1
|
Xia X, Mu H, Li Y, Hou Y, Li J, Zhao Z, Zhao Q, You S, Wei L. Which emerging micropollutants deserve more attention in wastewater in the post-COVID-19 pandemic period? Based on distribution, risk, and exposure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175511. [PMID: 39147043 DOI: 10.1016/j.scitotenv.2024.175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Hou
- The 404 Company Limited, CNNC, Lanzhou 732850, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zixuan Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Akhter S, Bhat MA, Ahmed S, Siddiqui WA. Antibiotic residue contamination in the aquatic environment, sources and associated potential health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:387. [PMID: 39167284 DOI: 10.1007/s10653-024-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic residues are widely recognized as major pollutants in the aquatic environment on a global scale. As a significant class of pharmaceutically active compounds (PhACs), antibiotics are extensively consumed worldwide. The primary sources of these residues include hospitals, municipal sewage, household disposal, and manures from animal husbandry. These residues are frequently detected in surface and drinking waters, sewage effluents, soils, sediments, and various plant species in countries such as China, Japan, South Korea, Europe, the USA, Canada, and India. Antibiotics are used medicinally in both humans and animals, with a substantial portion excreted into the environment as metabolites in feces and urine. With the advancement of sensitive and quantitative analytical techniques, antibiotics are consistently reported in environmental matrices at concentrations ranging from nanograms per liter (ng/L) to milligrams per liter (mg/L). Agricultural soils, in particular, serve as a significant reservoir for antibiotic residues due to their strong particle adsorption capacities. Plants grown in soils irrigated with PhAC-contaminated water can uptake and accumulate these pharmaceuticals in various tissues, such as roots, leaves, and fruits, raising serious concerns regarding their consumption by humans and animals. There is an increasing need for research to understand the potential human health risks associated with the accumulation of antibiotics in the food chain. The present reviews aims to shed light on the rising environmental pharmaceutical contamination concerns, their sources in the environment, and the potential health risks as well as remediation effort. To discuss the main knowledge gaps and the future research that should be prioritized to achieve the risk assessment. We examined and summarized the available data and information on the antibiotic resistance associated with antibiotic residues in the environment. As studies have indicated that vegetables can absorb, transport, and accumulate antibiotics in edible parts when irrigated with wastewater that is either inadequately treated or untreated. These residues and their metabolites can enter the food chain, with their persistence, bioaccumulation, and toxicity contributing to drug resistance and adverse health effects in living organisms.
Collapse
Affiliation(s)
- Suriyah Akhter
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Aadil Bhat
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Sirajuddin Ahmed
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Weqar Ahmed Siddiqui
- Department of Applied Science and Humanities Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
3
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
4
|
Klanovicz N, Camargo AF, Ramos B, Michelon W, Treichel H, Teixeira ACSC. A review of hybrid enzymatic-chemical treatment for wastewater containing antiepileptic drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27487-z. [PMID: 37184794 DOI: 10.1007/s11356-023-27487-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Epilepsy is one of the most common neurological diseases worldwide and requires treatment with antiepileptic drugs for many years or for life. This fact leads to the need for constant production and use of these compounds, placing them among the four pharmaceutical classes most found in wastewater. Even at low concentrations, antiepileptics pose risks to human and environmental health and are considered organic contaminants of emerging concern. Conventional treatments have shown low removal of these drugs, requiring advanced and innovative approaches. In this context, this review covers the results and perspectives on (1) consumption and occurrence of antiepileptics in water, (2) toxicological effects in aquatic ecosystems, (3) enzymatic and advanced oxidation processes for degrading antiepileptics drugs from a molecular point of view (biochemical and chemical phenomena), (4) improvements in treatment efficiency by hybridization, and (5) technical aspects of the enzymatic-AOP reactors.
Collapse
Affiliation(s)
- Natalia Klanovicz
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508080, Brazil.
- Laboratory of Microbiology and Bioprocesses (LAMIBI), Federal University of Fronteira Sul, Erechim, Brazil.
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocesses (LAMIBI), Federal University of Fronteira Sul, Erechim, Brazil
- Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruno Ramos
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508080, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses (LAMIBI), Federal University of Fronteira Sul, Erechim, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508080, Brazil
| |
Collapse
|
5
|
Abajo Z, Jimenez A, Domingo-Echaburu S, Valcárcel Y, Segura Y, Orive G, Lertxundi U. Analyzing the potential environmental impact of NIOSH list of hazardous drugs (group 2). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162280. [PMID: 36822426 DOI: 10.1016/j.scitotenv.2023.162280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
For the first time, several pharmaceuticals have been defined as priority substances in the new proposal of the revision of the Water Framework Directive (WFD). Consequently, environmental quality standards have been determined for several drugs. This is the case with the antiepileptic carbamazepine, which is considered as hazardous in healthcare settings by The National Institute for Occupational Safety and Health (NIOSH). This organism considers as such drugs that have shown teratogenicity, carcinogenicity, genotoxicity or other developmental, reproductive, or organ toxicity at low doses in studies with animals or humans. This study has been focused on the non-carcinogenic drugs classified in group 2, and their presence in the environment. This group contains many different therapeutic agents such as antineoplastics, psychoactive drugs, immunosuppressants and antivirals, among others. Of the 116 drugs included in the list, 26 have been found in aquatic environmental matrices. Certain drugs have received most attention (e.g., the antiepileptic carbamazepine, progesterone and the antidepressant paroxetine) while others completely lack environmental monitoring. Carbamazepine, fluconazole, paroxetine and warfarin have been found in invertebrates' tissues, whereas carbamazepine, oxazepam and paroxetine have been found in fish tissues. The main aim of the NIOSH's hazardous drug list is to inform healthcare professionals about adequate protection measures to prevent occupational exposure to these pharmaceuticals. However, this list contains useful information for other professionals and researchers such as environmental scientists. The paucity of relevant environmental data of certain hazardous pharmaceuticals might be important to help in the prioritization of compounds that may demand further research.
Collapse
Affiliation(s)
- Z Abajo
- Bioaraba Health Research Institute
| | - A Jimenez
- School of Pharmacy, University of the Basque Country
| | - S Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Nafarroa Hiribidea 16, 20500 Arrasate, Gipuzkoa, Spain
| | - Y Valcárcel
- Health and Environment Risk Assessment Group, (RiSAMA), University Rey Juan Carlos, Avda Tulipán sn, Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, Faculty of Health Sciences, Rey Juan Carlos University, Avda. Atenas s/n, 28922, Alcorcón, Madrid, Spain
| | - Y Segura
- Chemical and Environmental Technology Department, University Rey Juan Carlos, 28933 Madrid, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - U Lertxundi
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain. