiesis. Inhibition of reverse transcriptase or deficiency for cGAS or STING had little or no effect on hematopoiesis in nonpregnant mice but depleted HSCs and erythroid progenitors in pregnant mice, reducing red blood cell counts. Retrotransposons and IFN-regulated genes were also induced in mouse HSCs after serial bleeding and, in human HSCs, during pregnancy. Reverse transcriptase inhibitor use was associated with anemia in pregnant but not in nonpregnant people, suggesting conservation of these mechanisms from mice to humans.
Collapse
Affiliation(s)
- Julia Phan
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Brandon Chen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Animesh Paul
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Feyza Cansiz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alberto Spina
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Anna-Sophia Leven
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center; Dallas, Texas 75235-9039
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| |
Collapse
|
3
|
Feng S, Marhon SA, Sokolowski DJ, D'Costa A, Soares F, Mehdipour P, Ishak C, Loo Yau H, Ettayebi I, Patel PS, Chen R, Liu J, Zuzarte PC, Ho KC, Ho B, Ning S, Huang A, Arrowsmith CH, Wilson MD, Simpson JT, De Carvalho DD. Inhibiting EZH2 targets atypical teratoid rhabdoid tumor by triggering viral mimicry via both RNA and DNA sensing pathways. Nat Commun 2024; 15:9321. [PMID: 39472584 PMCID: PMC11522499 DOI: 10.1038/s41467-024-53515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/12/2024] [Indexed: 11/02/2024] Open
Abstract
Inactivating mutations in SMARCB1 confer an oncogenic dependency on EZH2 in atypical teratoid rhabdoid tumors (ATRTs), but the underlying mechanism has not been fully elucidated. We found that the sensitivity of ATRTs to EZH2 inhibition (EZH2i) is associated with the viral mimicry response. Unlike other epigenetic therapies targeting transcriptional repressors, EZH2i-induced viral mimicry is not triggered by cryptic transcription of endogenous retroelements, but rather mediated by increased expression of genes enriched for intronic inverted-repeat Alu (IR-Alu) elements. Interestingly, interferon-stimulated genes (ISGs) are highly enriched for dsRNA-forming intronic IR-Alu elements, suggesting a feedforward loop whereby these activated ISGs may reinforce dsRNA formation and viral mimicry. EZH2i also upregulates the expression of full-length LINE-1s, leading to genomic instability and cGAS/STING signaling in a process dependent on reverse transcriptase activity. Co-depletion of dsRNA sensing and cytoplasmic DNA sensing completely rescues the viral mimicry response to EZH2i in SMARCB1-deficient tumors.
Collapse
Affiliation(s)
- Shengrui Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dustin J Sokolowski
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Alister D'Costa
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Charles Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Helen Loo Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ilias Ettayebi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Parasvi S Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Raymond Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jiming Liu
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | - King Ching Ho
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Ben Ho
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shiyao Ning
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Annie Huang
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Jared T Simpson
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Saeliw T, Kanlayaprasit S, Thongkorn S, Songsritaya K, Sanannam B, Jindatip D, Hu VW, Sarachana T. Investigation of chimeric transcripts derived from LINE-1 and Alu retrotransposons in cerebellar tissues of individuals with autism spectrum disorder (ASD). Sci Rep 2024; 14:21889. [PMID: 39300110 DOI: 10.1038/s41598-024-72334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
LINE-1 and Alu retrotransposons are components of the human genome and have been implicated in many human diseases. These elements can influence human transcriptome plasticity in various mechanisms. Chimeric transcripts derived from LINE-1 and Alu can also impact the human transcriptome, such as exonization and post-transcriptional modification. However, its specific role in ASD neuropathology remains unclear, particularly in the cerebellum tissues. We performed RNA-sequencing of post-mortem cerebellum tissues from ASD and unaffected individuals for transposable elements profiling and chimeric transcript identification. The majority of free transcripts of transposable elements were not changed in the cerebellum tissues of ASD compared with unaffected individuals. Nevertheless, we observed that chimeric transcripts derived from LINE-1 and Alu were embedded in the transcripts of differentially expressed genes in the cerebellum of ASD, and these genes were related to developments and abnormalities of the cerebellum. In addition, the expression levels of these genes were correlated with the significantly decreased thickness of the molecular layer in the cerebellum of ASD. We also found that global methylation and expression of LINE-1 and Alu elements were not changed in ASD, but observed in the ASD sub-phenotypes. Our findings showed associations between transposable elements and cerebellar abnormalities in ASD, particularly in distinct phenotypic subgroups. Further investigations using appropriate models are warranted to elucidate the structural and functional implications of LINE-1 and Alu elements in ASD neuropathology.
Collapse
Affiliation(s)
- Thanit Saeliw
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Songphon Kanlayaprasit
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surangrat Thongkorn
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bumpenporn Sanannam
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Depicha Jindatip
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Tewarit Sarachana
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Borgognone A, Casadellà M, Martínez de Lagrán M, Paredes R, Clotet B, Dierssen M, Elizalde-Torrent A. Lamivudine modulates the expression of neurological impairment-related genes and LINE-1 retrotransposons in brain tissues of a Down syndrome mouse model. Front Aging Neurosci 2024; 16:1386944. [PMID: 39100749 PMCID: PMC11294114 DOI: 10.3389/fnagi.2024.1386944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Elevated activity of retrotransposons is increasingly recognized to be implicated in a wide range of neurodegenerative and neurodevelopmental diseases, including Down syndrome (DS), which is the most common chromosomal condition causing intellectual disability globally. Previous research by our group has revealed that treatment with lamivudine, a reverse transcriptase inhibitor, improved neurobehavioral phenotypes and completely rescued hippocampal-dependent recognition memory in a DS mouse model, Ts65Dn. We hypothesized that retrotransposition rates would increase in the Ts65Dn mouse model, and lamivudine could block retrotransposons. We analyzed the differentially expressed long interspersed element-1 (LINE-1 or L1) mapping on MMU16 and 17, and showed for the first time that retrotransposition could be associated with Ts65Dn's pathology, as misregulation of L1 was found in brain tissues associated with trisomy. In the cerebral cortex, 6 out of 26 upregulated L1s in trisomic treated mice were located in the telomeric region of MMU16 near Ttc3, Kcnj6, and Dscam genes. In the hippocampus, one upregulated L1 element in trisomic treated mice was located near the Fgd4 gene on MMU16. Moreover, two downregulated L1s rescued after treatment with lamivudine were located in the intronic region of Nrxn1 (MMU17) and Snhg14 (MMU7), implicated in a variety of neurodegenerative disorders. To gain further insight into the mechanism of this improvement, we here analyzed the gene expression profile in the hippocampus and cerebral cortex of trisomic mice treated and no-treated with lamivudine compared to their wild-type littermates. We found that treatment with lamivudine rescued the expression of 24% of trisomic genes in the cortex (located on mouse chromosome (MMU) 16 and 17) and 15% in the hippocampus (located in the human chromosome 21 orthologous regions), with important DS candidate genes such as App and Ets2, rescued in both regions.
Collapse
Affiliation(s)
| | | | - María Martínez de Lagrán
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Roger Paredes
- IrsiCaixa, Badalona, Spain
- Department of Infeccious Diseases and Immunity, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Fundació Lluita contra les Infeccions, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa, Badalona, Spain
- Department of Infeccious Diseases and Immunity, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Fundació Lluita contra les Infeccions, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | | |
Collapse
|
7
|
Bergin CJ, Mendes da Silva A, Benoit YD. Where to Draw the LINE-Are Retrotransposable Elements Here to Stay? Cancers (Basel) 2023; 15:4119. [PMID: 37627147 PMCID: PMC10452504 DOI: 10.3390/cancers15164119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The frequency of somatic retrotranspositions of Long Interspersed Nuclear Elements 1 (LINE1) over a lifetime in healthy colonic epithelium and colorectal tumors has recently been reported. Indicative of a cell type-specific effect, LINE1 sequences in colonic epithelium showed lower levels of DNA methylation compared to other cell types examined in the study. Consistent with a role for DNA methylation in transposon silencing, the decreases in DNA methylation observed at LINE1 elements in colonic epithelium were accompanied by increases in LINE1 mRNA levels. In human primary colorectal tumors, LINE1 retrotransposition frequency was tenfold higher than in normal colonic tissues, with insertions potentially altering genomic stability and cellular functions. Here, we discuss the discoveries made by Nam and colleagues, emphasizing the intestinal-specific methylation signature regulating the LINE1 lifecycle and how this new information could shape future drug discovery endeavors against colorectal cancer.
Collapse
Affiliation(s)
- Christopher J. Bergin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (C.J.B.); (A.M.d.S.)
| | - Amanda Mendes da Silva
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (C.J.B.); (A.M.d.S.)
| | - Yannick D. Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (C.J.B.); (A.M.d.S.)
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Zhang C, Raveney B, Takahashi F, Yeh TW, Hohjoh H, Yamamura T, Oki S. Pathogenic Microglia Orchestrate Neurotoxic Properties of Eomes-Expressing Helper T Cells. Cells 2023; 12:cells12060868. [PMID: 36980209 PMCID: PMC10047905 DOI: 10.3390/cells12060868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In addition to disease-associated microglia (DAM), microglia with MHC-II and/or IFN-I signatures may form additional pathogenic subsets that are relevant to neurodegeneration. However, the significance of such MHC-II and IFN-I signatures remains elusive. We demonstrate here that these microglial subsets play intrinsic roles in orchestrating neurotoxic properties of neurotoxic Eomes+ Th cells under the neurodegeneration-associated phase of experimental autoimmune encephalomyelitis (EAE) that corresponds to progressive multiple sclerosis (MS). Microglia acquire IFN-signature after sensing ectopically expressed long interspersed nuclear element-1 (L1) gene. Furthermore, ORF1, an L1-encoded protein aberrantly expressed in the diseased central nervous system (CNS), stimulated Eomes+ Th cells after Trem2-dependent ingestion and presentation in MHC-II context by microglia. Interestingly, administration of an L1 inhibitor significantly ameliorated neurodegenerative symptoms of EAE concomitant with reduced accumulation of Eomes+ Th cells in the CNS. Collectively, our data highlight a critical contribution of new microglia subsets as a neuroinflammatory hub in immune-mediated neurodegeneration.
Collapse
Affiliation(s)
- Chenyang Zhang
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Ben Raveney
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Fumio Takahashi
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Tzu-wen Yeh
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
- Correspondence: (T.Y.); (S.O.); Tel.: +81-42-341-2711 (T.Y. & S.O.)
| | - Shinji Oki
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
- Correspondence: (T.Y.); (S.O.); Tel.: +81-42-341-2711 (T.Y. & S.O.)
| |
Collapse
|
9
|
Gerdes P, Lim SM, Ewing AD, Larcombe MR, Chan D, Sanchez-Luque FJ, Walker L, Carleton AL, James C, Knaupp AS, Carreira PE, Nefzger CM, Lister R, Richardson SR, Polo JM, Faulkner GJ. Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells. Nat Commun 2022; 13:7470. [PMID: 36463236 PMCID: PMC9719517 DOI: 10.1038/s41467-022-35180-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can in principle differentiate into any cell of the body, and have revolutionized biomedical research and regenerative medicine. Unlike their human counterparts, mouse iPSCs (miPSCs) are reported to silence transposable elements and prevent transposable element-mediated mutagenesis. Here we apply short-read or Oxford Nanopore Technologies long-read genome sequencing to 38 bulk miPSC lines reprogrammed from 10 parental cell types, and 18 single-cell miPSC clones. While single nucleotide variants and structural variants restricted to miPSCs are rare, we find 83 de novo transposable element insertions, including examples intronic to Brca1 and Dmd. LINE-1 retrotransposons are profoundly hypomethylated in miPSCs, beyond other transposable elements and the genome overall, and harbor alternative protein-coding gene promoters. We show that treatment with the LINE-1 inhibitor lamivudine does not hinder reprogramming and efficiently blocks endogenous retrotransposition, as detected by long-read genome sequencing. These experiments reveal the complete spectrum and potential significance of mutations acquired by miPSCs.
Collapse
Affiliation(s)
- Patricia Gerdes
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Sue Mei Lim
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Adam D. Ewing
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Michael R. Larcombe
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Dorothy Chan
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Francisco J. Sanchez-Luque
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.418805.00000 0004 0500 8423GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS, Granada, 18016 Spain
| | - Lucinda Walker
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Alexander L. Carleton
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Cini James
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Anja S. Knaupp
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Patricia E. Carreira
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Christian M. Nefzger
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Ryan Lister
- grid.1012.20000 0004 1936 7910Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009 Australia ,grid.431595.f0000 0004 0469 0045Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia
| | - Sandra R. Richardson
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1010.00000 0004 1936 7304Adelaide Centre for Epigenetics and The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Geoffrey J. Faulkner
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
10
|
Kou Y, Wang S, Ma Y, Zhang N, Zhang Z, Liu Q, Mao Y, Zhou R, Yi D, Ma L, Zhang Y, Li Q, Wang J, Wang J, Zhou X, He C, Ding J, Cen S, Li X. A High Throughput Cell-Based Screen Assay for LINE-1 ORF1p Expression Inhibitors Using the In-Cell Western Technique. Front Pharmacol 2022; 13:881938. [PMID: 35685648 PMCID: PMC9171067 DOI: 10.3389/fphar.2022.881938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Long interspersed nuclear element 1 (LINE-1) is a dominant autonomous retrotransposon in human genomes which plays a role in affecting the structure and function of somatic genomes, resulting in human disorders including genetic disease and cancer. LINE-1 encoded ORF1p protein which possesses RNA-binding and nucleic acid chaperone activity, and interacts with LINE-1 RNA to form a ribonucleoprotein particle (RNP). ORF1p can be detected in many kinds of tumors and its overexpression has been regarded as a hallmark of histologically aggressive cancers. In this study, we developed an In-Cell Western (ICW) assay in T47D cells to screen the compounds which can decrease the expression of ORF1p. Using this assay, we screened 1,947 compounds from the natural products library of Target Mol and Selleckchem, among which three compounds, Hydroxyprogesterone, 2,2':5′,2″-Terthiophene and Ethynyl estradiol displayed potency in diminishing LINE-1 ORF1p expression level. Further mechanistic studies indicated the compounds act by affecting LINE-1 RNA transcription. Notably, we demonstrated that the compounds have an inhibitory effect on the proliferation of several lung and breast cancer cell lines. Taken together, we established a high throughput screening system for ORF1p expression inhibitors and the identified compounds provide some clues to the development of a novel anti-tumor therapeutic strategy by targeting ORF1p.
Collapse
Affiliation(s)
- Yanni Kou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shujie Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjie Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixiong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Mao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhui Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Beijing, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiaoyu Li, ; Shan Cen, ; Jiwei Ding,
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiaoyu Li, ; Shan Cen, ; Jiwei Ding,
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiaoyu Li, ; Shan Cen, ; Jiwei Ding,
| |
Collapse
|
11
|
Ruiz FX, Hoang A, Dilmore CR, DeStefano JJ, Arnold E. Structural basis of HIV inhibition by L-nucleosides: opportunities for drug development and repurposing. Drug Discov Today 2022; 27:1832-1846. [PMID: 35218925 DOI: 10.1016/j.drudis.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Infection with HIV can cripple the immune system and lead to AIDS. Hepatitis B virus (HBV) is a hepadnavirus that causes human liver diseases. Both pathogens are major public health problems affecting millions of people worldwide. The polymerases from both viruses are the most common drug target for viral inhibition, sharing common architecture at their active sites. The L-nucleoside drugs emtricitabine and lamivudine are widely used HIV reverse transcriptase (RT) and HBV polymerase (Pol) inhibitors. Nevertheless, structural details of their binding to RT(Pol)/nucleic acid remained unknown until recently. Here, we discuss the implications of these structures, alongside related complexes with L-dNTPs, for the development of novel L-nucleos(t)ide drugs, and prospects for repurposing them.
Collapse
Affiliation(s)
- Francesc X Ruiz
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Anthony Hoang
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher R Dilmore
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
13
|
Scully EP, Bryson BD. Unlocking the complexity of HIV and Mycobacterium tuberculosis coinfection. J Clin Invest 2021; 131:154407. [PMID: 34779416 DOI: 10.1172/jci154407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
HIV and Mycobacterium tuberculosis (M. tuberculosis) coinfection increases the risk of active tuberculosis (aTB), but how HIV infection and medications contribute to drive risk remains unknown. In this issue of the JCI, Correa-Macedo and Fava et al. investigated alveolar macrophages (AMs) from people living with HIV (PLWH). To mimic the earliest event in tuberculosis (TB), the authors isolated AMs from broncheoalveolar lavage (BAL) of PLWH, healthy individuals, and healthy individuals taking antitretroviral therapy (ART) as preexposure prophylaxis (PrEP) to prevent HIV acquisition. These AMs were exposed to M. tuberculosis and epigenetic configuration, transcriptional responses, and cytokine production were assessed. M. tuberculosis-stimulated AMs from PLWH and from healthy individuals on PrEP showed blunted responses compared with healthy controls. While HIV infection is the major risk factor for TB, these findings suggest that ART may modulate AM responses and potentially contribute to residual risk of aTB in fully treated HIV.
Collapse
Affiliation(s)
- Eileen P Scully
- Johns Hopkins University, Department of Medicine, Division of Infectious Diseases, Baltimore, Maryland, USA
| | - Bryan D Bryson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Zidovudine inhibits telomere elongation, increases the transposable element LINE-1 copy number and compromises mouse embryo development. Mol Biol Rep 2021; 48:7767-7773. [PMID: 34669125 DOI: 10.1007/s11033-021-06788-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Millions of pregnant, HIV-infected women take reverse transcriptase inhibitors, such as zidovudine (azidothymidine or AZT), during pregnancy. Reverse transcription plays important roles in early development, including regulation of telomere length (TL) and activity of transposable elements (TE). So we evaluated the effects of AZT on embryo development, TL, and copy number of an active TE, Long Interspersed Nuclear Element 1 (LINE-1), during early development in a murine model. DESIGN Experimental study. METHODS In vivo fertilized mouse zygotes from B6C3F1/B6D2F1 mice were cultured for 48 h in KSOM with no AZT (n = 45), AZT 1 μM (n = 46) or AZT 10 μM (n = 48). TL was measured by single-cell quantitative PCR (SC-pqPCR) and LINE-1 copy number by qPCR. The percentage of morulas at 48 h, TL and LINE-1 copy number were compared among groups. RESULTS Exposure to AZT 1 μM or 10 μM significantly impairs early embryo development. TL elongates from oocyte to control embryos. TL in AZT 1 μM embryos is shorter than in control embryos. LINE-1 copy number is significantly lower in oocytes than control embryos. AZT 1 μM increases LINE-1 copy number compared to oocytes controls, and AZT 10 μM embryos. CONCLUSION AZT at concentrations approaching those used to prevent perinatal HIV transmission compromises mouse embryo development, prevents telomere elongation and increases LINE-1 copy number after 48 h treatment. The impact of these effects on the trajectory of aging of children exposed to AZT early during development deserves further investigation.
Collapse
|
15
|
Zhao X, Zhao Y, Du J, Gao P, Zhao K. The Interplay Among HIV, LINE-1, and the Interferon Signaling System. Front Immunol 2021; 12:732775. [PMID: 34566998 PMCID: PMC8459832 DOI: 10.3389/fimmu.2021.732775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency viruses (HIVs) are retroviruses that replicate effectively in human CD4+ cells and cause the development of acquired immune deficiency syndrome (AIDS). On the other hand, type 1 long interspersed elements (LINE-1s or L1s) are the only active retroelements that can replicate autonomously in human cells. They, along with other active yet nonautonomous retroelements, have been associated with autoimmune diseases. There are many similarities between HIV and LINE-1. Being derived (or evolved) from ancient retroviruses, both HIV and LINE-1 replicate through a process termed reverse transcription, activate endogenous DNA and RNA sensors, trigger innate immune activation to promote interferon (IFN) expression, and are suppressed by protein products of interferon-stimulated genes (ISGs). However, these similarities make it difficult to decipher or even speculate the relationship between HIV and LINE-1, especially regarding the involvement of the IFN signaling system. In this review, we summarize previous findings on the relationships between HIV and innate immune activation as well as between LINE-1 and IFN upregulation. We also attempt to elucidate the interplay among HIV, LINE-1, and the IFN signaling system in hopes of guiding future research directions for viral suppression and immune regulation.
Collapse
Affiliation(s)
- Xu Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Yifei Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Lima-Junior DS, Krishnamurthy SR, Bouladoux N, Collins N, Han SJ, Chen EY, Constantinides MG, Link VM, Lim AI, Enamorado M, Cataisson C, Gil L, Rao I, Farley TK, Koroleva G, Attig J, Yuspa SH, Fischbach MA, Kassiotis G, Belkaid Y. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 2021; 184:3794-3811.e19. [PMID: 34166614 PMCID: PMC8381240 DOI: 10.1016/j.cell.2021.05.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.
Collapse
Affiliation(s)
- Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Y Chen
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael G Constantinides
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIH Center for Human Immunology, Bethesda, MD 20896, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christophe Cataisson
- In Vitro Pathogenesis Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis Gil
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Indira Rao
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taylor K Farley
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | | | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Stuart H Yuspa
- In Vitro Pathogenesis Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Gazquez-Gutierrez A, Witteveldt J, R Heras S, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA (NEW YORK, N.Y.) 2021; 27:rna.078721.121. [PMID: 33888553 PMCID: PMC8208052 DOI: 10.1261/rna.078721.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/17/2021] [Indexed: 05/15/2023]
Abstract
Around half of the genome in mammals is composed of transposable elements (TEs) such as DNA transposons and retrotransposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mutagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings, beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can misidentify TEs as invading viruses and trigger the major antiviral innate immune pathway, the type I interferon (IFN) response. This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, including cancer and senescence. Importantly, TEs may also play a causative role in the development of complex autoimmune diseases characterised by constitutive type I IFN activation. All these observations suggest the presence of strong but opposing forces driving the coevolution of TEs and antiviral defence. A better biological understanding of the TE replicative cycle as well as of the antiviral nucleic acid sensing mechanisms will provide insights into how these two biological processes interact and will help to design better strategies to treat human diseases characterised by aberrant TE expression and/or type I IFN activation.
Collapse
Affiliation(s)
| | - Jeroen Witteveldt
- University of Edinburgh - Institute of Immunology and Infection Research
| | - Sara R Heras
- GENYO. Centre for Genomics and Oncological Research, Pfizer University of Granada
| | - Sara Macias
- Institute of Immunology and Infection Research
| |
Collapse
|
18
|
Hepatitis C virus infection restricts human LINE-1 retrotransposition in hepatoma cells. PLoS Pathog 2021; 17:e1009496. [PMID: 33872335 PMCID: PMC8084336 DOI: 10.1371/journal.ppat.1009496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/29/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
LINE-1 (L1) retrotransposons are autonomous transposable elements that can affect gene expression and genome integrity. Potential consequences of exogenous viral infections for L1 activity have not been studied to date. Here, we report that hepatitis C virus (HCV) infection causes a significant increase of endogenous L1-encoded ORF1 protein (L1ORF1p) levels and translocation of L1ORF1p to HCV assembly sites at lipid droplets. HCV replication interferes with retrotransposition of engineered L1 reporter elements, which correlates with HCV RNA-induced formation of stress granules and can be partially rescued by knockdown of the stress granule protein G3BP1. Upon HCV infection, L1ORF1p localizes to stress granules, associates with HCV core in an RNA-dependent manner and translocates to lipid droplets. While HCV infection has a negative effect on L1 mobilization, L1ORF1p neither restricts nor promotes HCV infection. In summary, our data demonstrate that HCV infection causes an increase of endogenous L1 protein levels and that the observed restriction of retrotransposition of engineered L1 reporter elements is caused by sequestration of L1ORF1p in HCV-induced stress granules. Members of the Long Interspersed Nuclear Element 1 (LINE-1, L1) class of retrotransposons account for ~17% of the human genome and include ~100–150 intact L1 loci that are still functional. L1 mobilization is known to affect genomic integrity, thereby leading to disease-causing mutations, but little is known about the impact of exogenous viral infections on L1 and vice versa. While L1 retrotransposition is controlled by various mechanisms including CpG methylation, hypomethylation of L1 has been observed in hepatocellular carcinoma tissues of hepatitis C virus (HCV)-infected patients. Here, we demonstrate molecular interactions between HCV and L1 elements. HCV infection stably increases cellular levels of the L1-encoded ORF1 protein (L1ORF1p). HCV core and L1ORF1p interact in ribonucleoprotein complexes that traffic to lipid droplets. Despite its redistribution to HCV assembly sites, L1ORF1p is dispensable for HCV infection. In contrast, retrotransposition of engineered L1 reporter elements is restricted by HCV, correlating with an increased formation of L1ORF1p-containing cytoplasmic stress granules. Thus, our data provide first insights into the molecular interplay of endogenous transposable elements and exogenous viruses that might contribute to disease progression in vivo.
