1
|
Gul I, Adil M, Lv F, Li T, Chen Y, Lu H, Ahamad MI, Lu S, Feng W. Microbial strategies for lead remediation in agricultural soils and wastewater: mechanisms, applications, and future directions. Front Microbiol 2024; 15:1434921. [PMID: 39364167 PMCID: PMC11448482 DOI: 10.3389/fmicb.2024.1434921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/25/2024] [Indexed: 10/05/2024] Open
Abstract
High lead (Pb) levels in agricultural soil and wastewater threaten ecosystems and organism health. Microbial remediation is a cost-effective, efficient, and eco-friendly alternative to traditional physical or chemical methods for Pb remediation. Previous research indicates that micro-organisms employ various strategies to combat Pb pollution, including biosorption, bioprecipitation, biomineralization, and bioaccumulation. This study delves into recent advancements in Pb-remediation techniques utilizing bacteria, fungi, and microalgae, elucidating their detoxification pathways and the factors that influence Pb removal through specific case studies. It investigates how bacteria immobilize Pb by generating nanoparticles that convert dissolved lead (Pb-II) into less harmful forms to mitigate its adverse impacts. Furthermore, the current review explores the molecular-level mechanisms and genetic engineering techniques through which microbes develop resistance to Pb. We outline the challenges and potential avenues for research in microbial remediation of Pb-polluted habitats, exploring the interplay between Pb and micro-organisms and their potential in Pb removal.
Collapse
Affiliation(s)
- Isma Gul
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Muhammad Adil
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Fenglin Lv
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Tingting Li
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Yi Chen
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Heli Lu
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, China
- Laboratory of Climate Change Mitigation and Carbon Neutrality, Henan University, Zhengzhou, China
- Xinyang Academy of Ecological Research, Xinyang, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, China
| | - Muhammad Irfan Ahamad
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Siqi Lu
- Department of Geography, Sustainability, Community, and Urban Studies, University of Connecticut, Storrs, CT, United States
| | - Wanfu Feng
- The Forest Science Research Institute of Xinyang, Xinyang, Henan, China
- Henan Jigongshan Forest Ecosystem National Observation and Research Station, Xinyang, Henan, China
| |
Collapse
|
2
|
Zhou Y, Tang Y, Liao C, Su M, Shih K. Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130977. [PMID: 36860053 DOI: 10.1016/j.jhazmat.2023.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution has resulted in serious environmental damage and raised significant public health concerns. One potential solution in terminal waste treatment is to structurally incorporate and immobilize heavy metals in some robust frameworks. Yet extant research offers a limited perspective on how metal incorporation behavior and stabilization mechanisms can effectively manage heavy metal-laden waste. This review sets forth detailed research on the feasibility of treatment strategies to incorporate heavy metals into structural frameworks; this paper also compares common methods and advanced characterization techniques for identifying metal stabilization mechanisms. Furthermore, this review analyses the typical hosting structures for heavy metal contaminants and metal incorporation behavior, highlighting the importance of structural features on metal speciation and immobilization efficiency. Lastly, this paper systematically summarizes key factors (i.e., intrinsic properties and external conditions) affecting metal incorporation behavior. Drawing on these impactful findings, the paper discusses future directions in the design of waste forms that efficiently, effectively treat heavy metal contaminants. By examining tailored composition-structure-property relationships in metal immobilization strategies, this review reveals possible solutions for crucial challenges in waste treatment and enhances the development of structural incorporation strategies for heavy metal immobilization in environmental applications.
Collapse
Affiliation(s)
- Ying Zhou
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Yuanyuan Tang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Changzhong Liao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
3
|
Li Y, Giordano A, Ajmone-Marsan F, Padoan E. Bioaccessibility of Pb in health-related size fractions of contaminated soils amended with phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158831. [PMID: 36165822 DOI: 10.1016/j.scitotenv.2022.158831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb) contamination is one of the most significant exposure hazards to human health. Contaminated soil particles may be eroded and transferred either to the atmosphere (<10 μm) or to streams; or they may be incidentally ingested (<200 μm). Among strategies for the long-term management of this risk, one of the most cost-effective is the reduction of Pb mobility and bioavailability via amendment with phosphorus-containing materials. To clarify the effectiveness of P amendment in reducing Pb mobility and bioaccessibility in different soil size fractions, an experiment was performed by adding a soluble P compound to a historically contaminated urban soil (RO), a mining soil (MI), and an uncontaminated spiked soil (SP) at different P:Pb molar ratios (2.5:1, 5:1, and 15:1). In the <10 μm fraction of soils, P addition reduced bioaccessible Pb only in the SP soil at the highest dose, with little to no effect on RO and MI soils. Similarly, in the coarse fraction, Pb was immobilized only in the SP soil with all three P doses. These results were probably due to the higher stability of Pb in historically contaminated soils, where Pb dissolution is the limiting factor to the formation of insoluble Pb compounds. The bioaccessible proportion of Pb (using SBET method) was higher than 70 % of the total Pb in all soils and was similar in both fine and coarse particle fractions. Due to the enrichment of Pb in finer particles, this implies possible adverse effects to the environment or to human health if these particles escape from the soil. These results call for increasing attention to the effect of remediation activities on fine soil particles, considering their significant environmental role especially in urban and in historically low or moderately contaminated areas.
Collapse
Affiliation(s)
- Yan Li
- University of Torino, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Annapaola Giordano
- University of Torino, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Franco Ajmone-Marsan
- University of Torino, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Elio Padoan
- University of Torino, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| |
Collapse
|
4
|
Shan B, Hao R, Zhang J, Li J, Ye Y, Lu A. Microbial remediation mechanisms and applications for lead-contaminated environments. World J Microbiol Biotechnol 2022; 39:38. [PMID: 36510114 DOI: 10.1007/s11274-022-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
High concentrations of lead (Pb) in agricultural soil and wastewater represent a severe threat to the ecosystem and health of living organisms. Among available removal techniques, microbial remediation has attracted much attention due to its lower cost, higher efficiency, and less impact on the environment; hence, it is an effective alternative to conventional physical or chemical Pb-remediation technologies. In the present review, recent advances on the Pb-remediation mechanisms of bacteria, fungi and microalgae have been reported, as well as their detoxification pathways. Based on the previous researches, microorganisms have various remediation mechanisms to cope with Pb pollution, which are basically categorized into biosorption, bioprecipitation, biomineralization, and bioaccumulations. This paper summarizes microbial Pb-remediation mechanisms, factors affecting Pb removal, and examples of each case are described in detail. We emphatically discuss the mechanisms of microbial immobilization of Pb, which can resist toxicity by synthesizing nanoparticles to convert dissolved Pb(II) into less toxic forms. The tolerance mechanisms of microbes to Pb are discussed at the molecular level as well. Finally, we conclude the research challenges and development prospects regarding the microbial remediation of Pb-polluted environment. The current review provides insight of interaction between lead and microbes and their potential applications for Pb removal.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Metabolites produced by inoculated Vigna radiata during bacterial assisted phytoremediation of Pb, Ni and Cr polluted soil. PLoS One 2022; 17:e0277101. [DOI: 10.1371/journal.pone.0277101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Phytoremediation assisted with plant growth promoting bacteria (PGPB) is a green technology to remediate metal contaminated soils. Plants usually produce secondary metabolites to tolerate metal toxicity. Present study was designed to explore the phytoremediation potential of Vigna radiata var. NM-II in the presence of metal resistant PGPB and comparison of metabolites produced under heavy metal stresses (Pb, Ni, Cr). Three PGPB selected for present study include Bacillus pumilus MB246, Serratia nematodiphila MB307 and Delftia Lacustris MB322. Pot experiments were conducted with inoculated V. radiata NM-II seeds grown in soil artificially contaminated with lead (Pb), Nickle (Ni) and chromium (Cr) at a concentration of 300, 200 and 100 mg/kg respectively. After harvesting various growth parameters were studied (root length, shoot length, fresh weight and dry weight). Bacterial colonization on root surfaces of harvested plants was observed through Scanning electron microscopy (SEM) and Elemental composition was recorded through Energy dispersive X-ray spectroscopy (EDX) attached with SEM. Metabolic response of harvested plants was studied through Gas chromatography Mass spectrophotometry (GC-MS) analysis. Metal accumulation in roots, shoots and soil was analysed by acid digestion method from which Bioaccumulation factor (BF) and Translocation factor (TF) of metal from soil to plant was calculated. Results revealed stimulatory effect of PGPB on growth and phytoextraction ability of V. radiata. Soil metal removal efficiency was in the order Pb>Ni>Cr, whereas metal distribution in each part of plant was root>stem>leaf. The BF and TF values suggested V. radiata as Pb and Ni excluder while moderate accumulator for Cr. Elemental analysis through Energy Dispersive X- ray spectroscopy (EDX) found potassium (K+)and calcium (Ca+)as highly abundant nutrients with least accumulation of sulphur (S). Metabolites study through GC-MS revealed variety of compounds (carbohydrates, amino acids, fatty acids, steroids etc) detected differentially under each metal treatment and their concentration was influenced by different bacterial inoculations. Overall 9-Octadecenamide was found as commonly present lipid compound in most of the treatments which is required for detoxification in plants. The study concluded beneficial role of PGPB for successful phytoremediation of heavy metals and differential response of metabolites towards each metal stress that is related to metal tolerance ability of V. radiata.
