1
|
Rodolfi M, Valentoni A, Pretti L, Sanna M, Guidotti S, Marchioni I, Ganino T. From Hop to Beer: Influence of Different Organic Foliar Fertilisation Treatments on Hop Oil Profile and Derived Beers' Flavour. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091861. [PMID: 37176918 PMCID: PMC10180877 DOI: 10.3390/plants12091861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Foliar fertilisation is known to influence the physiological response of Humulus lupulus (hop plants), but its effect on the flavour profile of beer still has to be investigated. By comparing the effects of four fertilisation treatments, this study aims at determining whether different foliar fertilisation treatments have a significant impact on hop plants' aromatic quality and that of the beer produced. Hop cones harvested from each experimental treatment were brewed to obtain five single dry-hopped beers, which were subsequently analysed. Gas chromatography-mass spectrometry (GC-MS) and electronic nose (Cyranose 320) analyses were performed on the hop cones, while headspace solid-phase microextraction-gas chromatography-mass spectrometry HS-SPME-GC-MS, electronic nose and sensory analyses were carried out on the beers produced. The analyses not only allowed for a differentiation between the hops from the four fertilisation treatments and the control but also enabled a differentiation between the beers produced for their identification. Sensory evaluation revealed consumer preferences regarding the dry-hopped beers analysed, evidencing their distinctive features, including significant differences in both aroma and flavour.
Collapse
Affiliation(s)
| | | | - Luca Pretti
- Porto Conte Ricerche S.r.l., 07041 Alghero, Italy
| | | | - Simone Guidotti
- Lab Service Analytica S.r.l., Via Emilia, 51/c, 40011 Anzola dell'Emilia, Italy
| | - Ilaria Marchioni
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Tommaso Ganino
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- National Research Council, Institute of BioEconomy (IBE), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Llusià J, Asensio D, Sardans J, Filella I, Peguero G, Grau O, Ogaya R, Gargallo-Garriga A, Verryckt LT, Van Langenhove L, Brechet LM, Courtois E, Stahl C, Janssens IA, Peñuelas J. Contrasting nitrogen and phosphorus fertilization effects on soil terpene exchanges in a tropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149769. [PMID: 34464786 DOI: 10.1016/j.scitotenv.2021.149769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Production, emission, and absorption of biogenic volatile organic compounds (BVOCs) in ecosystem soils and associated impacts of nutrient availability are unclear; thus, predictions of effects of global change on source-sink dynamic under increased atmospheric N deposition and nutrition imbalances are limited. Here, we report the dynamics of soil BVOCs under field conditions from two undisturbed tropical rainforests from French Guiana. We analyzed effects of experimental soil applications of nitrogen (N), phosphorus (P), and N + P on soil BVOC exchanges (in particular of total terpenes, monoterpenes, and sesquiterpenes), to determine source and sink dynamics between seasons (dry and wet) and elevations (upper and lower elevations corresponding to top of the hills (30 m high) and bottom of the valley). We identified 45 soil terpenoids compounds emitted to the atmosphere, comprising 26 monoterpenes and 19 sesquiterpenes; of these, it was possible to identify 13 and 7 compounds, respectively. Under ambient conditions, soils acted as sinks of these BVOCs, with greatest soil uptake recorded for sesquiterpenes at upper elevations during the wet season (-282 μg m-2 h-1). Fertilization shifted soils from a sink to source, with greatest levels of terpene emissions recorded at upper elevations during the wet season, following the addition of N (monoterpenes: 406 μg m-2 h-1) and P (sesquiterpenes: 210 μg m-2 h-1). Total soil terpene emission rates were negatively correlated with total atmospheric terpene concentrations. These results indicate likely shifts in tropical soils from sink to source of atmospheric terpenes under projected increases in N deposition under global change, with potential impacts on regional-scale atmospheric chemistry balance and ecosystem function.