Collapse
|
19
|
The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition. Nat Commun 2020; 11:5712. [PMID: 33177501 PMCID: PMC7658363 DOI: 10.1038/s41467-020-19430-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Nearly half of the human genome is made of transposable elements (TEs) whose activity continues to impact its structure and function. Among them, Long INterspersed Element class 1 (LINE-1 or L1) elements are the only autonomously active TEs in humans. L1s are expressed and mobilized in different cancers, generating mutagenic insertions that could affect tumor malignancy. Tumor suppressor microRNAs are ∼22nt RNAs that post-transcriptionally regulate oncogene expression and are frequently downregulated in cancer. Here we explore whether they also influence L1 mobilization. We show that downregulation of let-7 correlates with accumulation of L1 insertions in human lung cancer. Furthermore, we demonstrate that let-7 binds to the L1 mRNA and impairs the translation of the second L1-encoded protein, ORF2p, reducing its mobilization. Overall, our data reveals that let-7, one of the most relevant microRNAs, maintains somatic genome integrity by restricting L1 retrotransposition. Human Long INterspersed Element class 1 (LINE-1) elements are expressed and mobilized in many types of cancer, contributing to malignancy. Here the authors show that the tumor suppressor microRNA let-7 targets the LINE-1 mRNA and reduces LINE-1 mobilization.
Collapse
|
20
|
Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK, Abrams JM. p53 directly represses human LINE1 transposons. Genes Dev 2020; 34:1439-1451. [PMID: 33060137 PMCID: PMC7608743 DOI: 10.1101/gad.343186.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.
Collapse
Affiliation(s)
- Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Candace J Caillet
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephanie K Royer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
21
|
Zhang X, Zhang R, Yu J. New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front Cell Dev Biol 2020; 8:657. [PMID: 32850797 PMCID: PMC7426637 DOI: 10.3389/fcell.2020.00657] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1) retrotransposition is a major hallmark of cancer accompanied by global chromosomal instability, genomic instability, and genetic heterogeneity and has become one indicator for the occurrence, development, and poor prognosis of many diseases. LINE-1 also modulates the immune system and affects the immune microenvironment in a variety of ways. Aberrant expression of LINE-1 retrotransposon can provide strong stimuli for an innate immune response, activate the immune system, and induce autoimmunity and inflammation. Therefore, inhibition the activity of LINE-1 has become a potential treatment strategy for various diseases. In this review, we discussed the components and regulatory mechanisms involved with LINE-1, its correlations with disease and immunity, and multiple inhibitors of LINE-1, providing a new understanding of LINE-1.
Collapse
Affiliation(s)
- Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
22
|
Goodier JL. Improved ThwaRTing of Genome Symbionts. Cell Chem Biol 2020; 26:1043-1045. [PMID: 31419415 DOI: 10.1016/j.chembiol.2019.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Cell Chemical Biology, Banuelos-Sanchez et al. (2019) present a comprehensive analysis of selective non-toxic inhibitors of reverse transcriptases encoded by endogenous retrotransposons. This work offers tools for the study of these retroelements, whose activity has been linked to cancer, neurological disorders, autoimmunity, and genomic instability.
Collapse
Affiliation(s)
- John L Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Bellisai C, Sciamanna I, Rovella P, Giovannini D, Baranzini M, Pugliese GM, Zeya Ansari MS, Milite C, Sinibaldi-Vallebona P, Cirilli R, Sbardella G, Pichierri P, Trisciuoglio D, Lavia P, Serafino A, Spadafora C. Reverse transcriptase inhibitors promote the remodelling of nuclear architecture and induce autophagy in prostate cancer cells. Cancer Lett 2020; 478:133-145. [PMID: 32112906 DOI: 10.1016/j.canlet.2020.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Emerging data indicate that the reverse transcriptase (RT) protein encoded by LINE-1 transposable elements is a promising cancer target. Nonnucleoside RT inhibitors, e.g. efavirenz (EFV) and SPV122.2, reduce proliferation and promote differentiation of cancer cells, concomitant with a global reprogramming of the transcription profile. Both inhibitors have therapeutic anticancer efficacy in animal models. Here we have sought to clarify the mechanisms of RT inhibitors in cancer cells. We report that exposure of PC3 metastatic prostate carcinoma cells to both RT inhibitors results in decreased proliferation, and concomitantly induces genome damage. This is associated with rearrangements of the nuclear architecture, particularly at peripheral chromatin, disruption of the nuclear lamina, and budding of micronuclei. These changes are reversible upon discontinuation of the RT-inhibitory treatment, with reconsititution of the lamina and resumption of the cancer cell original features. The use of pharmacological autophagy inhibitors proves that autophagy is largely responsible for the antiproliferative effect of RT inhibitors. These alterations are not induced in non-cancer cell lines exposed to RT inhibitors. These data provide novel insight in the molecular pathways targeted by RT inhibitors in cancer cells.
