1
|
Mosharaf MK, Gomes RL, Cook S, Alam MS, Rasmusssen A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. CHEMOSPHERE 2024; 364:143055. [PMID: 39127189 DOI: 10.1016/j.chemosphere.2024.143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The presence of pharmaceutical pollutants in water sources has become a growing concern due to its potential impacts on human health and other organisms. The physicochemical properties of pharmaceuticals based on their intended therapeutical application, which include antibiotics, hormones, analgesics, and antidepressants, is quite diverse. Their presence in wastewater, sewerage water, surface water, ground water and even in drinking water is reported by many researchers throughout the world. Human exposure to these pollutants through drinking water or consumption of aquatic and terrestrial organisms has raised concerns about potential adverse effects, such as endocrine disruption, antibiotic resistance, and developmental abnormalities. Once in the environment, they can persist, undergo transformation, or degrade, leading to a complex mixture of contaminants. Application of treated wastewater, compost, manures or biosolids in agricultural fields introduce pharmaceutical pollutants in the environment. As pharmaceuticals are diverse in nature, significant differences are observed during their uptake and accumulation in plants. While there have been extensive studies on aquatic ecosystems, the effect on agricultural land is more disparate. As of now, there are few reports available on the potential of plant uptake and transportation of pharmaceuticals within and between plant organs. This review summarizes the occurrence of pharmaceuticals in aquatic water bodies at a range of concentrations and their uptake, accumulation, and transport within plant tissues. Research gaps on pharmaceutical pollutants' specific effect on plant growth and future research scopes are highlighted. The factors affecting uptake of pharmaceuticals including hydrophobicity, ionization, physicochemical properties (pKa, logKow, pH, Henry's law constant) are discussed. Finally, metabolism of pharmaceuticals within plant cells through metabolism phase enzymes and plant responses to pharmaceuticals are reviewed.
Collapse
Affiliation(s)
- Md Khaled Mosharaf
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom; Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom
| | - Sarah Cook
- Water and Environmental Engineering, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mohammed S Alam
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| | - Amanda Rasmusssen
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| |
Collapse
|
2
|
Zhang J, Liu ZH, Wu JL, Ding YT, Ma QG, Hayat W, Liu Y, Wang PJ, Dang Z, Rittmann B. Deconjugation potentials of natural estrogen conjugates in sewage and wastewater treatment plant: New insights from model prediction and on-site investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172071. [PMID: 38554960 DOI: 10.1016/j.scitotenv.2024.172071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Natural estrogen conjugates play important roles in municipal wastewater treatment plant (WWTP), but their deconjugation potentials are poorly understood. This work is the first to investigate the relationships between the enzyme activities of arylsulfatase/β-glucuronidase and deconjugation potentials of natural estrogen conjugates. This work led to three important findings. First, the enzyme activity of β-glucuronidase in sewage is far higher than that of arylsulfatase, while their corresponding activities in activated sludge were similar. Second, a model based on β-glucuronidase could successfully predict the deconjugation potentials of natural estrogen glucuronide conjugates in sewage. Third, the enzyme activity of arylsulfatase in sewage was too low to lead to evident deconjugation of sulfate conjugates, which means that the deconjugation rate of estrogen sulfates can be regarded as zero. By comparing their theoretical removal based on enzyme activity and on-site investigation, it is reasonable to conclude that reverse deconjugation of estrogen conjugates (i.e., conjugation of natural estrogens to form conjugated estrogens) likely exist in WWTP, which explains well why natural estrogen conjugates cannot be effectively removed in WWTP. Meanwhile, this work provides new insights how to improve the removal performance of WWTP on natural estrogen conjugates. SYNOPSIS: This work is the first to show how arylsulfatase/β-glucuronidase could affect deconjugation of natural estrogen conjugates and possible way to enhance their removal in wastewater treatment plant.
Collapse
Affiliation(s)
- Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Labora tory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Jia-le Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yu-Ting Ding
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Waseem Hayat
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Peng-Jie Wang
- Shijing Water Purification Branch, Guangzhou Water Purification Co. LTD, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Bruce Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe 85287-5701, AZ, United States
| |
Collapse
|
3
|
Ashfaq M, Li Y, Zubair M, Ur Rehman MS, Sumrra SH, Nazar MF, Mustafa G, Fazal MT, Ashraf H, Sun Q. Occurrence and risk evaluation of endocrine-disrupting chemicals in wastewater and surface water of Lahore, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4837-4851. [PMID: 36947351 DOI: 10.1007/s10653-023-01527-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The current study highlights the occurrence, spatial distribution, and risk assessment of 16 endocrine-disrupting chemicals (EDCs) including their transformation products (TPs) in the wastewater and surface water of Lahore, Pakistan, using solid-phase extraction followed by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The parent EDCs include bisphenol A (BPA), triclosan (TCS), triclocarban (TCC), estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), 4-n-octylphenol (4n-OP), and 4-n-nonylphenol (4n-NP). The TPs include two TPs each of BPA, TCC, and estrogens along with a TP of TCS. Most EDCs showed 100% detection frequency in the wastewater with highest median concentration of 1310 ng/L for E3. In the surface water, the highest median concentration was, however, observed for BPA (54.6 ng/L). Spatial variations in terms of sum of concentration due to all EDCs and their TPs were observed at different sampling points which suggest contamination due to industrial waste from nearby industrial estate. Risk evaluation in terms of risk quotient (RQ) and estradiol equivalent factor (EEQ) showed that most of EDCs and their TPs could pose high risk and estrogenicity to the surrounding environment. From the results of the current study, it is observed that the environment of Pakistan is deteriorating and is potential risk for endocrine disruption. It is, therefore, recommended to take stringent measures to make it sustainable for current as well as for future generations.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Department of Chemistry, University of Gujrat, Gujrat, PO BOX 50700, Pakistan
| | - Yan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, Fujian, China
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Gujrat, PO BOX 50700, Pakistan.
