1
|
Vergara-Luis I, Rutkoski CF, Urionabarrenetxea E, Almeida EA, Anakabe E, Olivares M, Soto M, Prieto A. Assessment of sulfamethoxazole and oxytetracycline uptake and transformation in Eisenia fetida earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176397. [PMID: 39304161 DOI: 10.1016/j.scitotenv.2024.176397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The scientific community is becoming increasingly concerned about the recent detection of transformation products (TPs) of antimicrobials (AMs) and their presence in the food chain. There are growing concerns about the potential consequences on food safety and the proliferation of antimicrobial resistance. In this work, the transformation process of sulfamethoxazole (SMX) and oxytetracycline (OTC) in soil was thoroughly evaluated. For that purpose, soils were homogeneously contaminated at three concentration levels of SMX and OTC, independently, and samples were analysed after 7 and 14 days by Ultra High-Performance Liquid Chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS). The results have demonstrated a remarkable transformation, particularly noteworthy for SMX, as it exhibited an 89 % - 94 % decrease in concentration within the initial 7 days of the experiment. In addition, to assess whether terrestrial organisms would be able to accumulate the AMs, Eisenia fetida (E. fetida) earthworms were exposed to the above-mentioned concentration levels of AMs in soil. Both AMs were accumulated in the organisms after 14 days, but higher bioaccumulation factor values (BCF) were determined for SMX (0.52-17.84) compared to OTC (0.02-0.21) at all tested concentrations. The analyses were extended to search for TPs in earthworms and soils using a suspect screening approach. Concretely, by means of UHPLC-high resolution mass spectrometry (UHPLC-HRMS) three TPs were identified at 2a and 2b of confidence level. To the best of our knowledge, one SMX-TP and one OTC-TP were identified in earthworms and soil, respectively, for the first time in the present work. Earthworms did not experience weight loss or mortality in the presence of these AMs at levels found in the environment, but there was a decrease in riboflavin levels, which is linked to changes in the immune system. This study represents a significant advancement in understanding the impact of AMs in soil and their subsequent entry into the food chain. It also provides valuable insights into the potential effects of AMs and their TPs on organisms.
Collapse
Affiliation(s)
- I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - C F Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - E Urionabarrenetxea
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - E A Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - E Anakabe
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Soto
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
2
|
Vergara-Luis I, Rutkoski CF, Urionabarrenetxea E, Almeida EA, Anakabe E, Olivares M, Soto M, Prieto A. Antimicrobials in Eisenia fetida earthworms: A comprehensive study from method development to the assessment of uptake and degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171214. [PMID: 38408672 DOI: 10.1016/j.scitotenv.2024.171214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
In this work, an accurate analytical method was developed for the simultaneous analysis of twenty-seven antimicrobials (AMs) in earthworms using liquid chromatography coupled to a triple quadrupole mass spectrometry detector (UHPLC-MS/MS). Adequate apparent recoveries (80-120 %) and limits of quantification (LOQ) (1 μg·kg-1 - 10 μg·kg-1) were obtained, with the exception of norfloxacin (34 μg·kg-1). The method was applied to evaluate the accumulation of sulfamethazine (SMZ) and tetracycline (TC) in earthworms after performing OECD-207 toxicity test, in which Eisenia fetida (E. fetida) organisms were exposed to soils spiked with 10 mg·kg-1, 100 mg·kg-1 or 1000 mg·kg-1 of SMZ and TC, individually. The results confirmed the bioaccumulation of both AMs in the organisms, showing a greater tendency to accumulate SMZ since higher bioconcentration factor values were obtained for this compound at the exposure concentrations tested. In addition, the degradation of both AMs in both matrices, soils and earthworms was studied using liquid chromatography coupled to a q-Orbitrap high resolution mass spectrometry detector. Thirteen transformation products (TPs) were successfully identified, eight of them being identified for the first time in soil/earthworm (such as 4-Amino-3-chloro-n-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide or 4-(dimethylamino)-1,11,12a-trihydroxy-6,6-dimethyl-3,7,10,12-tetraoxo-3,4,4a,5,5a,6,7,10,12,12a-decahydrotetracene-2-carboxamide, among others) and their formation/degradation trend over time was also studied. Regarding the biological effects, only SMZ caused changes in earthworm growth, evidenced by weight loss in earthworms exposed to concentrations of 100 mg·kg-1 and 1000 mg·kg-1. Riboflavin decreased at all concentrations of SMZ, as well as at the highest concentration of TC. This indicates that these antibiotics can potentially alter the immune system of E. fetida. This research represents a significant advance in improving our knowledge about the contamination of soil by AM over time. It investigates the various ways in which earthworms are exposed to AMs, either by skin contact or ingestion. Furthermore, it explores how these substances accumulate in earthworms, the processes by which earthworms break them down or metabolise them, as well as the resulting TPs. Finally, it examines the potential effects of these substances on the environment.
Collapse
Affiliation(s)
- I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - C F Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - E Urionabarrenetxea
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - E A Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - E Anakabe
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Soto
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
3
|
Zhang J, He M, Liu Y, Zhang L, Jiang H, Lin D. Chlorine substitution-dependent toxicities of polychlorinated biphenyls to the earthworm Eisenia fetida in soil. J Environ Sci (China) 2023; 128:171-180. [PMID: 36801033 DOI: 10.1016/j.jes.2022.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 06/18/2023]
Abstract
Polychlorinated biphenyls (PCBs) with different chlorine substitution patterns often coexist in e-waste-processing sites. However, the single and combined toxicity of PCBs to soil organisms and the influence of chlorine substitution patterns remain largely unknown. Herein, we evaluated the distinct in vivo toxicity of PCB28 (a trichlorinated PCB), PCB52 (a tetrachlorinated PCB), PCB101 (a pentachlorinated PCB), and their mixture to earthworm Eisenia fetida in soil, and looked into the underlining mechanisms in an in vitro test using coelomocytes. After a 28-days exposure, all PCBs (up to 10 mg/kg) were not fatal to earthworms, but could induce intestinal histopathological changes and microbial community alterations in the drilosphere system, along with a significant weight loss. Notably, pentachlorinated PCBs with a low bioaccumulation ability showed greater inhibitory effects on the growth of earthworm than lowly chlorinated PCBs, suggesting that bioaccumulation was not the main determinant of chlorine substitution-dependent toxicity. Furthermore, in vitro assays showed that the highly chlorinated PCBs induced a high-percentage apoptosis of eleocytes in the coelomocytes and significantly activated antioxidant enzymes, indicating that the distinct cellular vulnerability to lowly/highly chlorinated PCBs was the main contributor to the PCBs toxicity. These findings emphasize the specific advantage of using earthworms in the control of lowly chlorinated PCBs in soil due to their high tolerance and accumulation ability.
Collapse
Affiliation(s)
- Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Mengyang He
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, Hangzhou 310058, China
| | - Yaoxuan Liu
- Institute of Environmental Health, Zhejiang University, Hangzhou 310058, China; China Energy Science and Technology Research Institute Co. Ltd., Nanjing 210023, China
| | - Lei Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, Hangzhou 310058, China
| | - Haojie Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
4
|
Manna S, Ray A, Gautam A, Mukherjee S, Ray M, Ray S. A comparative account of coelomocyte of earthworm ecotypes with reference to its morphology, morphometry, density, phagocytosis, autofluorescence, and oxidative status. J Morphol 2022; 283:956-972. [PMID: 35621718 DOI: 10.1002/jmor.21483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Earthworms inhabit different strata of moist soil. Epigeic and endogeic earthworms prefer superficial and inner stratum of soil respectively, whereas, semiaquatic species are distributed around hydrated soil near ponds and lakes. Coelomocytes, the chief immunoeffector cells of coelomic origin, perform diverse physiological functions like phagocytosis, maintenance of cellular homeostasis, and acid-base balance of coelomic fluid, graft rejection, elicitation of cytotoxic, and oxidative responses under the challenges of pathogens and toxins. The present study aims to analyze selected morphological and functional parameters in three differentially adapted Indian earthworms of nonsimilar habitats. Coelomocytes of Glyphidrilus tuberosus (Stephenson, 1916) (semiaquatic), Perionyx excavatus (Perrier, 1872) (epigeic), and Eutyphoeus orientalis (Beddard, 1883) (endogeic) were isolated for morphological and morphometric analyses and subjected to determination of phagocytic, oxidative, and cytotoxic responses. Activities of phenoloxidase, pro, and antioxidant enzymes, and autofluorescence were determined in the extruded coelomocytes of earthworms of three contrasting habitats. The differential result may be correlated with species-specific responses and variation in habitat preference and related adaptation.
Collapse
Affiliation(s)
- Sumit Manna
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| | - Abhishek Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| | - Arunodaya Gautam
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| | - Soumalya Mukherjee
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India.,Department of Zoology, Brahmananda Keshab Chandra College, Kolkata, West Bengal, India
| | - Mitali Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| | - Sajal Ray
- Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Urionabarrenetxea E, Garcia-Velasco N, Zaldibar B, Soto M. Impacts of sewage sludges deposition on agricultural soils: Effects upon model soil organisms. Comp Biochem Physiol C Toxicol Pharmacol 2022; 255:109276. [PMID: 35114392 DOI: 10.1016/j.cbpc.2022.109276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
During years sewage sludges have been worldwide poured in agricultural soils to enhance vegetal production. The "Landfill 17" located in Gernika-Lumo town (43°19'28.9"N 2°40'30.9"W) received for decades sewage sludges from the local Waste Water Treatment Plant (WWTP) with agricultural purposes. To this WWTP, several pollutants as heavy metals (Cd, Cr, Ni, Pb), PAHs (benzo(a)pyrene among many others) and pesticides (i.e. dieldrin) could have arrived from local industry and be widespread all over the landfill. Soil invertebrates like earthworms and plants are of special interest due to their close contact with the polluted matrix and their potential effects by the presence of pollutants. In this context, the aim of the present work was to determine the health status of landfill soils by evaluating the effects on model soil organisms exerted by long-lasted pollutants after on site deposition of WWTP active sludges. With such a purpose, different standard toxicity tests and cellular level endpoints were performed on lettuce and earthworms. Indeed, germination (EPA 850.4100) and root elongation (EPA 850.4230) tests were carried out in Lactuca sativa, while OECD acute toxicity test (OECD-204), reproduction test (OECD-222) and Calcein-AM viability test with coelomocytes were applied in Eisenia fetida worms. For the exposure, soils collected in the landfield containing low, medium and high concentrations of pollutants were selected, and as reference LUFA 2.3 natural standard soil was chosen. While no differences were shown in the assays with L. sativa, significant differences between sludge exposed groups and control group were recorded with E. fetida, with lower coelomocyte number and viability and higher tissue metal accumulation after 28 days of exposure to polluted soils. These results confirmed the impact of contaminants to soil biota even after long periods of time.
Collapse
Affiliation(s)
- Erik Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Beñat Zaldibar
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain..