Collapse
Affiliation(s)
- Cristina Bellisai
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy; University of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Paola Rovella
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
| | - Daniela Giovannini
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy
| | - Mirko Baranzini
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy
| | - Giusj Monia Pugliese
- University of Rome "Tor Vergata", 00133, Rome, Italy; Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Mohammad Salik Zeya Ansari
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
| | - Ciro Milite
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Paola Sinibaldi-Vallebona
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy; University of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Gianluca Sbardella
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | | | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy
| | - Corrado Spadafora
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy.
| |
Collapse
|
24
|
Lou C, Goodier JL, Qiang R. A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reprod Biol Endocrinol 2020; 18:6. [PMID: 31964400 PMCID: PMC6971995 DOI: 10.1186/s12958-020-0564-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
LINE1 retrotransposons are mobile DNA elements that copy and paste themselves into new sites in the genome. To ensure their evolutionary success, heritable new LINE-1 insertions accumulate in cells that can transmit genetic information to the next generation (i.e., germ cells and embryonic stem cells). It is our hypothesis that LINE1 retrotransposons, insertional mutagens that affect expression of genes, may be causal agents of early miscarriage in humans. The cell has evolved various defenses restricting retrotransposition-caused mutation, but these are occasionally relaxed in certain somatic cell types, including those of the early embryo. We predict that reduced suppression of L1s in germ cells or early-stage embryos may lead to excessive genome mutation by retrotransposon insertion, or to the induction of an inflammatory response or apoptosis due to increased expression of L1-derived nucleic acids and proteins, and so disrupt gene function important for embryogenesis. If correct, a novel threat to normal human development is revealed, and reverse transcriptase therapy could be one future strategy for controlling this cause of embryonic damage in patients with recurrent miscarriages.
Collapse
Affiliation(s)
- Chao Lou
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| | - John L. Goodier
- 0000 0001 2171 9311grid.21107.35McKusick-Nathans Deartment of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Rong Qiang
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| |
Collapse
|
25
|
Spadafora C. Transgenerational epigenetic reprogramming of early embryos: a mechanistic model. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa009. [PMID: 32704385 PMCID: PMC7368376 DOI: 10.1093/eep/dvaa009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 05/10/2023]
Abstract
The notion that epigenetic information can be transmitted across generations is supported by mounting waves of data, but the underlying mechanisms remain elusive. Here, a model is proposed which combines different lines of experimental evidence. First, it has been shown that somatic tissues exposed to stressing stimuli release circulating RNA-containing extracellular vesicles; second, epididymal spermatozoa can take up, internalize and deliver the RNA-containing extracellular vesicles to oocytes at fertilization; third, early embryos can process RNA-based information. These elements constitute the building blocks upon which the model is built. The model proposes that a continuous stream of epigenetic information flows from parental somatic tissues to the developing embryos. The flow can cross the Weismann barrier, is mediated by circulating vesicles and epididymal spermatozoa, and has the potential to generate epigenetic traits that are then stably acquired in the offspring. In a broader perspective, it emerges that a natural 'assembly line' operates continuously, aiming at passing the parental epigenetic blueprint in growing embryos.
Collapse
Affiliation(s)
- Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council (CNR), 100 Via del Fosso del Cavaliere, 00133 Rome, Italy
- Correspondence address. Institute of Translational Pharmacology, National Research Council (CNR), 100 Via del Fosso del Cavaliere, 00133 Rome, Italy. Tel: +39 0649917536; Fax: +39 064457529; E-mail: ;
| |
Collapse
|
26
|
Banuelos-Sanchez G, Franco-Montalban F, Tamayo JA. NMR studies of pyrimidinic nucleosides derived from 2,3-dideoxy-d-ribose with inhibitory activity on LINE-1 mobility. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:118-125. [PMID: 31691341 DOI: 10.1002/mrc.4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Guillermo Banuelos-Sanchez
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Francisco Franco-Montalban
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Juan A Tamayo
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|