Collapse
|
6
|
Zhou Y, Liao C, Shih K, Tan GYA, Su M. Incorporation of lead into pyromorphite: Effect of anion replacement on lead stabilization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 143:232-241. [PMID: 35286968 DOI: 10.1016/j.wasman.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Previous studies demonstrate that the leaching of heavy metals in unreliable waste forms causes serious environmental pollution and health concerns. Thus, research is focused on identifying an effective, safe strategy for disposing of metal-laden solid waste such as lead (Pb). This study evaluated the effect of anion replacement in the structure of pyromorphite (Pb10(PO4)6Cl2, a common mineral phase for Pb sequestering) on Pb stabilization. Phosphate (PO43-) at the tetrahedral pyromorphite site was simultaneously replaced by silicate (SiO44-) and sulphate (SO42-) in a controlled thermal treatment. The lattice expanded with the incorporation of additional SiO44- and SO42-. Furthermore, the unit cell parameters of the solid solutions evolved linearly with an increase in the substitution degree (x in Pb10(SiO4)x(SO4)x(PO4)(6-2x)Cl2). This research also demonstrated that Pb distributed into amorphous in a PO43--deficient matrix, while asisite (Pb7SiO8Cl2) was formed when the matrix was dominated by SiO44- and SO42-. The leaching results showed the isomorphous substitution in the target system rendered the products less durable towards acidic attack. Moreover, the fully isomorphous-substituted product (x = 3) showed more than two orders of magnitude lower leaching resistance than the PO43--rich phase (x = 0). The lattice expansion, resulting from the isomorphous substitution, suggested that a lower dissolution energy was required in a PO43--deficient matrix. The leaching kinetics pointed to a product with a lower apparent activation energy in the leaching process. The findings of this study provide unique insight into the design and optimization of waste forms for the immobilization of heavy metals.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, HKSAR, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Changzhong Liao
- Key Laboratory of New Processing for Nonferrous Metal and Materials (Ministry of Education), School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, HKSAR, China.
| | - Giin-Yu Amy Tan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, HKSAR, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Li X, Huang S, McBride MB. Rhizosphere effect on Pb solubility and phytoavailability in Pb-Contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115840. [PMID: 33120158 DOI: 10.1016/j.envpol.2020.115840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 05/20/2023]
Abstract
The effect of plant roots in modifying Pb solubility and bioavailability in an historically contaminated orchard (Hudson) and a Pb phosphate-spiked (Arkport) soil was determined by measuring soluble Pb in the soil solutions as well as content of Pb in radish shoots grown in these soils. Soluble Pb and dissolved organic carbon (DOC) contents were greater in the rhizospheres of both Pb-contaminated soils than in the unplanted high-Pb soils. The rhizosphere effect increased soluble Pb 15-fold in the field-contaminated orchard soil, whereas the effect was much smaller in the Pb phosphate-spiked soil. The rhizosphere effect persisted in the Pb-phosphate spiked soil after adjustment of the soil pH from 7.8 to 6.7. The results indicate that Pb phosphate added to a non-acid soil has lower solubility than Pb in an orchard soil contaminated by historical Pb arsenate applications; nevertheless, some uptake of Pb into plant shoots resulted from both sources of soil Pb contamination. The rhizosphere effect was observed for trace metals in addition to Pb, with the solubility of Al, Fe, Cu and Ni all increasing in the rhizosphere soil. In contrast, the solubility of alkali and alkaline earth metals (K, Ca, Mg, Sr, Ba) all decreased in the rhizosphere soil. The results indicate that the rhizosphere effect associated with plant roots can raise the solubility of Pb in soils contaminated by legacy Pb and by insoluble Pb phosphate.
Collapse
Affiliation(s)
- Xinxin Li
- Section of Soil and Crop Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Samantha Huang
- Section of Soil and Crop Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - M B McBride
- Section of Soil and Crop Sciences, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
8
|
Wang J, Shi L, Zhai L, Zhang H, Wang S, Zou J, Shen Z, Lian C, Chen Y. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111261. [PMID: 32950873 DOI: 10.1016/j.ecoenv.2020.111261] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Currently, the research and application of biochar in the remediation of heavy metal contaminated soil has become a hotspot, especially regarding the remediation of agricultural land. Biochar has been proved to be effective in reducing the content of available heavy metals in the soil as well as the heavy metals in plants. However, the long-term effectiveness of biochar immobilization has not been widely studied. In this review, retrospective search was carried out on the published literature results concerning remediation effects of biochar on different areas of heavy metal contaminated soil in the recent years, its application in field remediation (several years), and some potential abiotic and biotic factors that may weaken the immobilization effects of biochar. This results indicate that: (1) biochar is widely used in the remediation of heavy metal contaminated soil in different areas and has excellent immobilization effect. (2) Most of the research demonstrate that the immobilization effect of biochar is effective for 2-3 years or according to few results even for 5 years. However, there have been various reports claiming that the immobilization effect of biochar decreases with time. (3) Abiotic factors such as acid rain, flooded environment, changes in soil condition (pH, redox and dissolved organic matter) and changes in biochar (Cl- and alkali leaching) can significantly weaken the immobilization effect of biochar. (4) Biotic factors such as plant roots, earthworms and soil microorganisms can also significantly reduce the immobilization effect of biochar. Therefore, field experiments having longer time span with biochar need to be further carried out, and the developmental research of modified biochar with a more stable immobilization effect also needs further attention.
Collapse
Affiliation(s)
- Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lulu Zhai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haowen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengxiao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Liang M, Guo H, Xiu W. Arsenite oxidation and arsenic adsorption on birnessite in the absence and the presence of citrate or EDTA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43769-43785. [PMID: 32740840 DOI: 10.1007/s11356-020-10292-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Birnessite not only oxidizes arsenite into arsenate but also interacts with organic matter in various ways. However, effects of organic matter on interaction between As and birnessite remain unclear. This study investigated effects of citrate and EDTA (3.12 and 2.05 mM, respectively) on oxidation of As(III) (1.07 mM) and adsorption of As(V) (0.67 mM) on birnessite (5.19 mM as Mn) at near-neutral pH. We found that As(V) adsorption on birnessite was enhanced by citrate and EDTA, which resulted from the increase in active adsorption sites via dissolution of birnessite. In comparison with citrate batches, more As was adsorbed on birnessite in EDTA batches, where dissolved Mn was mainly presented as Mn(III)-EDTA complex. Citrate or EDTA-induced dissolution of birnessite did not decrease the As(III) oxidation rate in the initial stage where As(III) oxidation rate was rapid. Afterwards, As(III) oxidation was conspicuously suppressed in citrate-amended batches, which was mainly attributed to the decrease in adsorption sites by adsorption of citrate/Mn(II)-citrate complex. This suppression was enhanced by the increase in concentrations of dissolved Mn(II). Citrate inhibited As adsorption after As(III) oxidation due to the strong competitive adsorption of citrate/Mn(II)-citrate complex. However, the As(III) oxidation rate was increased in EDTA-amended batches in the late stage, which mainly derived from the increase in the active sites via birnessite dissolution. The strong complexation ability of EDTA led to formation of Mn(III)-EDTA complex. Arsenic adsorption was not affected due to the limited competitive adsorption of the complex on the solid. This work reveals the critical role of low molecular weight organic acids in geochemical behaviors of As and Mn in aqueous environment.
Collapse
Affiliation(s)
- Mengyu Liang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China
- MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China.
- MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| | - Wei Xiu
- Institute of Geosciences, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| |
Collapse
|
10
|
Zhang K, Teng Z, Shao W, Wang Y, Li M, Lam SS. Effective passivation of lead by phosphate solubilizing bacteria capsules containing tricalcium phosphate. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122754. [PMID: 32361140 DOI: 10.1016/j.jhazmat.2020.122754] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Phosphate solubilizing bacteria (PSBs) shows high potential to be used for lead passivation in sediments due to the abilities of releasing phosphate and the subsequent formation of insoluble Pb-phosphate compounds. In this research, microbial capsules implemented with sodium alginate and CaCl2, containing Leclercia adecarboxylata L15 (a lead resistant PSB) and Ca3(PO4)2, were developed and the performance on lead passivation under different conditions was examined. The optimal concentrations of sodium alginate and CaCl2 for formulating the capsules were determined to be 0.3% and 10%, respectively. The removal efficiency of Pb2+ by capsules containing L15 and Ca3(PO4)2 was up to 98% with a capsule dosage of 2%, initial Pb2+ concentration of 1mM and pH of 3.0, which was better than that of free L15 (18%) and capsules containing only L15 (34%). Lead was immobilized via the formation of Pb5(PO4)3Cl on the surface and Pb3(PO4)2 in the interior of the capsules. The simulated sediment remediation experiments showed that the acid soluble fraction of lead reduced from 28% to 14% and transformed into more stable fractions after 10 days. The experiment results indicated that PSBs capsules coupled with phosphate materials have a great promise for application in remediation of lead contaminated sediments.
Collapse
Affiliation(s)
- Keyao Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Zedong Teng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Wen Shao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Yin Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Min Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China.
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries Research (Akuatrop) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
11
|
Pontoni DR, Melo VF, Stripp RD, Borgo JDH, Bonfleur EJ, Cherobim VF. Lead-contaminated soils with contrasting texture remediated with phosphate: chemical fractionation and chloropyromorphite stability. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:327. [PMID: 32367303 DOI: 10.1007/s10661-020-08256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Pb can be stabilized in soil as Pb-P mineral. The aims of this study were to access the distribution of Pb in organic and mineral fractions of contrasting texture of soil Pb-contaminated and remediated with P and Cl and to evaluate the stability of chloropyromorphite in these soils. A clay loam Oxisol (sandstone) and a clayey Ultisol (basalt) were used in a factorial experiment, with three replications: two soils, two Pb contamination levels, two soil pH values, and four P doses. The Pb concentrations were determined in seven soil phases. Release kinetics of Pb were performed with 0.1 mol L-1 pH 2.5 citric acid. The transfer of soil Pb to chloropyromorphite was dependent on the level of contamination in the clay loam Oxisol. In the lowest P dose (molar ratios P:Pb 3:5), the main source was the Pb complexed in the organic matter and in the highest P dose (molar ratios P:Pb 12:5) was the Pb adsorbed by inner sphere in gibbsite and kaolinite. The release of Pb in the citric acid was dependent on the texture and mineralogy of the soils. Pb recovery applied to the clay loam Oxisol was around 100% (biphasic kinetic), while for the clayey Ultisol, the recovery ranged from 43 to 52% (single-phase kinetic). Remediation of Pb-contaminated soils with P and Cl is more efficient in clayey and oxidic soils since chloropyromorphite formation is faster and its solubilization is slower, an important combination in environmental terms.