| |
Collapse
|
6
|
Vorobeichik EL, Ermakov AI, Nesterkova DV, Grebennikov ME. Coarse Woody Debris as Microhabitats of Soil Macrofauna in Polluted Areas. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020010173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Tan K, Zhang H, Lim LS, Ma H, Li S, Zheng H. Roles of Carotenoids in Invertebrate Immunology. Front Immunol 2020; 10:3041. [PMID: 32010132 PMCID: PMC6979042 DOI: 10.3389/fimmu.2019.03041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022] Open
Abstract
Carotenoids are biologically active pigments that are well-known to enhance the defense and immunity of the vertebrate system. However, in invertebrates, the role of carotenoids in immunity is not clear. Therefore, this study aims to review the scientific evidence for the role of carotenoids in invertebrate immunization. From the analysis of published literatures and recent studies from our laboratory, it is obvious that carotenoids are involved in invertebrate immunity in two ways. On the one hand, carotenoids can act as antioxidant enzymes to remove singlet oxygen, superoxide anion radicals, and hydroxyl radicals, thereby reducing SOD activity and reducing the cost of immunity. In some organisms, carotenoids have been shown to promote SOD activity by up-regulating the expression of the ZnCuSOD gene. Carotenoids, on the other hand, play a role in the expression and regulation of many genes involved in invertebrate immunity, including thioredoxins (TRX), peptidoglycan recognition receptor proteins (PGRPs), ferritins, prophenoloxidase (ProPO), vitellogenin (Vg), toll-like receptor (TLRs), heat shock proteins (HSPs), and CuZnSOD gene. The information in this review is very useful for updating our understanding of the progress of carotenoid research in invertebrate immunology and to help identify topics for future topics.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Leong-Seng Lim
- Borneo Marine Research Institute, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
8
|
Roubalová R, Dvořák J, Procházková P, Škanta F, Navarro Pacheco NI, Semerád J, Cajthaml T, Bilej M. The role of CuZn- and Mn-superoxide dismutases in earthworm Eisenia andrei kept in two distinct field-contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:363-371. [PMID: 29778984 DOI: 10.1016/j.ecoenv.2018.04.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), together with polycyclic aromatic hydrocarbons (PAHs), represent highly toxic and persistent organic environmental pollutants, especially due to their capability for bioaccumulation in fatty tissues. To observe the environmentally relevant effect of these compounds on earthworms, two soils naturally contaminated with PCDD/Fs and PAHs were used in our experiments. We focused on the role of CuZn- and Mn-superoxide dismutases. We assembled a full-length sequences of these molecules from Eisenia andrei earthworm and confirmed their activity. We demonstrated the significant reduction of CuZn-SOD on both mRNA and enzyme activity levels and increased levels of reactive oxygen species in earthworms kept in PCDD/F-polluted soil, which corresponds to the observed histopathologies of the earthworm intestinal wall and adjacent chloragogenous tissue. The results show an important role of CuZn-SOD in earthworm tissue damage caused by PCDD/Fs present in soil. We did not detect any significant changes in the mRNA expression or activity of Mn-SOD in these earthworms. In earthworms maintained in PAH-polluted soil the activity of both CuZn-SOD and Mn-SOD significantly increased. No histopathological changes were detected in these worms, however significant decrease of coelomocyte viability was observed. This reduced viability was most likely independent of oxidative stress.
Collapse
Affiliation(s)
- Radka Roubalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - Jiří Dvořák
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - Petra Procházková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - František Škanta
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | | | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic.
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| | - Martin Bilej
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| |
Collapse
|
9
|
Ghosh S. Environmental pollutants, pathogens and immune system in earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6196-6208. [PMID: 29327186 DOI: 10.1007/s11356-017-1167-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Earthworms also known as farmer's friends are natural tillers of soil. They belong to Phylum Annelida and class Oligochaeta. Acid soils with organic matter and surface humus maintain the largest fauna of worms and earthworms. Due to their habitat in soil, they are constantly exposed to microbes and pollution generated by anthropogenic sources. Studies have revealed that damage of the immune system of earthworms can lead to alterations of both morphological and cellular characteristics of worms, activation of signalling pathways and can strongly influence their survival. Therefore, the understanding of the robust immune system in earthworms has become very important from the point of view of understanding its role in combating pathogens and pollutants and its role in indicating the soil pollution. In this article, we have outlined the (i) components of the immune system and (ii) their function of immunological responses on exposure to pollutants and pathogens. This study finds importance from the point of view of ecotoxicology and monitoring of earthworm health and exploring the scope of earthworm immune system components as biomarkers of pollutants and environmental toxicity. The future scope of this review remains in understanding the earthworm immunobiology and indicating strong biomarkers for pollution.