| | - Muhammad Saif Ur Rehman
- Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | | | - Muhammad Faizan Nazar
- Division of Science and Technology, Department of Chemistry, University of Education Lahore, Multan Campus, Pakistan
| | - Ghulam Mustafa
- Department of Chemistry, University of Gujrat, Gujrat, PO BOX 50700, Pakistan
| | - Muhammad Tahir Fazal
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore, 54000, Pakistan
| | - Humayun Ashraf
- Department of Geography, University of Gujrat, Gujrat, 50700, Pakistan
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
4
|
Ciślak M, Kruszelnicka I, Zembrzuska J, Ginter-Kramarczyk D. Estrogen pollution of the European aquatic environment: A critical review. WATER RESEARCH 2023; 229:119413. [PMID: 36470046 DOI: 10.1016/j.watres.2022.119413] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Among the plethora of chemicals released into the environment, much attention is paid to endocrine disrupting compounds (EDCs). Natural estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3) are excreted by humans as well as animals, and can enter the environment as a result of discharging domestic sewage and animal waste. These compounds can cause deleterious effects such as feminization, infertility and hermaphroditism in organisms that inhabit water bodies. This study provides an overview of the level of estrogen exposures in surface waters, groundwater and river sediments in European countries. The conducted review shows that estrogen concentrations were within the range of 0.1 ng L - 10 ng /L in the majority of the tested environmental samples. However, the authors of the study point out that there are still many unexplored areas and a limited amount of data that mainly concerns Eastern European countries. The study also analysed the factors that influence the increased emissions of estrogens to the environment, which may be helpful for identifying particularly polluted areas.
Collapse
Affiliation(s)
- Marianna Ciślak
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland.
| | - Izabela Kruszelnicka
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland
| | - Joanna Zembrzuska
- Poznan University of Technology, Faculty of Chemical Technology Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan
| | - Dobrochna Ginter-Kramarczyk
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland
| |
Collapse
|
5
|
Hung HS, Yeh KJC, Chen TC. Investigation of free and conjugated estrogen fate and emission coefficients in three duck farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9874-9885. [PMID: 36059016 DOI: 10.1007/s11356-022-22829-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Concentration animal feeding operation (CAFO) is an important source of environmental estrogen. However, to the best of our knowledge, the data on estrogen discharge during duck breeding and growth is insufficient. This study used liquid chromatography with tandem mass spectrometry (LC/MS/MS) to analyze the free and conjugated estrogen concentrations in the surface water, outlet water, groundwater, and duck manure/soil mixture at three duck farms in Taiwan. Natural estrogen species included estrone (E1), 17β-estradiol (E2), estriol (E3), estrone-3-sulfate (E1-3S), 17β-estradiol-3-sulfate (E2-3S), estrone-3-glucuronide (E1-3G), and 17β-estradiol-3-glucuronide (E2-3G), whereas synthetic estrogen included 17α-ethynylestradiol (EE2) and diethylstilbestrol (DES). This study showed that the total estrogen concentrations in the surface water and groundwater were 15.4 and 4.5 ng/L, respectively, which constituted 56% and 58%, respectively, conjugated estrogen. From the pond to the outlet water, the total estrogen concentration decreased by 3.9 ng/L (23% loss) in the duck farms. However, the estrogenic potency was slightly reduced from 0.91 to 0.88 E2 equivalent/L, showing a negligible decrease. From the pond to the outlet water, the field results showed that converting the conjugated estrogen into free estrogen in the duck farm-released water increased their environmental hazard. Primarily E1, with an average concentration of 0.9 ± 1.6 ng/g, was present in the duck manure. The estrogen excreted by the ducks in the pond (from surface water to outlet water) was estimated to be 0.18 kg/million head-year. Although the estrogen concentration in the duck farms was low, the environmental impact of CAFO should not be neglected.