Collapse
Affiliation(s)
- Daniel Ramos Pontoni
- Brazilian Institute of Geography and Statistics, calçadão João Pinto, 60, Florianópolis, Santa Catarina, 88010-420, Brazil
| | - Vander Freitas Melo
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, 1540, Juvevê, Curitiba, Paraná, 80035-050, Brazil.
| | - Rubens Dalcomuni Stripp
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, 1540, Juvevê, Curitiba, Paraná, 80035-050, Brazil
| | - Jana Daisy Honorato Borgo
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, 1540, Juvevê, Curitiba, Paraná, 80035-050, Brazil
| | - Eloana Janice Bonfleur
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, 1540, Juvevê, Curitiba, Paraná, 80035-050, Brazil
| | - Verediana Fernanda Cherobim
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, 1540, Juvevê, Curitiba, Paraná, 80035-050, Brazil
| |
Collapse
|
12
|
Luo Y, Wu X, Sun H, Wu Y. Root-induced changes in aggregation characteristics and potentially toxic elements (PTEs) speciation in a revegetated artificial zinc smelting waste slag site. CHEMOSPHERE 2020; 243:125414. [PMID: 31783184 DOI: 10.1016/j.chemosphere.2019.125414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Root-induced changes play a crucial role in influencing the fate and speciation of potentially toxic elements (PTEs) in contaminated soils, but their role in the phytostabilization of waste slag sites remain unclear. The aim of this study was to determine the effect of four phytostabilization plants, Broussonetia papyrifera, Arundo donax, Robinia pseudoacacia, and Cryptomeria fortunei, planted in a zinc smelting waste slag site for 5 years on PTEs speciation and the mineral and aggregation characteristics at the interface of the waste slag-plant system. The results showed that the presence of a higher content of oxalic acid in the rhizosphere slags of the four plant species than in the bare slag. Revegetation of the waste slag with the four plant species significantly changed the mineral composition and morphology of the waste slag. The mass percentage of large particles (1-5 mm) and small particles (0.5-1 mm, 0.25-0.5 mm, and <0.25 mm) in the rhizosphere slags decreased and increased, respectively. The PTEs (Cu, Pb, Zn, and Cd) in most of the rhizosphere slags were mainly distributed within the small particles, and the enrichment coefficients of PTEs in the large particles and small particles were less than and greater than 1, respectively. The bioavailability of the PTEs in the waste slag increased with decreasing particle size. Root-induced the transformation of acid-soluble PTEs into their reducible, oxidizable, and residual forms in the different waste slag particles weathered in the rhizosphere. These results suggested that there are root-induced changes in the aggregation characteristics and geochemical behaviours of PTEs in waste slag fractions during the phytoremediation of waste slag sites.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources, Guizhou University, Guiyang, 550025, China; College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Kast Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Xingyu Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Hang Sun
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Kast Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| |
Collapse
|
13
|
McBride MB, Kelch S, Schmidt M, Zhou Y, Aristilde L, Martinez CE. Lead Solubility and Mineral Structures of Coprecipitated Lead/Calcium Oxalates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13794-13801. [PMID: 31682103 DOI: 10.1021/acs.est.9b05638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low-molecular-weight organic acids such as oxalate, which are ubiquitous in the environment, can control the solubility and bioavailability of toxic metals such as Pb in soils and water by influencing complexation and precipitation reactions. Here, we investigated Pb solubility in relation to Pb-oxalate precipitation at pH 5.0 in the absence and presence of calcium (Ca), a common cation in environmental matrices. At Pb mole fractions less than 0.10, sequestration of Pb into Ca oxalate to form a solid solution substantially lowered Pb solubility relative to that of pure Pb oxalate to an extent inversely proportional to the Pb mole fraction. Small Pb/Ca solid-solution distribution coefficients at these low mole ratios was largely attributed to the stronger complexation of Pb compared to Ca with oxalate to form soluble metal-oxalate complexes, which in turn limited Pb incorporation into the Ca-oxalate crystal lattice. Characterization of the Pb/Ca-oxalate coprecipitates by X-ray diffraction, optical microscopy, and Fourier transform infrared spectroscopy revealed that the whewellite (Ca-oxalate monohydrate) structure was destabilized by substitution of small amounts of Pb into the lattice, and thus, the formation of the Ca-oxalate dihydrate (weddellite) was favored over the monohydrate. At Pb mole fractions above 0.20, discrete crystallites of Pb oxalate were identified. These new findings imply that Pb/Ca-oxalate coprecipitates in the presence of Ca could reduce the solubility of Pb in Pb-contaminated acid soils.
Collapse
Affiliation(s)
| | | | | | - Yuting Zhou
- International Joint Research Center for Persistent Toxic Substances, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science , Northwestern University , Evanston , Illinois 60208 , United States
| | | |
Collapse
|
14
|
Li H, Li Z, Khaliq MA, Xie T, Chen Y, Wang G. Chlorine weaken the immobilization of Cd in soil-rice systems by biochar. CHEMOSPHERE 2019; 235:1172-1179. [PMID: 31561308 DOI: 10.1016/j.chemosphere.2019.06.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Rice (Oryza sativa L.) was cultivated in a Cd-contaminated soils with rice straw biochar (BC) and water-washed rice straw biochar (W-BC) were applied to investigate the underlying mechanisms and possible reasons for biochar's weakening effects on the immobilization of Cd in soil-rice system. The results indicated that W-BC reduced the Cd concentration in pore water as well as in the roots and shoots of rice by 26.24%, 53.23% and 62.47% respectively. On the contrary, there was an increase in Cd contents by 50.27% in pore water, 2.32% in the roots, and 12.80% in the shoots of rice under BC treatment. Furthermore, Cd content in rice shoot was significantly and positively correlated with Cl- addition to the soil (P < 0.01). This phenomenon could be attributed to several combined effects: (1) the increase of Cl- in the soil decreased the soil pH, enhanced the dissolved organic carbon in soil pore water and increased the complexes of Cd2+ and Cl-, resulting in the release of Cd from solid phase into solution phase, (2) the chloride in the soil increased the uptake of CdCl+ instead of Cd2+ by the roots, thereby causing an increase of Cd in rice tissues. These results demonstrate for the first time that biochar with high chloride content could weaken its immobilization effects on soil Cd and even enhance Cd uptake by rice.
Collapse
Affiliation(s)
- Honghong Li
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; School of History and Geography, Minnan Normal University, Zhangzhou 363000, Fujian Province, PR China
| | - Zhou Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Muhammad Athar Khaliq
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan 32200, Punjab, Pakistan
| | - Tuanhui Xie
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yanhui Chen
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Guo Wang
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
15
|
Zhang L, Song X, Shao X, Wu Y, Zhang X, Wang S, Pan J, Hu S, Li Z. Lead immobilization assisted by fungal decomposition of organophosphate under various pH values. Sci Rep 2019; 9:13353. [PMID: 31527665 PMCID: PMC6746775 DOI: 10.1038/s41598-019-49976-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022] Open
Abstract
Organic phosphates (OP) account for approximately 30-90% of total soil P. However, it is too stable to be utilized by plants as available P source. Aspergillus niger (A. niger) has considerable ability to secret phytase to decompose OP. Meanwhile, mineralization of lead (Pb) is efficient to achieve its remediation. This study hence investigated Pb immobilization by A. niger assisted decomposition of OP under variable acidic environments. A. niger can survive in the acidic environment as low as pH = 1.5. However, alternation of environmental pH within 3.5-6.5 significantly changed fungal phytase secretion. In particular, weakly acidic stimulation (pH of ~5.5) increased phytase activity secreted by A. niger to 0.075 µmol/min/mL, hence elevating P release to a maximal concentration of ~20 mg/L. After Pb addition, ATR-IR and TEM results demonstrated the formation of abundant chloropyromorphite [Pb5(PO4)3Cl] mineral on the surface of mycelium at pH = 5.5. Anglesite, with a higher solubility than pyromorphite, was precipitated massively in other treatments with pH lower or higher than 5.5. This study elucidated the great potential of applying OP for Pb immobilization in contaminated water.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xinwei Song
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoqing Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yiling Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xinyu Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Jiangsu Key Laboratory for Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jianjun Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
- Jiangsu Key Laboratory for Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
16
|
Kastury F, Smith E, Doelsch E, Lombi E, Donnelley M, Cmielewski PL, Parsons DW, Scheckel KG, Paterson D, de Jonge MD, Herde C, Juhasz AL. In Vitro, in Vivo, and Spectroscopic Assessment of Lead Exposure Reduction via Ingestion and Inhalation Pathways Using Phosphate and Iron Amendments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10329-10341. [PMID: 31356748 PMCID: PMC7436645 DOI: 10.1021/acs.est.9b02448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study compared lead (Pb) immobilization efficacies in mining/smelting impacted soil using phosphate and iron amendments via ingestion and inhalation pathways using in vitro and in vivo assays, in conjunction with investigating the dynamics of dust particles in the lungs and gastro-intestinal tract via X-ray fluorescence (XRF) microscopy. Phosphate amendments [phosphoric acid (PA), hydroxyapatite, monoammonium phosphate (MAP), triple super phosphate (TSP), and bone meal biochar] and hematite were applied at a molar ratio of Pb:Fe/P = 1:5. Pb phosphate formation was investigated in the soil/post-in vitro bioaccessibility (IVBA) residuals and in mouse lung via extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structures (XANES) spectroscopy, respectively. EXAFS analysis revealed that anglesite was the dominant phase in the ingestible (<250 μm) and inhalable (<10 μm) particle fractions. Pb IVBA was significantly reduced (p < 0.05) by phosphate amendments in the <250 μm fraction (solubility bioaccessibility research consortium assay) and by PA, MAP, and TSP in the <10 μm fraction (inhalation-ingestion bioaccessibility assay). A 21.1% reduction in Pb RBA (<250 μm fraction) and 56.4% reduction in blood Pb concentration (<10 μm fraction) were observed via the ingestion and inhalation pathways, respectively. XRF microscopy detected Pb in the stomach within 4 h, presumably via mucociliary clearance.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| | - Euan Smith
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| | - Emmanuel Doelsch
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| | - Martin Donnelley
- Women’s and Children’s Hospital, Adelaide 5006, Australia
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - Patricia L. Cmielewski
- Women’s and Children’s Hospital, Adelaide 5006, Australia
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - David W. Parsons
- Women’s and Children’s Hospital, Adelaide 5006, Australia
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - Kirk G. Scheckel
- United States Environmental Protection Agency, Cincinnati 45224, United States
| | | | | | - Carina Herde
- South Australian Health and Medical Research Institute, Adelaide 5086, Australia
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia
| |
Collapse
|
17
|
McBride MB, Kelch SE, Schmidt MP, Sherpa S, Martinez CE, Aristilde L. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:738-747. [PMID: 30895974 DOI: 10.1039/c8em00553b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here we study the precipitation of lead (Pb)-phosphate minerals over the pH range of 4.0 to 8.0 with and without oxalate, a ubiquitous and abundant low-molecular-weight organic acid derived from plants and microorganisms in environmental matrices. In the aqueous Pb-phosphate systems, phosphate precipitated Pb efficiently, reducing the dissolved Pb concentration below 1 μM at all the tested pH values, with the minimum solubility of about 0.1 μM measured at the intermediate pH of 6.0. The measured dissolved Pb and free Pb2+ ion activity were not in agreement with predictions from generally-accepted solubility products of the Pb phosphate minerals, particularly hydroxypyromorphite [Pb5(PO4)3OH]. Discrepancies between our measured Pb phosphate solubility products and older reported values are attributed to non-ideal behavior of these minerals (incongruent dissolution) as well as uncertainties in stability constants for soluble Pb-phosphate ion pairs. The presence of equimolar levels of oxalate and phosphate resulted in up to 250-fold increase in Pb solubility at acidic pH and about a 4-fold increase at pH 7.0, due to the strong suppression of Pb phosphate precipitation by oxalate and formation of soluble Pb-oxalate complexes. At pH 4.0 and 5.0, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) identified a Pb-oxalate mineral phase as the only precipitate despite the presence of phosphate; in the absence of oxalate, Pb hydrogen phosphate, PbHPO4, stably formed under these acidic conditions. At pH 6.0 and greater, FTIR and XRD data revealed that Pb-phosphate [Pb3(PO4)2], and hydroxypyromorphite [Pb5(PO4)3OH] to a lesser extent, were the predominant precipitates both in the absence and presence of oxalate. Therefore, oxalate did not strongly interfere with Pb-phosphate mineral formation at aqueous pH greater than 6.0 but oxalate controlled Pb solubility at acidic pH values.
Collapse
Affiliation(s)
- Murray B McBride
- Soil and Crop Sciences Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Zhao X, Do H, Zhou Y, Li Z, Zhang X, Zhao S, Li M, Wu D. Rahnella sp. LRP3 induces phosphate precipitation of Cu (II) and its role in copper-contaminated soil remediation. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:133-140. [PMID: 30669037 DOI: 10.1016/j.jhazmat.2019.01.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Microbially induced phosphate precipitation (MIPP) is an advanced bioremediation technology to immobilize heavy metals in soil. In this study, an indigenous bacterial strain LRP3, identified as Rahnella sp., was isolated from Cu-contaminated dark brown soil in the mining area. Strain LRP3 could produce phytase and alkaline phosphatase to degrade phytic acid, which released soluble phosphate to the bacterial culture. Due to the metabolism of bacterial growth, the pH value of bacterial culture was increased. The minimum inhibitory concentration of Cu (II) to bacterial growth in solution was up to 130 mg/L. The bacterial culture could rapidly precipitate Cu (II) in solution through MIPP. The analysis results of Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transform-Infrared Spectrometer (FTIR), and X-ray Diffraction (XRD) revealed that the precipitate form by bacterial culture was rod-shaped Cu3(OH)3PO4 crystal with a diameter of 10 μm. The bacterial culture decreased the content of DTPA-Cu of 83 mg/kg soil in the soil by 58.2%, 61.5% and 75.8% after 5, 10 and 30 days of incubation, respectively, at the temperature of 25 °C. The results indicate that MIPP-based bioremediation by Rahnella sp. LRP3 is a practical, environmental friendly technology for the cleaning-up of copper-contaminated soil.
Collapse
Affiliation(s)
- Xingmin Zhao
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China
| | - HoaiThuong Do
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China
| | - Ye Zhou
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China
| | - Zhe Li
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China
| | - Xiufang Zhang
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China
| | - Shujie Zhao
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China
| | - Mingtang Li
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wu
- College of Resource and Environment, Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
19
|
Chen H, Dou J, Xu H. The effect of low-molecular-weight organic-acids (LMWOAs) on treatment of chromium-contaminated soils by compost-phytoremediation: Kinetics of the chromium release and fractionation. J Environ Sci (China) 2018; 70:45-53. [PMID: 30037410 DOI: 10.1016/j.jes.2017.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 05/25/2023]
Abstract
A soil-plant biological system was developed from chromium (Cr) polluted soil treated by the compost-phytoremediation method. The transformation and migration of the Cr in this system is comprehensively studied in this research. The results illustrated that the co-composting treatment can reduce the Cr availability from 39% (F1 was about 31% of total, F2 was about 8% of total) to less than 2% by stabilizing the Cr. However, herbaceous plants can accumulate the concentrations of Cr from 113.8 to 265.2mg/kg in the two crops, even though the concentration of soluble Cr in the substrate soil was below 0.1mg/L. Cr can be assimilated and easily transferred in the tissues of plants because the low-molecular-weight organic-acids (LMWOAs) derived from the plant root increase the bioavailability of Cr. The amount of extracted Cr dramatically increased when the organic acids were substituted in this order: citric acid>malic acid>tartaric acid>oxalic acid>acetic acid. On average the maximum (147.4mg/kg) and the minimum (78.75mg/kg) Cr were extracted by 20mmol/L citric acid and acetic acid, respectively. The desorption of Cr in different acid solutions can be predicted by the pseudo second-order kinetics. The exchangeable Cr, carbonate-bound Cr, and residual Cr decreased, while Fe-Mn oxide bound Cr and organic bound Cr increased in the soil solid phase. According to the experimental results, the organic acids will promote the desorption and chelation processes of Cr, leading to the remobilization of Cr in the soil.
Collapse
Affiliation(s)
- Huixia Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100190, China; National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hongbin Xu
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100190, China; National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
20
|
Tian D, Wang W, Su M, Zheng J, Wu Y, Wang S, Li Z, Hu S. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21118-21126. [PMID: 29770937 DOI: 10.1007/s11356-018-2243-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Phosphate-solubilizing fungi (PSF) can secrete large amounts of organic acids. In this study, the application of the fungus Penicillium oxalicum and geological fluorapatite (FAp) to lead immobilization was investigated. The formation and morphology of the lead-related minerals were analyzed by ATR-IR, XRD, Raman, and SEM. The quantity of organic acids secreted by P. oxalicum reached the maximum on the fourth day, which elevated soluble P concentrations from 0.4 to 108 mg/L in water. The secreted oxalic acid dominates the acidity in solution. P. oxalicum can survive in the solution with Pb concentration of ~ 1700 mg/L. In addition, it was shown that ~ 98% lead cations were removed while the fungus was cultured with Pb (~ 1700 mg/L) and FAp. The mechanism is that the released P from FAp (enhanced by organic acids) can react with Pb2+ to form the stable pyromorphite mineral [Pb5(PO4)3F]. The precipitation of lead oxalate also contributes to Pb immobilization. However, lead oxalate is more soluble due to its relatively high solubility. P. oxalicum has a higher rate of organic acid secretion compared with other typical PSF, e.g., Aspergillus niger. This study sheds light on bright future of applying P. oxalicum in Pb remediation.
Collapse
Affiliation(s)
- Da Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenchao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Junyi Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuanyi Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing, 210046, Jiangsu, China.
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
21
|
Karna RR, Noerpel MR, Luxton TP, Scheckel KG. Point of zero charge: Role in pyromorphite formation and bioaccessibility of lead and arsenic in phosphate amended soils. SOIL SYSTEMS 2018; 2:22. [PMID: 30714024 DOI: 10.3390/soilsystems2020022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soluble lead (Pb) can be immobilized in pure systems as pyromorphite by adding sources of phosphorus (P), but uncertainties still remain in natural systems. Knowledge of PZC is important to predict the ionization of functional groups and their interaction with metal species in solution. This study utilized the Pb- and As-contaminated soils to determine the combined effect of pH with respect to PZC and different rates of P-application on pyromorphite formation, and Pb and arsenic (As) bioaccessibility as impacted by speciation changes. Solution chemistry analysis along with synchrotron-based Pb- and As-speciation, and bioaccessibility treatment effect ratios (TERs) were conducted. Results indicated no significant effect of PZC on pyromorphite formation in P-amended soils; however, the TERPb appeared significantly lower at pH>pHPZC and higher at pH<pHPZC (α = 0.05). In contrast, the TERAs was significantly higher at pH>pHPZC, compared to the other two treatments, for the tested soils. The lack of conversion of soil Pb to pyromorphite may be attributed to presence of stable minerals limiting soluble-Pb availability and high organic matter content of the tested soils.