Collapse
Affiliation(s)
- Shyamasree Ghosh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
10
|
Verdú I, Trigo D, Martínez-Guitarte JL, Novo M. Bisphenol A in artificial soil: Effects on growth, reproduction and immunity in earthworms. CHEMOSPHERE 2018; 190:287-295. [PMID: 28992482 DOI: 10.1016/j.chemosphere.2017.09.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
The application of biosolids in agricultural fields is increasing annually. They contain not only nutrients but also xenobiotics, such as Bisphenol A (BPA). These compounds are not regulated in the use of biosolids in agriculture, which highlights the need to assess their effects on soil life, of which earthworms are most abundant of the animal representatives. In this study the effect of BPA on life-history parameters, such as mortality, growth and reproduction, and on immunity, is evaluated for Dendrobaena veneta and Eisenia fetida. Sublethal concentrations were evaluated by a modified OECD artificial soil test. Decline in growth with increasing concentration of BPA was detected during the first two weeks and the opposite effect for the next two, although these differences were only significant at the highest concentration. Reproduction traits were only significantly different for E. fetida, for which the number of juveniles decreased at higher concentrations, thus showing different sensitivity in both species. By using a contact test, the potentially harmful effect of direct contact with BPA was shown to be much higher than in soil (resembling natural) conditions. Finally, results indicate that BPA may not affect the immune system of these animals, at least in terms of coelomocyte viability.
Collapse
Affiliation(s)
- I Verdú
- Soil Zoology Group, Departamento de Zoología y Antropología Física, Facultad de Biología, Complutense University, Jose Antonio Nováis s/n, 28040 Madrid, Spain
| | - D Trigo
- Soil Zoology Group, Departamento de Zoología y Antropología Física, Facultad de Biología, Complutense University, Jose Antonio Nováis s/n, 28040 Madrid, Spain
| | - J L Martínez-Guitarte
- Environmental Toxicology and Biology Group, Departamento de Física Matemática y de Fluídos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - M Novo
- Environmental Toxicology and Biology Group, Departamento de Física Matemática y de Fluídos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Genázio Pereira PC, Reimão RV, Pavesi T, Saggioro EM, Moreira JC, Veríssimo Correia F. Lethal and sub-lethal evaluation of Indigo Carmine dye and byproducts after TiO 2 photocatalysis in the immune system of Eisenia andrei earthworms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:275-282. [PMID: 28551585 DOI: 10.1016/j.ecoenv.2017.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
The Indigo carmine (IC) dye has been widely used in textile industries, even though it has been considered toxic for rats, pigs and humans. Owing to its toxicity, wastes containing this compound should be treated to minimize or eliminate their toxic effects on the biota. As an alternative to wastewater treatment, advanced oxidative processes (AOPs) have been highlighted due to their high capacity to destruct organic molecules. In this context, this study aimed to evaluate Indigo Carmine toxicity to soil organisms using the earthworm Eisenia andrei as a model-organism and also verify the efficiency of AOP in reducing its toxicity to these organisms. To this end, lethal (mortality) and sub-lethal (loss or gain of biomass, reproduction, behavior, morphological changes and immune system cells) effects caused by this substance and its degradation products in these annelids were evaluated. Morphological changes were observed even in organisms exposed to low concentrations, while mortality was the major effect observed in individuals exposed to high levels of indigo carmine dye. The organisms exposed to the IC during the contact test showed mortality after 72h of exposure (LC50 = 75.79mgcm-2), while those exposed to photoproducts showed mortality after 48h (LC50 = 243min). In the chronic study, the organisms displayed a mortality rate of 14%, while those exposed to the photoproduct reached up to 32.7%. A negative influence of the dye on the reproduction rate was observed, while by-products affected juvenile survival. A loss of viability and alterations in the cellular proportion was verified during the chronic test. However, the compounds did not alter the behavior of the annelids in the leak test (RL ranged from 20% to 30%). Although photocatalysis has been presented as an alternative technology for the treatment of waste containing the indigo carmine dye, this process produced byproducts even more toxic than the original compounds to E. andrei.
Collapse
Affiliation(s)
| | - Roberta Valoura Reimão
- Department of Natural Sciences, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458 - 22290-20, Rio de Janeiro, Brazil
| | - Thelma Pavesi
- Studies Center Occupational Health and Human Ecology, National School of Public Health, Leopoldo Bulhões Street, 1480 - 21041-210, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Department of Sanitation and Environmental Health, National School of Public Health, Leopoldo Bulhões Street, 1480 - 21041-210, Rio de Janeiro, Brazil.
| | - Josino Costa Moreira
- Studies Center Occupational Health and Human Ecology, National School of Public Health, Leopoldo Bulhões Street, 1480 - 21041-210, Rio de Janeiro, Brazil
| | - Fábio Veríssimo Correia
- Department of Natural Sciences, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458 - 22290-20, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS One 2017. [PMID: 28125623 DOI: 10.1371/journal.pone.0170092.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs) and sodium pentachlorophenol (PCP-Na) using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2-4×104 cells/well (1-2×105 cells/mL) in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP). In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants.