Collapse
Affiliation(s)
- Hao-Shen Hung
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Kuei-Jyum C Yeh
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Ting-Chien Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
6
|
Huang F, Karu K, Campos LC. Simultaneous measurement of free and conjugated estrogens in surface water using capillary liquid chromatography tandem mass spectrometry. Analyst 2021; 146:2689-2704. [PMID: 33751008 DOI: 10.1039/d0an02335c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given detrimental impacts induced by estrogens at trace level, determination of them is significant but challenging due to their low content in environmental samples and inherent weak ionisation. A modified derivatisation-based methodology was applied for the first time to detect estrogen in free and conjugated forms including some isomers simultaneously using liquid chromatography tandem mass spectrometry (LC-MSn). Derivatisation reaction with previously used 1,2-dimethyl-1H-imidazole-5-sulphonyl chloride allowed significant increase of mass spectrometric signal of analytes and also provided distinctive fragmentation for their confirmation even in complicated matrix. Then satisfactory recovery (>75%) for the majority of analytes was achieved following optimisation of solid phase extraction (SPE) factors. The linearity was validated over a wide concentration with the correlation coefficient around 0.995. The repeatability of this methodology was also confirmed via the intra-day and inter-day precision and was less than 11.73%. Validation of method quantification limits (MQLs) for all chosen estrogens was conducted using 1000 mL surface water, ranging from 7.0 to 132.3 pg L-1. The established methodology was applied to profile presence of targeted estrogens in natural surface water samples. Out of the ten compounds of interest, three free estrogens (E1, E2, E3) and two sulphate estrogens (E1-3S and E2-3S) were found over their MQLs, being in the range of 0.05-0.32 ng L-1.
Collapse
Affiliation(s)
- Fan Huang
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| | - Kersti Karu
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Yu W, Du B, Yang L, Zhang Z, Yang C, Yuan S, Zhang M. Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9443-9468. [PMID: 30758794 DOI: 10.1007/s11356-019-04402-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/25/2019] [Indexed: 05/06/2023]
Abstract
Natural steroid estrogens (NSEs), including free estrogens (FEs) and conjugated estrogens (CEs), are of emerging concern globally among public and scientific community due to their recognized adverse effects on human and wildlife endocrine systems in recent years. In this review, the properties, occurrence, sorption process, and transformation pathways of NSEs are clarified in the environment. The work comprehensively summarizes the occurrence of both free and conjugated estrogens in different natural and built environments (e.g., river, WWTPs, CAFOs, soil, and sediment). The sorption process of NSEs can be impacted by organic compounds, colloids, composition of clay minerals, specific surface area (SSA), cation exchange capacity (CEC), and pH value. The degradation and transformation of free and conjugated estrogens in the environment primarily involves oxidation, reduction, deconjugation, and esterification reactions. Elaboration about the major, subordinate, and minor transformation pathways of both biotic and abiotic processes among NSEs is highlighted. The moiety types and binding sites also would affect deconjugation degree and preferential transformation pathways of CEs. Notably, some intermediate products of NSEs still remain estrogenic potency during transformation process; the elimination of total estrogenic activity needs to be addressed in further studies. The in-depth researches regarding the behavior of both free and conjugated estrogens are further required to tackle their contamination problem in the ecosystem. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China.
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Chun Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shaochun Yuan
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Minne Zhang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| |
Collapse
|
8
|
Gao P, Yang C, Liang Z, Wang W, Zhao Z, Hu B, Cui F. N-propyl functionalized spherical mesoporous silica as a rapid and efficient adsorbent for steroid estrogen removal: Adsorption behaviour and effects of water chemistry. CHEMOSPHERE 2019; 214:361-370. [PMID: 30267909 DOI: 10.1016/j.chemosphere.2018.09.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 05/24/2023]
Abstract
To achieve an enhanced and selective adsorption of steroid estrogens, the n-propyl functionalization was applied to the mesoporous silica material (MCM-41) according to the physico-chemical property analysis of steroid estrogens. Adsorption behaviour and water chemistry effects were evaluated with the most concerned steroid estrogens: estrone (E1), 17β-estradiol (E2) and 17α-ethinyl estradiol (EE2) based on the materials characterization. The results showed the uptakes of E1, E2, and EE2 onto the modified MCM-41 were enhanced and accelerated by the n-propyl functionalization, which was positively correlated with the hydrophobicity of the synthesized materials. Kinetic data fitted the pseudo-second-order model well. Based on the Langmuir model, the maximum adsorption capacities of the n-propyl modified MCM-41 were up to 119.87, 88.38, and 86.91 mg g-1 for EE2, E1, and E2, respectively. Importantly, both acid and neutral solutions were beneficial to estrogen removal, but ionic strength and humic acid did not affect the estrogen adsorption. The above results suggested that the n-propyl functionalized MCM-41 would be a promising adsorbent for the rapid and efficient removal of estrogens with the selectivity from natural organic matter like humic acid. Mechanism analysis showed the key role of hydrophobic interaction, and it also confirmed the contribution of the carbonylic lone pair electrons of E1, which helped the formation of stronger hydrogen bonds with silicon hydroxyls and enhanced the dipole-dipole interaction between E1 and the synthesized materials.