Collapse
Affiliation(s)
- Joan Llusià
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain.
| | - Dolores Asensio
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Jordi Sardans
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Iolanda Filella
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Guille Peguero
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Oriol Grau
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Romà Ogaya
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Albert Gargallo-Garriga
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Lore T Verryckt
- Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Leandro Van Langenhove
- Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laëtitia M Brechet
- INRAE, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université des Antilles, Université de Guyane, 97387 Kourou, French Guiana; Center of Excellence Global Change Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Elodie Courtois
- Laboratoire Ecologie, Evolution, interactions des systèmes amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300 Cayenne, French Guiana
| | - Clément Stahl
- INRAE, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université des Antilles, Université de Guyane, 97387 Kourou, French Guiana
| | - Ivan A Janssens
- Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Josep Peñuelas
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| |
Collapse
|
3
|
Malik TG, Gajbhiye T, Pandey SK. Some insights into composition and monoterpene emission rates from selected dominant tropical tree species of Central India: Plant‐specific seasonal variations. Ecol Res 2019. [DOI: 10.1111/1440-1703.12058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tanzil G. Malik
- Department of Botany Guru Ghasidas Central University Bilaspur Chhattisgarh India
| | - Triratnesh Gajbhiye
- Department of Botany Guru Ghasidas Central University Bilaspur Chhattisgarh India
| | - Sudhir K. Pandey
- Department of Botany Guru Ghasidas Central University Bilaspur Chhattisgarh India
| |
Collapse
|
4
|
Lin Y, Chen F, Lin S, Huang P, Akutse KS, Yu D, Gao Y. Imidacloprid Pesticide Regulates Gynaikothrips uzeli (Thysanoptera: Phlaeothripidae) Host Choice Behavior and Immunity Against Lecanicillium lecanii (Hypocreales: Clavicipitaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2069-2075. [PMID: 29992326 DOI: 10.1093/jee/toy209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 06/08/2023]
Abstract
We attempted to develop an efficient management strategy against gall thrips (Gynaikothrips uzeli Zimmermann (Thysanoptera: Phlaeothripidae)) via the combined application of a systemic insecticide (imidacloprid) and an entomopathogenic fungus (Lecanicillium lecanii Zimmerman (Hypocreales: Clavicipitaceae)). The attraction of G. uzeli to Ficus microcarpa volatiles after imidacloprid treatment was weaker than for untreated plants, which could be due to modulation of volatile metabolite profiles by imidacloprid. The toxicity of L. lecanii against nymph and adult thrips was much higher for those that fed on plants treated with a 50% lethal concentration (LC50) of imidacloprid than for the controls. Phenoloxidase (PO) activity was significantly inhibited in treated G. uzeli, while hemocyte abundances were not different in treated and healthy individuals. Thus, imidacloprid impacted the PO-related humoral immunity of G. uzeli, but not their cellular immunity. Overall, F. microcarpa treated with imidacloprid at LC50 concentrations exhibited volatile profiles that decreased the attraction of G. uzeli and also indirectly increased the pathogenicity of L. lecanni by inhibiting the humoral immunity of gall thrips. The results reported here suggest that combined application of imidacloprid and L. lecanii could be used as a new integrated control strategy against gall thrips.
Collapse
Affiliation(s)
- Yongwen Lin
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, P.R. China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P.R. China
| | - Feng Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, P.R. China
| | - Sheng Lin
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P.R. China
| | - Peng Huang
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, P.R. China
| | | | - Deyi Yu
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, P.R. China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
5
|
Nogués I, Muzzini V, Loreto F, Bustamante MA. Drought and soil amendment effects on monoterpene emission in rosemary plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:768-778. [PMID: 26335159 DOI: 10.1016/j.scitotenv.2015.08.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
The aim of this work was to study the changes during 15days in the monoterpene emission rates of the Mediterranean shrub rosemary (Rosmarinus officinalis L.), in response to increasing drought stress and fertilisation using two different composts derived from livestock anaerobic digestates (cattle and pig slurry). Drought stress considerably reduced photosynthetic rates, stomatal conductance and isoprenoid emissions and also induced a change in blend composition. In the drought stressed rosemary plants, a positive relationship of non-oxygenated monoterpene emissions and a negative relationship of oxygenated monoterpene with photosynthesis were observed, indicating a different control mechanism over the emissions of the two types of isoprenoids. The emission of non-oxygenated monoterpenes seemed to depend more on photosynthesis and "de novo" synthesis, whereas emission of oxygenate monoterpenes was more dependent on volatilisation from storage, mainly driven by cumulative temperatures. In the short term, the addition of composted organic materials to the soil did not induce a significant effect on isoprenoid emission rates in the rosemary plants. However, the effect of the interaction between fertilisation and seasonality on isoprenoid emission rates was influenced by the amendment origin. Also, we emphasized changes in potential isoprenoid emission factors throughout the experiment, probably indicating changes in the leaf developmental stage.