Collapse
|
13
|
Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS One 2017; 12:e0170092. [PMID: 28125623 PMCID: PMC5268766 DOI: 10.1371/journal.pone.0170092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/28/2016] [Indexed: 11/24/2022] Open
Abstract
As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs) and sodium pentachlorophenol (PCP-Na) using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2–4×104 cells/well (1–2×105 cells/mL) in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP). In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants.
Collapse
|
14
|
Rorat A, Suleiman H, Grobelak A, Grosser A, Kacprzak M, Płytycz B, Vandenbulcke F. Interactions between sewage sludge-amended soil and earthworms--comparison between Eisenia fetida and Eisenia andrei composting species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3026-35. [PMID: 26517992 DOI: 10.1007/s11356-015-5635-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/18/2015] [Indexed: 05/23/2023]
Abstract
Vermicomposting is an eco-friendly technology, where earthworms are introduced in the waste, inter alia sewage sludge, to cooperate with microorganisms and enhance decomposition of organic matter. The main aims of the present study was to determine the influence of two different earthworm species, Eisenia fetida and Eisenia andrei, on the changes of selected metallic trace elements content in substratum during vermicomposting process using three different sewage sludge mainly differentiated by their metal contents. Final vermicompost has shown a slight reduction in Cd, Cu, Ni, and Pb, while the Zn concentration tends to increase. Accumulation of particular heavy metals in earthworms' bodies was assessed. Both species revealed high tendency to accumulate Cd and Zn, but not Cu, Ni, and Pb, but E. andrei has higher capabilities to accumulate some metals. Riboflavin content, which content varies depending on metal pollution in several earthworms species, was measured supravitaly in extruded coelomocytes. Riboflavin content decreased slightly during the first 6 weeks of exposure and subsequently restored till the end of the 9-week experiment. Selected agronomic parameters have also been measured in the final product (vermicompost) to assess the influence of earthworms on substratum.
Collapse
Affiliation(s)
- Agnieszka Rorat
- Institute of Environmental Engineering, Czestochowa University of Technology, ul. Brzeznicka 60a, 42-200, Czestochowa, Poland.
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650, Villeneuve d'Ascq, France.
| | - Hanine Suleiman
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650, Villeneuve d'Ascq, France
| | - Anna Grobelak
- Institute of Environmental Engineering, Czestochowa University of Technology, ul. Brzeznicka 60a, 42-200, Czestochowa, Poland
| | - Anna Grosser
- Institute of Environmental Engineering, Czestochowa University of Technology, ul. Brzeznicka 60a, 42-200, Czestochowa, Poland
| | - Małgorzata Kacprzak
- Institute of Environmental Engineering, Czestochowa University of Technology, ul. Brzeznicka 60a, 42-200, Czestochowa, Poland
| | - Barbara Płytycz
- Institute of Zoology, Jagiellonian University, Cracow, Poland
| | - Franck Vandenbulcke
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650, Villeneuve d'Ascq, France
| |
Collapse
|
15
|
Irizar A, Rivas C, García-Velasco N, Goñi de Cerio F, Etxebarria J, Marigómez I, Soto M. Establishment of toxicity thresholds in subpopulations of coelomocytes (amoebocytes vs. eleocytes) of Eisenia fetida exposed in vitro to a variety of metals: implications for biomarker measurements. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1004-1013. [PMID: 25762103 DOI: 10.1007/s10646-015-1441-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
Coelomocytes comprise the immune system of earthworms and due to their sensitivity responding to a wide range of pollutants have been widely used as target cells in soil ecotoxicology. Recently, in vitro assays with primary cultures of coelomocytes based in the neutral red uptake (NRU) assay have been developed as promising tools for toxicity assessment chemical in a reproducible and cost-effective manner. However, NRU showed a bimodal dose-response curve previously described after in vivo and in vitro exposure of earthworm coelomocytes to pollutants. This response could be related with alterations in the relative proportion of coelomocyte subpopulations, amoebocytes and eleocytes. Thus, the aims of the present work were, first, to establish the toxicity thresholds that could be governed by different cell-specific sensitivities of coelomocytes subpopulations against a series of metals (Cu, Cd, Pb, Ni), and second to understand the implication that coelomocyte