Collapse
Affiliation(s)
- Pei Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Chun Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Zhijie Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Wenhao Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Bibo Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Fuyi Cui
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
9
|
Zhang H, Ihara M, Hanamoto S, Nakada N, Jürgens MD, Johnson AC, Tanaka H. Quantification of Pharmaceutical Related Biological Activity in Effluents from Wastewater Treatment Plants in UK and Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11848-11856. [PMID: 30216714 DOI: 10.1021/acs.est.8b03013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While pharmaceuticals are now routinely detected in aquatic environments, we know little of the biological activity their presence might provoke. It is estimated that nearly 40% of all marketed pharmaceuticals are G protein-coupled receptors (GPCRs) acting pharmaceuticals. Here, we applied an in-vitro assay, called the TGFα shedding assay, to measure the biological activities of GPCRs-acting pharmaceuticals present in effluents from municipal wastewater treatment plants in the United Kingdom (UK) and Japan from 2014 to 2016. The results indicated that compounds were present in the wastewater with antagonistic activities against angiotensin (AT1), dopamine (D2), adrenergic (β1), acetylcholine (M1), and histamine (H1) receptors in both countries. The most consistent and powerful antagonistic activity was against the H1, D2, and AT1 receptors at up to microgram-antagonist-equivalent quantity/L. Chemical analysis of the same UK samples was also conducted in parallel. Comparing the results of the bioassay with the chemical analysis indicated (1) the existence of other D2 or M1 receptor antagonists besides sulpiride (D2 antagonist) or pirenzepine (M1 antagonist) in wastewater and (2) that there might be a mixture effect between agonist and antagonistic activities against β1 receptor. GPCR-acting pharmaceuticals should be paid more attention in the environmental monitoring and toxicity testing in future studies.
Collapse
Affiliation(s)
- Han Zhang
- Research Center for Environmental Quality Management , Kyoto University , 1-2 Yumihama , Otsu , Shiga 520-0811 , Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management , Kyoto University , 1-2 Yumihama , Otsu , Shiga 520-0811 , Japan
| | - Seiya Hanamoto
- Research Center for Environmental Quality Management , Kyoto University , 1-2 Yumihama , Otsu , Shiga 520-0811 , Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management , Kyoto University , 1-2 Yumihama , Otsu , Shiga 520-0811 , Japan
| | - Monika D Jürgens
- Centre for Ecology and Hydrology , Wallingford, Oxfordshire , OX10 8BB , United Kingdom
| | - Andrew C Johnson
- Centre for Ecology and Hydrology , Wallingford, Oxfordshire , OX10 8BB , United Kingdom
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management , Kyoto University , 1-2 Yumihama , Otsu , Shiga 520-0811 , Japan
| |
Collapse
|
10
|
Ashfaq M, Li Y, Wang Y, Qin D, Rehman MSU, Rashid A, Yu CP, Sun Q. Monitoring and mass balance analysis of endocrine disrupting compounds and their transformation products in an anaerobic-anoxic-oxic wastewater treatment system in Xiamen, China. CHEMOSPHERE 2018; 204:170-177. [PMID: 29655110 DOI: 10.1016/j.chemosphere.2018.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
We investigated the occurrence, removal and mass balance of 8 endocrine disrupting compounds (EDCs), including estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), triclosan (TCS), triclocarbon (TCC), 4-n-nonyl phenol (NP) and 4-n-octyl phenol (OP), along with 5 of their transformation products (TPs), including 4-hydroxy estrone (4-OH E1), 4-hydroxy estradiol (4-OH E2), methyl triclosan (MeTCS), carbanilide (NCC), dichlorocarbanilide (DCC) in a wastewater treatment plant. Generally, E3 showed the highest concentrations in wastewater with median value of 514 ng/L in influent, while TCS and TCC showed highest level in sludge and suspended solids (SS) with median value of 960 and 724 μg/kg, respectively. Spatial variations were observed along each unit of the wastewater treatment processes for dissolved analytes in wastewater and adsorbed analytes in suspended solids and sludge. Special emphasis was placed to understand the mass load of EDCs and their TPs to the wastewater treatment unit and mass loss during the wastewater treatment processes. Mass loss based on both aqueous and suspended phase concentration revealed that majority of these chemicals were significantly removed during the treatment process except for TCS, TCC, and three of their TPs (MeTCS, NCC, DCC), which were released or generated during the treatment process. Mass load results showed that 42.4 g of these EDCs and their TPs entered this wastewater treatment system daily via influent, whereas 6.15 g and 7.60 g were discharged through effluent and sludge.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Yan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100043, China