Collapse
Affiliation(s)
- Ranju R Karna
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Matthew R Noerpel
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Todd P Luxton
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Kirk G Scheckel
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| |
Collapse
|
22
|
Wang YS, Dai JG, Wang L, Tsang DCW, Poon CS. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. CHEMOSPHERE 2018; 190:90-96. [PMID: 28985540 DOI: 10.1016/j.chemosphere.2017.09.114] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 05/25/2023]
Abstract
Inorganic binder-based stabilization/solidification (S/S) of Pb-contaminated soil is a commonly used remediation approach. This paper investigates the influences of soluble Pb species on the hydration process of two types of inorganic binders: ordinary Portland cement (OPC) and magnesium potassium phosphate cement (MKPC). The environmental leachability, compressive strength, and setting time of the cement products are assessed as the primary performance indicators. The mechanisms of Pb involved in the hydration process are analyzed through X-ray diffraction (XRD), hydration heat evolution, and thermogravimetric analyses. Results show that the presence of Pb imposes adverse impact on the compressive strength (decreased by 30.4%) and the final setting time (prolonged by 334.7%) of OPC, but it exerts much less influence on those of MKPC. The reduced strength and delayed setting are attributed to the retarded hydration reaction rate of OPC during the induction period. These results suggest that the OPC-based S/S of soluble Pb mainly depends on physical encapsulation by calcium-silicate-hydrate (CSH) gels. In contrast, in case of MKPC-based S/S process, chemical stabilization with residual phosphate (pyromorphite and lead phosphate precipitation) and physical fixation of cementitious struvite-K are the major mechanisms. Therefore, MKPC is a more efficient and chemically stable inorganic binder for the Pb S/S process.
Collapse
Affiliation(s)
- Yan-Shuai Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jian-Guo Dai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Lei Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
23
|
Katoh M, Risky E, Sato T. Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum vulgare L.) and Hairy Vetch (Vicia villosa) Using Hydroxyapatite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101273. [PMID: 29065529 PMCID: PMC5664774 DOI: 10.3390/ijerph14101273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022]
Abstract
This study conducted plant growth tests using a rhizobox system to quantitatively determine the distance of immobilization lead migrating from contaminated soil into uncontaminated rhizosphere soil, and to assess the lead phases accumulated in rhizosphere soil by sequential extraction. Without the hydroxyapatite, exchangeable lead fractions increased as the rhizosphere soil got closer to the contaminated soil. Exchangeable lead fractions were higher even in the rhizosphere soil that shares a boundary with the root surface than in the soil before being planted. Thus, plant growth of hairy vetch was lower in the soil without the hydroxyapatite than in the soil with the hydroxyapatite. The presence of hydroxyapatite may immobilize the majority of lead migrating from contaminated soil into the rhizosphere soil within 1 mm from the contaminated soil. The dominant lead fraction in the rhizosphere soil with the hydroxyapatite was residual. Thus, plant growth was not suppressed and the lead concentration of the plant shoot remained at the background level. These results indicate that the presence of hydroxyapatite in the rhizosphere soil at 5% wt may immobilize most of the lead migrating into the rhizosphere soil within 1 mm from the contaminated soil, resulting in the prevention of lead migration toward the root surface.
Collapse
Affiliation(s)
- Masahiko Katoh
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
| | - Elsya Risky
- Department of Civil Engineering, Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan.
| | - Takeshi Sato
- Department of Civil Engineering, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
24
|
Seshadri B, Bolan NS, Choppala G, Kunhikrishnan A, Sanderson P, Wang H, Currie LD, Tsang DCW, Ok YS, Kim G. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. CHEMOSPHERE 2017; 184:197-206. [PMID: 28595145 DOI: 10.1016/j.chemosphere.2017.05.172] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 05/30/2017] [Indexed: 05/16/2023]
Abstract
Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils.
Collapse
Affiliation(s)
- B Seshadri
- Global Institute for Environmental Research, ATC Building, Faculty of Science and Information Technology, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106, Australia
| | - N S Bolan
- Global Institute for Environmental Research, ATC Building, Faculty of Science and Information Technology, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106, Australia.
| | - G Choppala
- Southern Cross GeoScience, Southern Cross University, Lismore, New South Wales, Australia
| | - A Kunhikrishnan
- Department of Agro-Food Safety, National Institute of Agricultural Science, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - P Sanderson
- Global Institute for Environmental Research, ATC Building, Faculty of Science and Information Technology, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106, Australia
| | - H Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, People's Republic of China
| | - L D Currie
- Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Y S Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - G Kim
- Department of Civil and Environmental Engineering, Hannam University, Republic of Korea
| |
Collapse
|
25
|
Ding L, Li J, Liu W, Zuo Q, Liang SX. Influence of Nano-Hydroxyapatite on the Metal Bioavailability, Plant Metal Accumulation and Root Exudates of Ryegrass for Phytoremediation in Lead-Polluted Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050532. [PMID: 28509844 PMCID: PMC5451983 DOI: 10.3390/ijerph14050532] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022]
Abstract
Lead is recognized as one of the most widespread toxic metal contaminants and pervasive environmental health concerns in the environment. In this paper, the effects of nano-hydroxyapatite (NHAP) on remediation in artificially Pb-contaminated soils and ryegrass were studied in a pot experiment. The addition of NHAP decreased the water- and acid-soluble, exchangeable, and reducible fractions of Pb, extracted using the Community Bureau of Reference (BCR) method, whilst greatly increasing the residual fraction of Pb. Oxidizable Pb was increased slightly. No significant increase in soil pH was caused by the application of NHAP. Compared to conditions without NHAP, the addition of NHAP decreased the Pb content in ryegrass shoots and roots by 13.19-20.3% and 2.86-21.1%, respectively. Therefore, the application of NHAP reduced the mobility and bioavailability of Pb in the soil. In addition, the application of NHAP improved the fresh weight of shoots and roots, and promoted the growth of ryegrass. NHAP played a positive role in stimulating ryegrass to secrete tartaric acid.
Collapse
Affiliation(s)
- Ling Ding
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Jianbing Li
- Environmental Engineering Program, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| | - Wei Liu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Qingqing Zuo
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| |
Collapse
|
26
|
Wang M, Zhang Z, Ren J, Zhang C, Li C, Guo G, Li F. Microscopic evidence for humic acid induced changes in lead immobilization by phosphate in a counterdiffusion system. JOURNAL OF HAZARDOUS MATERIALS 2017; 330:46-51. [PMID: 28208092 DOI: 10.1016/j.jhazmat.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Abatement of lead (Pb) contamination in soil via chemical immobilization can reduce potential risks but is influenced by soil organic matter. The aim of this study was to observe and understand the influence of organic matter on Pb immobilization by phosphate. For this purpose, humic acid (HA) was introduced into a counterdiffusion system to mimic ionic reactions of the mineralization processes between the pollutant (Pb) and amendment agent (phosphate) in soil system, and were characterized jointly by in situ optical microscopy and ex situ XRD, SEM, TEM, and LSCM. The results indicate that lead immobilization in the counterdiffusion system involves a time-dependent crystallization process and that supersaturation occurs at nearly central region of the reaction zone. Entrapped HA had influence on crystal growth and size, causing more fragmented crystal morphology with increasing HA content, which can be explained by HA wrapping of the nucleation products and subsequent inhibition of reactions and crystal growth, as indicated by TEM and LSCM images. Mineral conversion from secondary lead orthophosphates to pyromorphite implies the promotion of more stable minerals. This approach provides evidence for a more intuitive understanding of the effects of HA on the immobilization of lead by phosphates.
Collapse
Affiliation(s)
- Mei Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Department of Soil Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhuo Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Department of Soil Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Ren
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Department of Soil Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chao Zhang
- Department of Soil Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunping Li
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materirals Academy of Science Research, Beijing 100041, China
| | - Guanlin Guo
- Department of Soil Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fasheng Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Department of Soil Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
27
|
Drewniak Ł, Skłodowska A, Manecki M, Bajda T. Solubilization of Pb-bearing apatite Pb 5(PO 4) 3Cl by bacteria isolated from polluted environment. CHEMOSPHERE 2017; 171:302-307. [PMID: 28027474 DOI: 10.1016/j.chemosphere.2016.12.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/04/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
The main purpose of this study was to test if microorganisms isolated from heavily polluted environments can enhance dissolution of Pb-apatite (pyromorphite) resulting in remobilization of lead. Three bacterial strains belonging to the genus Pseudomonas isolated from underground mines in SW Poland were used in batch experiments of pyromorphite solubilization carried out in phosphate reach and phosphate poor media. Bacteria growth and evolution of Pb and phosphate concentrations as well as pH were determined. Additionally the concentration of bacterial siderophores in leaching solution was assayed. All bacterial strains were able to grow in both media in the presence of pyromorphite. The number of bacterial cells was from one to two orders of magnitude higher in the phosphate rich media. In the phosphate poor media the only source of P was the dissolving lead apatite. Bacteria enhanced the solubility of pyromorphite resulting in elevated Pb concentrations, up to 853 μg L-1 in phosphate-rich medium and 6112 μg L-1 in phosphate-poor medium, compared to less than 100 μg L-1 in an abiotic control sample. Production of siderophores was characteristic for each culture and was much lower (10-1000 fold) in the phosphate-poor medium. This study demonstrates for the first time that indigenous bacteria can directly and indirectly promote the mobilization of lead from pyromorphite. This phenomenon should be considered in long term risk assessment of Pb contaminated soils after reclamation processes because bacteria can play a significant role in the efficiency of clean-up efforts and overall geochemical cycling of Pb.