Collapse
Affiliation(s)
- I Nogués
- Institute of Agro-Environmental and Forest Biology, National Research Council of Italy, Via Salaria km 29,300, 00015 Monterotondo Scalo, Rome, Italy.
| | - V Muzzini
- Institute of Agro-Environmental and Forest Biology, National Research Council of Italy, Via Salaria km 29,300, 00015 Monterotondo Scalo, Rome, Italy
| | - F Loreto
- National Research Council, Department of Biology, Agriculture and Food Sciences (DISBA-CNR), Piazzale Aldo Moro 7, 00185 Rome, Italy
| | - M A Bustamante
- Department of Agrochemistry and Environment, Miguel Hernandez University, EPS-Orihuela, ctra. Beniel km 3.2, 03312 Orihuela, Spain
| |
Collapse
|
6
|
Rosenkranz M, Pugh TAM, Schnitzler JP, Arneth A. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars. PLANT, CELL & ENVIRONMENT 2015; 38:1896-1912. [PMID: 25255900 DOI: 10.1111/pce.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Thomas A M Pugh
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Almut Arneth
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
7
|
Genard-Zielinski AC, Ormeño E, Boissard C, Fernandez C. Isoprene emissions from downy oak under water limitation during an entire growing season: what cost for growth? PLoS One 2014; 9:e112418. [PMID: 25383554 PMCID: PMC4226567 DOI: 10.1371/journal.pone.0112418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/15/2014] [Indexed: 12/02/2022] Open
Abstract
Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North Mediterranean areas are also discussed.
Collapse
Affiliation(s)
- Anne-Cyrielle Genard-Zielinski
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, France
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), Unité Mixte CEA-CNRS-UVSQ (Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Versailles Saint-Quentin-en-Yvelines), Gif-sur-Yvette, France
| | - Elena Ormeño
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, France
| | - Christophe Boissard
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), Unité Mixte CEA-CNRS-UVSQ (Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Versailles Saint-Quentin-en-Yvelines), Gif-sur-Yvette, France
| | - Catherine Fernandez
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, France
| |
Collapse
|
8
|
Ritala A, Dong L, Imseng N, Seppänen-Laakso T, Vasilev N, van der Krol S, Rischer H, Maaheimo H, Virkki A, Brändli J, Schillberg S, Eibl R, Bouwmeester H, Oksman-Caldentey KM. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. J Biotechnol 2014; 176:20-8. [PMID: 24530945 DOI: 10.1016/j.jbiotec.2014.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 11/17/2022]
Abstract
The terpenoid indole alkaloids are one of the major classes of plant-derived natural products and are well known for their many applications in the pharmaceutical, fragrance and cosmetics industries. Hairy root cultures are useful for the production of plant secondary metabolites because of their genetic and biochemical stability and their rapid growth in hormone-free media. Tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots, which do not produce geraniol naturally, were engineered to express a plastid-targeted geraniol synthase gene originally isolated from Valeriana officinalis L. (VoGES). A SPME-GC-MS screening tool was developed for the rapid evaluation of production clones. The GC-MS analysis revealed that the free geraniol content in 20 hairy root clones expressing VoGES was an average of 13.7 μg/g dry weight (DW) and a maximum of 31.3 μg/g DW. More detailed metabolic analysis revealed that geraniol derivatives were present in six major glycoside forms, namely the hexose and/or pentose conjugates of geraniol and hydroxygeraniol, resulting in total geraniol levels of up to 204.3 μg/g DW following deglycosylation. A benchtop-scale process was developed in a 20-L wave-mixed bioreactor eventually yielding hundreds of grams of biomass and milligram quantities of geraniol per cultivation bag.