| | - Yuwen Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100043, China
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100043, China
| | - Muhammad Saif Ur Rehman
- Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, 54000, Pakistan
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
11
|
Ma L, Yates SR. Degradation and metabolite formation of 17ß-estradiol-3-glucuronide and 17ß-estradiol-3-sulphate in river water and sediment. WATER RESEARCH 2018; 139:1-9. [PMID: 29621712 DOI: 10.1016/j.watres.2018.03.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Laboratory degradation tests with two model estrogen conjugates, 17ß-estradiol-3-glucuronide (E2-3G) and 17ß-estradiol-3-sulphate (E2-3S), using river water and sediment as inoculum under aerobic conditions were investigated. Throughout the 14-day incubation, degradation of E2-3G in river water, at environmentally-relevant level (25 ng/L), obeyed first-order kinetics with the formation of 17-ß estradiol and estrone; in contrast, E2-3S was slowly converted to estrone-3-sulphate stoichiometrically. Degradation of the two conjugates across the spiking concentrations (0.01-1 μg/g) was much faster in sediment than in river water where 25 ng/L of conjugate standards were spiked, possibly due to relatively high population densities of microorganisms in sediment. De-conjugation of the thio-ester bond at C-3 position and oxidation at C-17 position were the predominant degradation mechanisms for E2-3G and E2-3S, respectively, with negligible presence of metabolites estrone-3-glucuronide for E2-3G and 17ß-estradiol for E2-3S. In addition, delta-9(11)-dehydroestrone and 6-ketoestrone were determined as new metabolites of the two conjugates. Also, a lactone compound, hydroxylated estrone and a few sulfate conjugates were tentatively identified. With the observation of new metabolites, biodegradation pathways of E2-3G and E2-3S were proposed. The formation of new metabolites may pose unknown risks to aquatic biota.
Collapse
Affiliation(s)
- Li Ma
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States; Contaminant Fate and Transport Unit, Salinity Laboratory, Agricultural Research Service, United States Department of Agriculture, Riverside, CA 92507, United States
| | - Scott R Yates
- Contaminant Fate and Transport Unit, Salinity Laboratory, Agricultural Research Service, United States Department of Agriculture, Riverside, CA 92507, United States.
| |
Collapse
|
12
|
Chen Q, Li Z, Hua X. Fate of estrogens in a pilot-scale step-feed anoxic/oxic wastewater treatment system controlling by nitrogen and phosphorus removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12981-12991. [PMID: 29479651 DOI: 10.1007/s11356-018-1584-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO2--N and NO3--N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Zebing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
- State Key Laboratory of Breeding Base Nuclear Resources & Environment, East China Institute of Technology, Nanchang, 330013, People's Republic of China
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
13
|
Bellver-Domingo A, Fuentes R, Hernández-Sancho F. Shadow prices of emerging pollutants in wastewater treatment plants: Quantification of environmental externalities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:439-447. [PMID: 28837910 DOI: 10.1016/j.jenvman.2017.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Conventional wastewater treatment plants (WWTPs) are designed to remove mainly the organic matter, nitrogen and phosphorus compounds and suspended solids from wastewater but are not capable of removing chemicals of human origin, such as pharmaceutical and personal care products (PPCPs). The presence of PPCPs in wastewater has environmental effects on the water bodies receiving the WWTP effluents and renders the effluent as unsuitable as a nonconventional water source. Considering PPCPs as non-desirable outputs, the shadow prices methodology has been implemented using the output distance function to measure the environmental benefits of removing five PPCPs (acetaminophen, ibuprofen, naproxen, carbamazepine and trimethoprim) from WWTP effluents discharged to three different ecosystems (wetland, river and sea). Acetaminophen and ibuprofen show the highest shadow prices of the sample for wetland areas. Their values are 128.2 and 11.0 €/mg respectively. These results represent a proxy in monetary terms of the environmental benefit achieved from avoiding the discharge of these PPCPs in wetlands. These results suggest which PPCPs are urgent to remove from wastewater and which ecosystems are most vulnerable to their presence. The findings of this study will be useful for the plant managers in order to make decisions about prioritization in the removal of different pollutants.
Collapse
Affiliation(s)
- A Bellver-Domingo
- Water Economics Group, Department of Applied Economics II, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain.