Collapse
Affiliation(s)
- Łukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Aleksandra Skłodowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maciej Manecki
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
28
|
Microbial strategy for potential lead remediation: a review study. World J Microbiol Biotechnol 2017; 33:35. [PMID: 28120310 DOI: 10.1007/s11274-017-2211-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
The extensive exploitation and usage of lead compounds result in severe lead(II) pollution in water and soil environments, even in agricultural land, threatening the health of animals and humans via food chains. The recovery and remediation of lead(II) from water and soil environments have been intensively concerned in recent years. Compared with the traditional physic-chemistry treatment, microbial remediation strategy is a promising alternative to remediate lead(II)-contaminated environments due to its cost-effective and environmentally-friendly properties. Various microorganisms are capable of removing or immobilizing lead(II) from water and soil environments through bioaccumulation, precipitation or accelerated transformation of lead(II) into a very stable mineral, resulting in significant effects on lead(II) mobility and bioavailability. In the present review, we investigated a wide diversity of lead(II) bioremediation induced by different microbes and its multi-mechanisms. Moreover, we also discussed the progress and limitations, summarized the common rules of lead(II)-microbe interaction, and evaluated the environmental significance of microbes in lead biogeochemistry process. In addition, we further deliberated the feasibility and potential application of microbes in developing cost-effective, eco-friendly bioremediation or long-term management strategy for lead(II) contaminated repositories.
Collapse
|
29
|
Luo Q, Wang S, Sun LN, Wang H. Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS. Sci Rep 2017; 7:39878. [PMID: 28051189 PMCID: PMC5209681 DOI: 10.1038/srep39878] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
Phytoremediation is an effective method to remediate Pb-contaminated soils and root exudates play an important role in this process. Based on gas chromatography-mass spectrometry (GC-MS) and metabolomics method, this study focuses on the comparative metabolic profiling analysis of root exudates from the Pb-accumulating and non-accumulating ecotypes of Sedum alfredii treated with 0 and 50 μmol/L Pb. The results obtained show that plant type and Pb stress can significantly change the concentrations and species of root exudates, and fifteen compounds were identified and assumed to be potential biomarkers. Leaching experiments showed that l-alanine, l-proline and oxalic acid have a good effect to activate Pb in soil, glyceric acid and 2-hydroxyacetic acid have a general effect to activate Pb in soil. 4-Methylphenol and 2-methoxyphenol might be able to activate Pb in soil, glycerol and diethyleneglycol might be able to stabilize Pb in soil, but these activation effect and stabilization effect were all not obvious.
Collapse
Affiliation(s)
- Qing Luo
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Educatione, College of Environment, Shenyang University, Shenyang 110044, China
| | - Shiyu Wang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Educatione, College of Environment, Shenyang University, Shenyang 110044, China
| | - Li-na Sun
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Educatione, College of Environment, Shenyang University, Shenyang 110044, China
| | - Hui Wang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Educatione, College of Environment, Shenyang University, Shenyang 110044, China
| |
Collapse
|
30
|
Li Z, Wang F, Bai T, Tao J, Guo J, Yang M, Wang S, Hu S. Lead immobilization by geological fluorapatite and fungus Aspergillus niger. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:386-392. [PMID: 27585270 DOI: 10.1016/j.jhazmat.2016.08.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
Phosphate solubilizing fungi have high ability to secrete organic acids. In this study, fungus Aspergillus niger and geological fluorapatite were applied in lead remediation in aqueous solution. Formation and morphology of the lead minerals, e.g., pyromorphite and lead oxalate, were investigated by SEM, XRD, and ATR-IR. The total quantity of organic acids reached the maximum at the sixth day, which improved the concentration of soluble P up to ∼370mg/L from ∼0.4mg/L. The organic acids, especially the oxalic acid, enhance the solubility of fluorapatite significantly. The stable fluoropyromorphite [Pb5(PO4)3F] is precipitated with the elevated solubility of fluorapatite in the acidic environment. Furthermore, A. niger grows normally with the presence of lead cations. It is shown that >99% lead cations can be removed from the solution. However, immobilization caused by the precipitation of lead oxalate cannot be ignored if the fungus A. niger was cultured in the Pb solution. This study elucidates the mechanisms of lead immobilization by FAp and A. niger, and sheds its perspective in lead remediation, especially for high Pb concentration solution.
Collapse
Affiliation(s)
- Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing, Jiangsu 210046, China.
| | - Fuwei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Tongshuo Bai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jinjin Tao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jieyun Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mengying Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
31
|
Katoh M, Makimura A, Sato T. Removal of lead by apatite and its stability in the presence of organic acids. ENVIRONMENTAL TECHNOLOGY 2016; 37:3036-3045. [PMID: 27142688 DOI: 10.1080/09593330.2016.1174744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.
Collapse
Affiliation(s)
- Masahiko Katoh
- a Department of Agricultural Chemistry , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Akihiko Makimura
- b Department of Civil Engineering, Faculty of Engineering , Graduate School of Engineering, Gifu University , Gifu , Japan
| | - Takeshi Sato
- b Department of Civil Engineering, Faculty of Engineering , Graduate School of Engineering, Gifu University , Gifu , Japan
| |
Collapse
|
32
|
Li SW, Li HB, Luo J, Li HM, Qian X, Liu MM, Bi J, Cui XY, Ma LQ. Influence of pollution control on lead inhalation bioaccessibility in PM2.5: A case study of 2014 Youth Olympic Games in Nanjing. ENVIRONMENT INTERNATIONAL 2016; 94:69-75. [PMID: 27209002 DOI: 10.1016/j.envint.2016.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Pollution controls were implemented to improve the air quality for the 2014 Youth Olympic Games (YOG) in Nanjing. To investigate the influence of pollution control on Pb inhalation bioaccessibility in PM2.5, samples were collected before, during, and after YOG. The objectives were to identify Pb sources in PM2.5 using stable isotope fingerprinting technique and compare Pb inhalation bioaccessibility in PM2.5 using two simulated lung fluids. While artificial lysosomal fluid (ALF) simulates interstitial fluid at pH 7.4, Gamble's solution simulates fluid in alveolar macrophages at pH 4.5. The Pb concentration in PM2.5 samples during YOG (88.2ngm(-3)) was 44-48% lower than that in non-YOG samples. Based on stable Pb isotope ratios, Pb in YOG samples was mainly from coal combustion while Pb in non-YOG samples was from coal combustion and smelting activities. While Pb bioaccessibility in YOG samples was lower than those in non-YOG samples (59-79% vs. 55-87%) by ALF, it was higher than those in non-YOG samples (11-29% vs. 5.3-21%) based on Gamble's solution, attributing to the lower pH and organic acids in ALF. Different Pb bioaccessibility in PM2.5 between samples resulted from changes in Pb species due to pollution control. PbSO4 was the main Pb species in PM2.5 from coal combustion, which was less soluble in ALF than PbO from smelting activities, but more soluble in Gamble's solution. This study showed it is important to consider Pb bioaccessibility during pollution control as source control not only reduced Pb contamination in PM2.5 but also influenced Pb bioaccessibility.
Collapse
Affiliation(s)
- Shi-Wei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hui-Ming Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Miao-Miao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Jun Bi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
33
|
Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids. PLoS One 2016; 11:e0160628. [PMID: 27494023 PMCID: PMC4975447 DOI: 10.1371/journal.pone.0160628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/23/2016] [Indexed: 11/19/2022] Open
Abstract
Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere.
Collapse
|
34
|
Sanderson P, Naidu R, Bolan N. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 170:123-30. [PMID: 26812009 DOI: 10.1016/j.jenvman.2016.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 05/27/2023]
Abstract
The stabilisation of Pb in the soil by phosphate is influenced by environmental conditions and physicochemical properties of the soils to which it is applied. Stabilisation of Pb by phosphate was examined in four soils under different environmental conditions. The effect of soil moisture and temperature on stabilisation of Pb by phosphate was examined by measurement of water extractable and bioaccessible Pb, sequential fractionation and X-ray absorption spectroscopy. The addition of humic acid, ammonium nitrate and chloride was also examined for inhibition or improvement of Pb stability with phosphate treatment. The effect of moisture level varied between soils. In soil MB and DA a soil moisture level of 50% water holding capacity was sufficient to maximise stabilisation of Pb, but in soil TV and PE reduction in bioaccessible Pb was inhibited at this moisture level. Providing moisture at twice the soil water holding capacity did not enhance the effect of phosphate on Pb stabilisation. The difference of Pb stability as a result of incubating phosphate treated soils at 18 °C and 37 °C was relatively small. However wet-dry cycles decreased the effectiveness of phosphate treatment. The reduction in bioaccessible Pb obtained was between 20 and 40% with the most optimal treatment conditions. The reduction in water extractable Pb by phosphate was substantial regardless of incubation conditions and the effect of different temperature and soil moisture regimes was not significant. Selective sequential extraction showed phosphate treatment converted Pb in fraction 1 (exchangeable, acid and water soluble) to fraction 2 (reducible). There were small difference in fraction 4 (residual) Pb and fraction 1 as a result of treatment conditions. X-ray absorption spectroscopy of stabilised PE soil revealed small differences in Pb speciation under varying soil moisture and temperature treatments. The addition of humic acid and chloride produced the greatest effect on Pb speciation in phosphate treated soils.