population dynamics (eleocytes vs. amoebocytes) after exposure to pollutants can have on the viability of coelomocytes (measured by NRU assay) as biomarker of general stress in soil health assessment. Complementarily flow cytometric analyses were applied to obtain correlative information about single cells (amoebocytes and eleocytes) in terms of size and complexity, changes in their relative proportion and mortality rates. The results indicated a clear difference in sensitivity of eleocytes and amoebocytes against metal exposure, being eleocytes more sensitive. The bimodal dose-response curve of NRU after in vitro exposure of primary cultures of coelomocytes to metals revealed an initial mortality of eleocytes (decreased NRU), followed by an increased complexity of amoebocytes (enhanced phagocytosis) and massive mortality of eleocytes (increased NRU), to give raise to a massive mortality of amoebocytes (decrease NRU). A synergistic effect on NRU was exerted by the exposure to high Cu concentrations and acidic pH (elicited by the metal itself), whereas the effects on NRU produced after exposure to Cd, Ni and Pb were due solely to the presence of metals, being the acidification of culture medium meaningless.
Collapse
Affiliation(s)
- Amaia Irizar
- Cell Biology & Environmental Toxicology Research Group, Research Centre for Experimental Marine Biology & Biotechnology (PiE-UPV/EHU) & Zoology & Animal Cell Biology Department (Faculty of Science & Technology), University of the Basque Country, P.O. 11 Box 644, 48080, Bilbao, Basque Country, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Homa J, Rorat A, Kruk J, Cocquerelle C, Plytycz B, Vandenbulcke F. Dermal exposure of Eisenia andrei earthworms: Effects of heavy metals on metallothionein and phytochelatin synthase gene expressions in coelomocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1397-1404. [PMID: 25693738 DOI: 10.1002/etc.2944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/01/2014] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
Parameters such as total number of coelomocytes, riboflavin content in coelomocytes, expression of genes implied in metal homeostasis, and detoxification mechanisms can be used as biomarkers to assess the impact of metals on annelids. Defense biomarkers (detoxification gene expressions and coelomocyte parameters) were investigated in the ecotoxicologically important species Eisenia andrei following in vivo exposure to 5 different metals (zinc, copper, nickel, lead, and cadmium) at known concentrations. Coelomocyte numbers and riboflavin content were not affected by metallic exposure, but metal-specific gene expression variations were evidenced.
Collapse
Affiliation(s)
- Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Rorat
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
- Environmental Axis, Lille 1 University, Villeneuve d'Ascq, France
| | - Jerzy Kruk
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Barbara Plytycz
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
17
|
Irizar A, Rodríguez MP, Izquierdo A, Cancio I, Marigómez I, Soto M. Effects of soil organic matter content on cadmium toxicity in Eisenia fetida: implications for the use of biomarkers and standard toxicity tests. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:181-192. [PMID: 25015731 DOI: 10.1007/s00244-014-0060-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
Bioavailability is affected by soil physicochemical characteristics such as pH and organic matter (OM) content. In addition, OM constitutes the energy source of Eisenia fetida, a well established model species for soil toxicity assessment. The present work aimed at assessing the effects of changes in OM content on the toxicity of Cd in E. fetida through the measurement of neutral red uptake (NRU) and mortality, growth, and reproduction (Organisation for Economic Co-operation and Development [OECD] Nos. 207 and 222). Complementarily, metallothionein (MT) and catalase transcription levels were measured. To decrease variability inherent to natural soils, artificial soils (Organization for Economic Cooperation and Development 1984) with different OM content (6, 10, and 14%) and spiked with Cd solutions at increasing concentrations were used. Low OM in soil decreased soil ingestion and Cd bioaccumulation but also increased Cd toxicity causing lower NRU of coelomocytes, 100 % mortality, and stronger reproduction impairment, probably due to the lack of energy to maintain protection mechanisms (production of MT).Cd bioaccumulation did not reflect toxicity, and OM played a pivotal role in Cd toxicity. Thus, OM content should be taken into account when using E. fetida in in vivo exposures for soil health assessment.