| | - R Fuentes
- Faculty of Economics, Department of Applied Economic Analysis, University of Alicante, P.O. Box 99, E-03080, Spain
| | - F Hernández-Sancho
- Water Economics Group, Department of Applied Economics II, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain
| |
Collapse
|
14
|
Ting YF, Praveena SM. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:178. [PMID: 28342046 DOI: 10.1007/s10661-017-5890-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Steroid estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2), are natural and synthetic hormones released into the environment through incomplete sewage discharge. This review focuses on the sources of steroid estrogens in wastewater treatment plants (WWTPs). The mechanisms and fate of steroid estrogens throughout the entire wastewater treatment system are also discussed, and relevant information on regulatory aspects is given. Municipal, pharmaceutical industry, and hospitals are the main sources of steroid estrogens that enter WWTPs. A typical WWTP comprises primary, secondary, and tertiary treatment units. Sorption and biodegradation are the main mechanisms for removal of steroid estrogens from WWTPs. The fate of steroid estrogens in WWTPs depends on the types of wastewater treatment systems. Steroid estrogens in the primary treatment unit are removed by sorption onto primary sludge, followed by sorption onto micro-flocs and biodegradation by microbes in the secondary treatment unit. Tertiary treatment employs nitrification, chlorination, or UV disinfection to improve the quality of the secondary effluent. Activated sludge treatment systems for steroid estrogens exhibit a removal efficiency of up to 100%, which is higher than that of the trickling filter treatment system (up to 75%). Moreover, the removal efficiency of advance treatment systems exceeds 90%. Regulatory aspects related to steroid estrogens are established, especially in the European Union. Japan is the only Asian country that implements a screening program and is actively involved in endocrine disruptor testing and assessment. This review improves our understanding of steroid estrogens in WWTPs, proposes main areas to be improved, and provides current knowledge on steroid estrogens in WWTPs for sustainable development.
Collapse
Affiliation(s)
- Yien Fang Ting
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
15
|
Zhang Y, Snow DD, Bartelt-Hunt SL. Stereoselective Degradation of Estradiol and Trenbolone Isomers in Alluvial Sediment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13256-13264. [PMID: 27993082 DOI: 10.1021/acs.est.6b02171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stereoisomers of estradiol (E2) or trenbolone (TB) can occur together in the environment receiving human or livestock wastes. However, the effect of their co-occurrence on persistence has not been well elucidated. A sandy and a silt loam sediment were used to establish microcosms with α- and β-isomers of E2 or TB spiked individually and together. Sediments were sampled periodically and analyzed for E2 and TB isomers and their transformation products using derivatization gas chromatography-mass spectrometry. Results showed that stereoselective degradation was significant for E2 in both sediments and TB in the sandy sediment with β-isomers decaying more rapidly than α-isomers. In the sandy sediment containing limited natural organic carbon and nutrients, co-occurrence of both isomers of either E2 or TB decreased the dissipation rates. In the silt loam sediment with abundant organic matter and nutrients, the decay rates of both isomers were not changed in the presence of the other isomer. Estrone (E1) and trendione (TD) were detected as primary metabolites of E2 and TB isomers, respectively. The formation and decay profiles of E1 were similar in both sediments with 92-100% of E2 transformed to E1. The TD profiles were different across sediments with ∼100% of TB transformed to TD except in the sandy sediment where 51-60% of 17α-TB was converted to TD. These results indicate that the transformation processes of steroid hormone are stereoselective in sediment and co-occurrence of stereoisomers can prolong steroid persistence and thus pose greater environmental risk.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute , Omaha, Nebraska 68182-0178, United States
| | - Daniel D Snow
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln , Lincoln, Nebraska 68583-0844, United States
| | - Shannon L Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute , Omaha, Nebraska 68182-0178, United States
| |
Collapse
|
16
|
Liu ZH, Lu GN, Yin H, Dang Z, Rittmann B. Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: a critical review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5288-5300. [PMID: 25844648 DOI: 10.1021/acs.est.5b00399] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This article reviews studies focusing on the removal performance of natural estrogens in municipal wastewater treatment plants (WWTPs). Key factors influencing removal include: sludge retention time (SRT), aeration, temperature, mixed liquor suspended solids (MLSS), and substrate concentration. Batch studies show that natural estrogens should biodegrade well; however, batch observations do not always agree with observations from full-scale municipal WWTPs. To explain this discrepancy, deconjugation kinetics of estrogen conjugates in lab-scale studies were examined and compared. Most estrogen conjugates with slow deconjugation rates are unlikely to be easily removed; others could be cleaved in WWTP settings. Nevertheless, some estrogens cleaved from their conjugates may be found in treated effluent, because deconjugation requires several hours or longer, and there is insufficient rest time for the biodegradation of the cleaved natural estrogens in the WWTP. Therefore, WWTP removals of natural estrogens are likely to be underestimated when estrogen conjugates are present in raw wastewater. This review suggests that biodeconjugation of estrogen conjugates should be enhanced to more effectively remove natural estrogens in WWTPs.