Collapse
Affiliation(s)
- Peter Sanderson
- Global Centre for Environmental Remediation, University of Newcastle and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia; Previous Address: Centre for Environmental Risk Assessment and Remediation, University of South Australia, University Parade, Mawson Lakes, SA 5095, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia; Previous Address: Centre for Environmental Risk Assessment and Remediation, University of South Australia, University Parade, Mawson Lakes, SA 5095, Australia
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia; Previous Address: Centre for Environmental Risk Assessment and Remediation, University of South Australia, University Parade, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
35
|
Sanderson P, Naidu R, Bolan N, Lim JE, Ok YS. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:395-403. [PMID: 26150282 DOI: 10.1016/j.jhazmat.2015.06.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/07/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
Three Australian shooting range soils were treated with phosphate and magnesium oxide, or a combination of both to chemically stabilize Pb. Lead speciation was determined after 1 month ageing by X-ray absorption spectroscopy combined with linear combination fitting in control and treated soils. The predominant Pb species in untreated soils were iron oxide bound Pb, humic acid bound Pb and the mineral litharge. Treatment with phosphate resulted in substantial pyromorphite formation in two of the soils (TV and PE), accounting for up to 38% of Pb species present, despite the addition of excess phosphate. In MgO treated soils only, up to 43% of Pb was associated with MgO. Litharge and Pb hydroxide also formed as a result of MgO addition in the soils. Application of MgO after P treatment increased hydroxypyromorphite/pyromorphite formation relative to soils teated with phosphate only. X-ray diffraction and Scanning electron microscopy revealed PbO precipitate on the surface of MgO. Soil pH, (5.3-9.3) was an important parameter, as was the solubility of existing Pb species. The use of direct means of determination of the stabilisation of metals such as by X-ray absorption spectroscopy is desirable, particularly in relation to understanding long term stability of the immobilised contaminants.
Collapse
Affiliation(s)
- Peter Sanderson
- Centre for Environmental Risk Assessment and Remediation and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, University Parade, 5095 Mawson Lakes, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, University Parade, 5095 Mawson Lakes, Australia.
| | - Nanthi Bolan
- Centre for Environmental Risk Assessment and Remediation and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, University Parade, 5095 Mawson Lakes, Australia
| | - Jung Eun Lim
- Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701, South Korea
| | - Yong Sik Ok
- Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701, South Korea
| |
Collapse
|
36
|
Liang X, Kierans M, Ceci A, Hillier S, Gadd GM. Phosphatase-mediated bioprecipitation of lead by soil fungi. Environ Microbiol 2015; 18:219-31. [DOI: 10.1111/1462-2920.13003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Xinjin Liang
- Geomicrobiology Group; School of Life Sciences; University of Dundee; Dundee DD1 5EH Scotland UK
| | - Martin Kierans
- Electron Microscopy; Central Imaging Facility; Centre for Advanced Scientific Technologies; School of Life Sciences; University of Dundee; Dundee DD1 5EH Scotland UK
| | - Andrea Ceci
- Geomicrobiology Group; School of Life Sciences; University of Dundee; Dundee DD1 5EH Scotland UK
- Laboratorio Biodiversità dei Funghi; Dipartimento di Biologia Ambientale; Sapienza Università di Roma; Rome 00185 Italy
| | - Stephen Hillier
- The James Hutton Institute; Aberdeen AB15 8QH UK
- Department of Soil and Environment; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Geoffrey Michael Gadd
- Geomicrobiology Group; School of Life Sciences; University of Dundee; Dundee DD1 5EH Scotland UK
- Laboratory of Environmental Pollution and Bioremediation; Xinjiang Institute of Ecology and Geography; Chinese Academy of Sciences; Urumqi 830011 China
| |
Collapse
|
37
|
Cave M, Wragg J, Gowing C, Gardner A. Measuring the solid-phase fractionation of lead in urban and rural soils using a combination of geochemical survey data and chemical extractions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2015; 37:779-790. [PMID: 25840564 DOI: 10.1007/s10653-015-9697-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
The study used 276 urban soils and 447 rural soils collected from in and around the UK town of Northampton and focussed on the fractionation of Pb. The Pb fractionation obtained from total element data was compared to the fractionation of Pb in a subset of 10 urban soils obtained using a sequential extraction method. The fractionation of the Pb from the total element data and from the sequential extractions was estimated using a self-modelling mixture resolution statistical model. The bioaccessibility of Pb in a subset of 50 of the urban soils, as measured using the unified BARGE method, was shown to be quantitatively linked with Pb fractionation from both the total element and the sequential extraction data. Three intrinsic soil components from the regional total element data model and one physico-chemical component from the sequential extraction data model were identified as the sources of bioaccessible Pb. The source of bioaccessible Pb in both rural and urban soils was tentatively identified as a fine-grained pyromorphite mineral.
Collapse
Affiliation(s)
- Mark Cave
- Environmental Science Centre, British Geological Survey, Keyworth, Nottingham, N12 5GG, UK,
| | | | | | | |
Collapse
|
38
|
MAHAR A, WANG P, LI R, ZHANG Z. Immobilization of Lead and Cadmium in Contaminated Soil Using Amendments: A Review. PEDOSPHERE 2015; 25:555-568. [DOI: 10.1016/s1002-0160(15)30036-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
39
|
Sanderson P, Naidu R, Bolan N. Effectiveness of chemical amendments for stabilisation of lead and antimony in risk-based land management of soils of shooting ranges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8942-8956. [PMID: 23807560 DOI: 10.1007/s11356-013-1918-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
This study aims to examine the effectiveness of amendments for risk-based land management of shooting range soils and to explore the effectiveness of amendments applied to sites with differing soil physiochemical parameters. A series of amendments with differing mechanisms for stabilisation were applied to four shooting range soils and aged for 1 year. Chemical stabilisation was monitored by pore water extraction, toxicity characteristic leaching procedure (TCLP) and the physiologically based extraction test (PBET) over 1 year. The performance of amendments when applied in conditions reflecting field application did not match the performance in the batch studies. Pore water-extractable metals were not greatly affected by amendment addition. TCLP-extractable Pb was reduced significantly by amendments, particularly lime and magnesium oxide. Antimony leaching was reduced by red mud but mobilised by some of the other amendments. Bioaccessible Pb measured by PBET shows that bioaccessible Pb increased with time after an initial decrease due to the presence of metallic fragments in the soil. Amendments were able to reduce bioaccessible Pb by up to 50 %. Bioaccessible Sb was not readily reduced by soil amendments. Soil amendments were not equally effective across the four soils.
Collapse
Affiliation(s)
- Peter Sanderson
- CERAR, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | | | | |
Collapse
|
40
|
Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations. Appl Environ Microbiol 2015; 81:4955-64. [PMID: 25979898 DOI: 10.1128/aem.00726-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
Fungi play important roles in biogeochemical processes such as organic matter decomposition, bioweathering of minerals and rocks, and metal transformations and therefore influence elemental cycles for essential and potentially toxic elements, e.g., P, S, Pb, and As. Arsenic is a potentially toxic metalloid for most organisms and naturally occurs in trace quantities in soil, rocks, water, air, and living organisms. Among more than 300 arsenic minerals occurring in nature, mimetite [Pb5(AsO4)3Cl] is the most stable lead arsenate and holds considerable promise in metal stabilization for in situ and ex situ sequestration and remediation through precipitation, as do other insoluble lead apatites, such as pyromorphite [Pb5(PO4)3Cl] and vanadinite [Pb5(VO4)3Cl]. Despite the insolubility of mimetite, the organic acid-producing soil fungus Aspergillus niger was able to solubilize mimetite with simultaneous precipitation of lead oxalate as a new mycogenic biomineral. Since fungal biotransformation of both pyromorphite and vanadinite has been previously documented, a new biogeochemical model for the biogenic transformation of lead apatites (mimetite, pyromorphite, and vanadinite) by fungi is hypothesized in this study by application of geochemical modeling together with experimental data. The models closely agreed with experimental data and provided accurate simulation of As and Pb complexation and biomineral formation dependent on, e.g., pH, cation-anion composition, and concentration. A general pattern for fungal biotransformation of lead apatite minerals is proposed, proving new understanding of ecological implications of the biogeochemical cycling of component elements as well as industrial applications in metal stabilization, bioremediation, and biorecovery.
Collapse
|
41
|
Use of Phosphate Solubilizing Bacteria to Leach Rare Earth Elements from Monazite-Bearing Ore. MINERALS 2015. [DOI: 10.3390/min5020189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Zhu J, Cai Z, Su X, Fu Q, Liu Y, Huang Q, Violante A, Hu H. Immobilization and phytotoxicity of Pb in contaminated soil amended with γ-polyglutamic acid, phosphate rock, and γ-polyglutamic acid-activated phosphate rock. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2661-2667. [PMID: 25196962 DOI: 10.1007/s11356-014-3503-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Pot experiments were conducted to investigate the effects of γ-polyglutamic acid (γ-PGA), phosphate rock (PR), and γ-PGA-activated PR (γ-PGA-PR) on the immobilization and phytotoxicity of Pb in a contaminated soil. The proportion of residual Pb (Re-Pb) in soil was reduced by the addition of γ-PGA but was increased by the application of PR and γ-PGA-PR. The addition of γ-PGA in soil improved the accumulation of Pb in pak choi and decreased the growth of pak choi, suggesting the intensification of Pb phytotoxicity to pak choi. However, opposite effects of PR and γ-PGA-PR on the phytotoxicity of Pb to pak choi in soil were observed. Moreover, in the examined range, γ-PGA-PR activated by a higher amount of γ-PGA resulted in a greater proportion of Re-Pb in soil and weaker phytotoxicity of Pb to pak choi. The predominance of γ-PGA-PR in relieving the phytotoxicity of Pb was ascribed mainly to the increase of soil pH and available phosphate after the amendment, which could facilitate the precipitation of Pb in soil and provide pak choi with more phosphorus nutrient.