Collapse
Affiliation(s)
- Anneli Ritala
- VTT Technical Research Centre of Finland, P.O. Box 1000, Tietotie 2, 02044-VTT Espoo, Finland.
| | - Lemeng Dong
- Laboratory of Plant Physiology, Wageningen UR, P.O. Box 658, 6700 AR Wageningen, The Netherlands
| | - Nicole Imseng
- Zurich University of Applied Sciences, Institute of Biotechnology, Biochemical Engineering and Cell Cultivation Technique, Campus Grüental, Wädenswil, Switzerland
| | | | - Nikolay Vasilev
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Sander van der Krol
- Laboratory of Plant Physiology, Wageningen UR, P.O. Box 658, 6700 AR Wageningen, The Netherlands
| | - Heiko Rischer
- VTT Technical Research Centre of Finland, P.O. Box 1000, Tietotie 2, 02044-VTT Espoo, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland, P.O. Box 1000, Tietotie 2, 02044-VTT Espoo, Finland
| | - Arho Virkki
- VTT Technical Research Centre of Finland, P.O. Box 1000, Tietotie 2, 02044-VTT Espoo, Finland
| | - Johanna Brändli
- Zurich University of Applied Sciences, Institute of Biotechnology, Biochemical Engineering and Cell Cultivation Technique, Campus Grüental, Wädenswil, Switzerland
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Regine Eibl
- Zurich University of Applied Sciences, Institute of Biotechnology, Biochemical Engineering and Cell Cultivation Technique, Campus Grüental, Wädenswil, Switzerland
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen UR, P.O. Box 658, 6700 AR Wageningen, The Netherlands
| | | |
Collapse
|
9
|
Lavoir AV, Ormeño E, Pasqualini V, Ferrat L, Greff S, Lecareux C, Vila B, Mévy JP, Fernandez C. Does Prescribed Burning Affect Leaf Secondary Metabolites in Pine Stands? J Chem Ecol 2013; 39:398-412. [PMID: 23475221 DOI: 10.1007/s10886-013-0256-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/02/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
10
|
Ormeño E, Fernandez C. Effect of Soil Nutrient on Production and Diversity of Volatile Terpenoids from Plants. CURRENT BIOACTIVE COMPOUNDS 2012; 8:71-79. [PMID: 23097639 PMCID: PMC3474957 DOI: 10.2174/157340712799828188] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/19/2011] [Accepted: 12/30/2011] [Indexed: 11/28/2022]
Abstract
Terpenoid production (emission and storage) within foliage plays direct and indirect defensive and protective functions for the plant, mediates complex trophic relationships and controls the oxidation capacity of the atmosphere. Both biotic and abiotic conditions alter terpenoid production, with herbivory, light and temperature effects being reasonably well understood. In this manuscript, the state of the science about nutrient effect on terpenoid production is reviewed. The focus is on isoprene emissions and mono- and sesquiterpenoid emissions and concentrations according to fertilizing treatments and their potential interaction with other environmental factors. Ecological, physiological, biochemical and biophysical hypothesis formulated over research investigations are exposed and several points are highlighted as future research perspectives which could help to elucidate the apparent contrasting results.
Collapse
Affiliation(s)
- E Ormeño
- Aix-Marseille University - Equipe Diversité et Fonctionnement : des Molécules aux Ecosystèmes - Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE) (marine et continentale) UMR 7263 CNRS. Centre St Charles, Case 4, 13331 Marseille Cedex 03, France
| | | |
Collapse
|