Collapse
Affiliation(s)
- Ze-hua Liu
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Gui-ning Lu
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Hua Yin
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Zhi Dang
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Bruce Rittmann
- §Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
17
|
Liu ZH, Lu GN, Yin H, Dang Z. Do we underestimate the concentration of estriol in raw municipal wastewater? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4753-4758. [PMID: 25537286 DOI: 10.1007/s11356-014-3981-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
The main source of natural estrogens to municipal wastewater is human excretions via urine or feces, thus their concentrations in raw wastewater should show positive linear relationship with their human excretions. This study mainly focused on their concentration relationship in raw wastewater. Based on comparison between chemical analyses and predictions through human excretion rates, the observed concentrations of estriol (E 3) in municipal wastewater were found to be noticeably lower than the predicted values. The main cause for the disparity is that substantial conjugated E 3 also exists in raw wastewater. This work suggested that monitoring both E 3 and its conjugates is necessary to get more accurate E 3 removal performance of wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Ze-hua Liu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China,
| | | | | | | |
Collapse
|
18
|
Zhang H, Shi J, Liu X, Zhan X, Dang J, Bo T. Occurrence of free estrogens, conjugated estrogens, and bisphenol A in fresh livestock excreta and their removal by composting in North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9939-9947. [PMID: 24828825 DOI: 10.1007/s11356-014-3002-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
An efficient pretreatment and analytical method was developed to investigate the occurrence and fate of four free estrogens (estrone (E1), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinylestradiol (EE2)), four conjugated estrogens (estrone-3-sulfate sodium salt (E1-3S), 17β-estradiol-3-sulfate sodium salt (E2-3S), estrone-3-glucuronide sodium salt (E1-3G), and 17β-estradiol-3-glucuronide sodium salt (E2-3G)), and bisphenol A (BPA) in three livestock farms raising beef cattle, cows, sheep, swine, and chickens in Qi County, which is located in North China. The results demonstrated that one cow and one beef cattle excreted 956.25-1,270.41 and 244.38-319.99 μg/day of total (free and conjugated) estrogen, respectively, primarily through feces (greater than 91%), while swine excreted 260.09-289.99 μg/day of estrogens, primarily through urine (98-99%). The total estrogen excreted in sheep and broiler chicken feces was calculated to be 21.64-28.67 and 4.62-5.40 μg/day, respectively. It was determined that conjugated estrogens contributed to 21.1-21.9% of the total estrogen excreted in cow feces and more than 98% of the total estrogen excreted in swine urine. After composting, the concentration of total estrogen decreased by 18.7-59.6%; however, increased levels of BPA were measured. In treated compost samples, estrogens were detected at concentrations up to 74.0 ng/g, which indicates a potential risk of estrogens entering the surrounding environment.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Mahapatra I, Clark J, Dobson PJ, Owen R, Lead JR. Potential environmental implications of nano-enabled medical applications: critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:123-144. [PMID: 24592432 DOI: 10.1039/c2em30640a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The application of nanotechnology and nanoscience for medical purposes is anticipated to make significant contributions to enhance human health in the coming decades. However, the possible future mass production and use of these medical innovations exhibiting novel and multifunctional properties will very likely lead to discharges into the environment giving rise to potentially new environmental hazards and risks. To date, the sources, the release form and environmental fate and exposure of nano-enabled medical products have not been investigated and little or no data exists, although there are a small number of currently approved medical applications and a number in clinical trials. This paper discusses the current technological and regulatory landscape and potential hazards and risks to the environment of nano-enabled medical products, data gaps and gives tentative suggestions relating to possible environmental hotspots.
Collapse
|
21
|
A critical evaluation of liquid chromatography with hybrid linear ion trap—Orbitrap mass spectrometry for the determination of acidic contaminants in wastewater effluents. J Chromatogr A 2012. [DOI: 10.1016/j.chroma.2012.09.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Griffith DR, Wacker L, Gschwend PM, Eglinton TI. Carbon isotopic (13C and 14C) composition of synthetic estrogens and progestogens. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2619-2626. [PMID: 23059878 DOI: 10.1002/rcm.6385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Steroids are potent hormones that are found in many environments. Yet, contributions from synthetic and endogenous sources are largely uncharacterized. The goal of this study was to evaluate whether carbon isotopes could be used to distinguish between synthetic and endogenous steroids in wastewater and other environmental matrices. METHODS Estrogens and progestogens were isolated from oral contraceptive pills using semi-preparative liquid chromatography/diode array detection (LC/DAD). Compound purity was confirmed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS) and liquid chromatography/mass spectrometry using negative electrospray ionization (LC/ESI-MS). The (13)C content was determined by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and (14)C was measured by accelerator mass spectrometry (AMS). RESULTS Synthetic estrogens and progestogens are (13)C-depleted (δ(13)C(estrogen) = -30.0 ± 0.9 ‰; δ(13)C(progestogen) = -30.3 ± 2.6 ‰) compared with endogenous hormones (δ(13)C ~ -16 to -26 ‰). The (14)C content of the majority of synthetic hormones is consistent with synthesis from C(3) plant-based precursors, amended with 'fossil' carbon in the case of EE(2) and norethindrone acetate. Exceptions are progestogens that contain an ethyl group at carbon position 13 and have entirely 'fossil' (14)C signatures. CONCLUSIONS Carbon isotope measurements have the potential to distinguish between synthetic and endogenous hormones in the environment. Our results suggest that (13)C could be used to discriminate endogenous from synthetic estrogens in animal waste, wastewater effluent, and natural waters. In contrast, (13)C and (14)C together may prove useful for tracking synthetic progestogens.