Collapse
|
18
|
Irizar A, Duarte D, Guilhermino L, Marigómez I, Soto M. Optimization of NRU assay in primary cultures of Eisenia fetida for metal toxicity assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1326-1335. [PMID: 25011921 DOI: 10.1007/s10646-014-1275-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Coelomocytes, immunocompetent cells of lumbricids, have received special attention for ecotoxicological studies due to their sensibility to pollutants. Their in vitro responses are commonly quantified after in vivo exposure to real or spiked soils. Alternatively, quantifications of in vitro responses after in vitro exposure are being studied. Within this framework, the present study aimed at optimizing the neutral red uptake (NRU) assay in primary culture of Eisenia fetida coelomocytes for its application in soil toxicity testing. Optimized assay conditions were: earthworm depuration for 24 h before retrieving coelomocytes by electric extrusion; 2 × 10(5) seeded cells/well (200 µl) for the NRU assay and incubation for 1 h with neutral red dye. Supplementation of the culture medium with serum was not compatible with the NRU assay, but coelomocytes could be maintained with high viability for 3 days in a serum-free medium without replenishment. Thus, primary cultures were used for 24 h in vitro toxicity testing after exposure to different concentrations of Cd, Cu, Ni and Pb (ranging from 0.1 to 100 μg/ml). Primary cultures were sensitive to metals, the viability declining in a dose-dependent manner. The toxicity rank was, from high to low, Pb > Ni > Cd > Cu. Therefore, it can be concluded that the NRU assay in coelomocytes in primary cultures provides a sensitive and prompt response after in vitro exposure to metals.
Collapse
Affiliation(s)
- Amaia Irizar
- Cell Biology & Environmental Toxicology Research Group, Research Centre for Experimental Marine Biology & Biotechnology (PIE) & Zoology & Animal Cell Biology Department (Faculty of Science & Technology), University of the Basque Country, P.O. 11 Box 644, 48080, Bilbao, Basque Country, Spain
| | | | | | | | | |
Collapse
|
19
|
Homa J, Klimek M, Kruk J, Cocquerelle C, Vandenbulcke F, Plytycz B. Metal-specific effects on metallothionein gene induction and riboflavin content in coelomocytes of Allolobophora chlorotica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1937-1943. [PMID: 20696476 DOI: 10.1016/j.ecoenv.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/24/2010] [Accepted: 07/03/2010] [Indexed: 05/29/2023]
Abstract
Metal pollution affects earthworm coelomocytes, including their differential counts, riboflavin content and metallothioneins (MT) involved in metal homoeostasis and detoxification. The present work shows effects of Ni, Cu, Zn, Cd, and Pb at the same molarity (1mM) on coelomocytes of Allolobophora chlorotica after 2-day worm dermal exposure to metal chlorides. Numbers of coelomocytes/eleocytes extruded by electric shock and amounts of riboflavin in coelomocyte lysates were significantly decreased in Cu-exposed worms, less diminished in response to Ni, Zn, Cd, and unaffected by Pb. In sharp contrast, real-time PCR revealed a very strong (272 fold) MT-mRNA induction in response to Cd only. The induction was very low in response to Zn, Cu, Pb, and Ni ions (2.6, 2.1, 1.4, and 1.3-fold, respectively). In conclusion, decreased cell counts and riboflavin content are molecular biomarkers of Cu exposure while induction of MT-mRNA is a molecular biomarker of worm Cd exposure.
Collapse
Affiliation(s)
- Joanna Homa
- Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, 30-060 Krakow, Poland
| | | | | | | | | | | |
Collapse
|