Collapse
Affiliation(s)
- Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ceci A, Rhee YJ, Kierans M, Hillier S, Pendlowski H, Gray N, Persiani AM, Gadd GM. Transformation of vanadinite [Pb5 (VO4 )3 Cl] by fungi. Environ Microbiol 2014; 17:2018-34. [PMID: 25181352 DOI: 10.1111/1462-2920.12612] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/18/2014] [Accepted: 08/23/2014] [Indexed: 01/19/2023]
Abstract
Saprotrophic fungi were investigated for their bioweathering effects on the vanadium- and lead-containing insoluble apatite group mineral, vanadinite [Pb5 (VO4 )3 Cl]. Despite the insolubility of vanadinite, fungi exerted both biochemical and biophysical effects on the mineral including etching, penetration and formation of new biominerals. Lead oxalate was precipitated by Aspergillus niger during bioleaching of natural and synthetic vanadinite. Some calcium oxalate monohydrate (whewellite) was formed with natural vanadinite because of the presence of associated ankerite [Ca(Fe(2+) ,Mg)(CO3 )2 ]. Aspergillus niger also precipitated lead oxalate during growth in the presence of lead carbonate, vanadium(V) oxide and ammonium metavanadate, while abiotic tests confirmed the efficacy of oxalic acid in solubilizing vanadinite and precipitating lead as oxalate. Geochemical modelling confirmed the complexity of vanadium speciation, and the significant effect of oxalate. Oxalate-vanadium complexes markedly reduced the vanadinite stability field, with cationic lead(II) and lead oxalate also occurring. In all treatments and geochemical simulations, no other lead vanadate, or vanadium minerals were detected. This research highlights the importance of oxalate in vanadinite bioweathering and suggests a general fungal transformation of lead-containing apatite group minerals (e.g. vanadinite, pyromorphite, mimetite) by this mechanism. The findings are also relevant to remedial treatments for lead/vanadium contamination, and novel approaches for vanadium recovery.
Collapse
Affiliation(s)
- Andrea Ceci
- Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.,Laboratorio Biodiversità dei Funghi, Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, 00185, Italy
| | - Young Joon Rhee
- Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Martin Kierans
- Electron Microscopy, Central Imaging Facility, Centre for Advanced Scientific Technologies, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Stephen Hillier
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK.,Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Helen Pendlowski
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Nia Gray
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Anna Maria Persiani
- Laboratorio Biodiversità dei Funghi, Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, 00185, Italy
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.,Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
44
|
Wei W, Cui J, Wei Z. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite. CHEMOSPHERE 2014; 105:14-23. [PMID: 24216261 DOI: 10.1016/j.chemosphere.2013.09.121] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
Understanding the effects of low molecular weight organic acids (LMWOAs) on the transformation of Pb(II) to geochemically stable pyromorphite (PY) by apatite materials (AMs), has considerable benefits for risk assessment and remediation strategies for contaminated water and soil. In this study, we systematically investigated the immobilization of Pb(II) from aqueous solution by natural phosphate rock (PR) and different crystallized hydroxyapatite (HAp) in the absence and presence of LMWOAs (oxalic, malic and citric acids). The results indicated that the effectiveness of PR and HAp in immobilizing Pb(II) followed in descending order by HAp2 (the poorly crystallized HAp), HAp1 (the well crystallized HAp) and PR, regardlessof the presence of LMWOAs. The presence of malic and citric acids significantly decreased the immobilizationefficiency of Pb(II) by HAp1 and PR, clarifying the lower adsorption affinities of Pb(II)-organic acid complexes on HAp1 and PR rather than Pb(II) ion. On thecontrary, oxalic acid could markedly enhance the removal of Pb(II) from aqueous solution by HAp1 and PR through the formation of lead oxalate, which was confirmed by FT-IR and XRDanalysis. Results also showed that LMWOAs had little promoting or inhibiting effect on the immobilization of Pb(II) by HAp2. This study suggested that the ubiquity of LMWOAs in natural environments could retard the transformation efficiency of Pb(II) to PY by AMs, especiallyin thepresenceof oxalic acid, and the poorly crystallized HAp2 had great potential to remediate Pb(II)-contaminated water and soil due to its insusceptibility to LMWOAs.
Collapse
Affiliation(s)
- Wei Wei
- Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jing Cui
- Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhenggui Wei
- Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
45
|
Rhee YJ, Hillier S, Pendlowski H, Gadd GM. Pyromorphite formation in a fungal biofilm community growing on lead metal. Environ Microbiol 2014; 16:1441-51. [DOI: 10.1111/1462-2920.12416] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Young Joon Rhee
- Geomicrobiology Group; College of Life Sciences; University of Dundee; Dundee Scotland UK
| | - Stephen Hillier
- Department of Environmental and Biochemical Sciences; The James Hutton Institute; Aberdeen Scotland UK
- Department of Soil and Environment; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Helen Pendlowski
- Department of Environmental and Biochemical Sciences; The James Hutton Institute; Aberdeen Scotland UK
| | - Geoffrey Michael Gadd
- Geomicrobiology Group; College of Life Sciences; University of Dundee; Dundee Scotland UK
| |
Collapse
|
46
|
Baker LR, Pierzynski GM, Hettiarachchi GM, Scheckel KG, Newville M. Micro-x-ray fluorescence, micro-x-ray absorption spectroscopy, and micro-x-ray diffraction investigation of lead speciation after the addition of different phosphorus amendments to a smelter-contaminated soil. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:488-97. [PMID: 25602650 DOI: 10.2134/jeq2013.07.0281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The stabilization of Pb on additions of P to contaminated soils and mine spoil materials has been well documented. It is clear from the literature that different P sources result in different efficacies of Pb stabilization in the same contaminated material. We hypothesized that the differences in the efficacy of Pb stabilization in contaminated soils on fluid or granular P amendment addition is due to different P reaction processes in and around fertilizer granules and fluid droplets. We used a combination of several synchrotron-based techniques (i.e., spatially resolved micro-X-ray fluorescence, micro-X-ray absorption near-edge structure spectroscopy, and micro-X-ray diffraction) to speciate Pb at two incubation times in a smelter-contaminated soil on addition of several fluid and granular P amendments. The results indicated that the Pb phosphate mineral plumbogummite was an intermediate phase of pyromorphite formation. Additionally, all fluid and granular P sources were able to induce Pb phosphate formation, but fluid phosphoric acid (PA) was the most effective with time and distance from the treatment. Granular phosphate rock and triple super phosphate (TSP) amendments reacted to generate Pb phosphate minerals, with TSP being more effective at greater distances from the point of application. As a result, PA and TSP were the most effective P amendments at inducing Pb phosphate formation, but caution needs to be exercised when adding large amounts of soluble P to the environment.
Collapse
|
47
|
Topolska J, Latowski D, Kaschabek S, Manecki M, Merkel BJ, Rakovan J. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1079-89. [PMID: 23872890 PMCID: PMC3880484 DOI: 10.1007/s11356-013-1968-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/27/2013] [Indexed: 05/25/2023]
Abstract
Remediation of lead (Pb)-contaminated sites with phosphate amendments is one of the best studied and cost-effective methods for in situ immobilization. In this treatment, a very stable mineral, pyromorphite Pb5(PO4)3Cl, is formed. Several studies propose to improve this treatment method with the addition of phosphate-solubilizing bacteria (PSB). The effect of bacteria on solubilization of pyromorphite is unknown. In this study, the effect of the soil microorganisms on the stability of pyromorphite Pb5(PO4)3Cl has been investigated in a set of batch solution experiments. The mineral was reacted with Pseudomonas putida, a common soil microorganism. Dissolution of pyromorphite was enhanced by the presence of P. putida, resulting in an elevated Pb concentration in the solution. This occurred even when the bacteria were provided with an additional source of phosphate in the solution. Pyromorphite has been shown to be a potential source of nutrient phosphorus for common soil bacteria. Thus, the use of PSB in remediation treatments of Pb contaminated sites may have adverse long-term impacts on Pb immobilization. Conscious phosphate management is suggested for long-term sustainability of the in situ Pb immobilization by pyromorphite formation.
Collapse
Affiliation(s)
- Justyna Topolska
- Department of Mineralogy, Petrography and Geochemistry, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059, Cracow, Poland,
| | | | | | | | | | | |
Collapse
|
48
|
Camenzuli D, Gore DB. Immobilization and Encapsulation of Contaminants Using Silica Treatments: A Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/rem.21377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review. ScientificWorldJournal 2013; 2013:524239. [PMID: 24319374 PMCID: PMC3844170 DOI: 10.1155/2013/524239] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/15/2013] [Indexed: 11/18/2022] Open
Abstract
Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.
Collapse
|
50
|
Debela F, Arocena JM, Thring RW, Whitcombe T. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 116:156-62. [PMID: 23313859 DOI: 10.1016/j.jenvman.2012.11.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 11/22/2012] [Accepted: 11/30/2012] [Indexed: 05/08/2023]
Abstract
Pyromorphite (PY) and some zinc phosphates (Zn-P) are very sparingly soluble minerals and hence can immobilize Pb and Zn in contaminated soils. However, mechanisms leading to the poor efficiency of PY and Zn-P formation in contaminated soils amended with P still remain unclear. We studied the influence of two low molecular weight organic acids (LMWOA) - oxalic acid and citric acid and diethylene triamine pentaacetic acid (DTPA) - in PY and Zn-P formation in a P-amended contaminated soil. Despite the high levels of metals (∼4% Pb and 21% Zn) in the study soil, the addition of up to 1% inorganic P transformed only up to 37% and 17% of the total Pb and Zn to PY and Zn-P, respectively. Semi-quantitative estimates from a linear combination fitting of X-ray absorption near edge spectra (LC-XANES fitting) showed that the formation of PY decreased from 37% to 3% of the total Pb in the presence of oxalic acid and the addition of 1% P. The reduced PY formation may be associated with the increase in organic-bound Pb from 9% to 54% and decrease in carbonate associated Pb from 42% to 12% with oxalic acid addition as indicated by a chemical sequential extraction (SE) technique. Citric acid seemed to have a less adverse effect in PY formation than oxalic acid. Our data also suggests both oxalic and citric acids have less adverse effects on the efficiency of Zn-P formation. From this study we conclude that the abundance of LMWOA in soil environments can be one factor contributing to the poor efficiency of P amendments practices to effectively immobilize Pb and Zn in metal contaminated soils.
Collapse
Affiliation(s)
- F Debela
- University of Northern British Columbia, Natural Resources and Environmental Studies, Prince George, BC, Canada V2N4Z9.
| | | | | | | |
Collapse
|