Collapse
Affiliation(s)
- David R Griffith
- MIT/WHOI Joint Program in Oceanography, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
23
|
Kumar V, Johnson AC, Nakada N, Yamashita N, Tanaka H. De-conjugation behavior of conjugated estrogens in the raw sewage, activated sludge and river water. JOURNAL OF HAZARDOUS MATERIALS 2012; 227-228:49-54. [PMID: 22664257 DOI: 10.1016/j.jhazmat.2012.04.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 05/06/2023]
Abstract
The fate and behavior of estrone-3-sulfate (E1-3S), estradiol-3-sulfate (E2-3S), estrone-3-glucuronide (E1-3G) and estradiol-3-glucuronide (E2-3G) were studied in raw sewage, activated sludge and river water using microcosms. The glucuronide conjugates had a half-life of 0.4h in raw sewage, yielding 40-60% of their free estrogens. Field observations at three activated sludge processes suggested complete transformation of the glucuronide conjugates in the sewer. In river water glucuronide conjugates half-lives extended to over 2d yielding 60-100% of their free parent estrogens. Transformation of the sulfate conjugates in raw sewage and river water was slow with little formation of the parent estrogens. Sulfate conjugates could readily be detected in sewage influent in the field studies. In activated sludge the sulfate conjugates had half-lives of 0.2h with the transient formation of 10-55% of the free parent estrogens. Field studies indicated transformation of sulfate conjugates across the sewage treatment, although a proportion escaped into the effluent. These results broadly support the view that glucuronide conjugates will be entirely transformed within the sewer largely to their parent estrogens. The sulfate conjugates may persist in raw sewage and river water but are transformable in activated sludge and, in the case of E2-3S, reform a high proportion of the parent estrogen.
Collapse
Affiliation(s)
- Vimal Kumar
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan.
| | | | | | | | | |
Collapse
|
24
|
Baynes A, Green C, Nicol E, Beresford N, Kanda R, Henshaw A, Churchley J, Jobling S. Additional treatment of wastewater reduces endocrine disruption in wild fish--a comparative study of tertiary and advanced treatments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5565-5573. [PMID: 22500691 DOI: 10.1021/es204590d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Steroid estrogens are thought to be the major cause of feminization (intersex) in wild fish. Widely used wastewater treatment technologies are not effective at removing these contaminants to concentrations thought to be required to protect aquatic wildlife. A number of advanced treatment processes have been proposed to reduce the concentrations of estrogens entering the environment. Before investment is made in such processes, it is imperative that we compare their efficacy in terms of removal of steroid estrogens and their feminizing effects with other treatment options. This study assessed both steroid removal and intersex induction in adult and early life stage fish (roach, Rutilus rutilus). Roach were exposed directly to either secondary (activated sludge process (ASP)), tertiary (sand filtrated (SF)), or advanced (chlorine dioxide (ClO(2)), granular activated charcoal (GAC)) treated effluents for six months. Surprisingly, both the advanced GAC and tertiary SF treatments (but not the ClO(2) treatment) significantly removed the intersex induction associated with the ASP effluent; this was not predicted by the steroid estrogen measurements, which were higher in the tertiary SF than either the GAC or the ClO(2). Therefore our study highlights the importance of using both biological and chemical analysis when assessing new treatment technologies.
Collapse
Affiliation(s)
- Alice Baynes
- Institute for the Environment, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kumar V, Nakada N, Yamashita N, Johnson AC, Tanaka H. How seasonality affects the flow of estrogens and their conjugates in one of Japan's most populous catchments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2906-2912. [PMID: 21600683 DOI: 10.1016/j.envpol.2011.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 04/14/2011] [Accepted: 04/21/2011] [Indexed: 05/30/2023]
Abstract
A detailed study of the free and conjugated estrogen load discharged by the eight major sewage treatment plants into the Yodo River basin, Japan was carried out. Sampling campaigns were focused on the winter and autumn seasons from 2005 to 2008 and the free estrogens estrone(E1), 17β-estradiol(E2), estriol(E3), 17α-ethynylestradiol(EE2) as well as their conjugated (sulfate and glucuronide) forms. For both sewage effluent and river water E2 and E1 concentrations were greatest during the winter period (December-March). This coincides with the period of lowest rainfall and lowest temperatures in Japan. E1 was the dominant estrogenic component in effluent (means of 10-50 ng/L) followed by E2 (means of 0.5-3 ng/L). The estrogen sulfate conjugates were found intermittently in the 0.5-1.7 ng/L concentration range in the sewage effluents. The greatest estrogen exposure was found to be in the Katsura River tributary which exceeded 1 ng/L E2-equivalents during the winter period.
Collapse
Affiliation(s)
- Vimal Kumar
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| | | | | | | | | |
Collapse
|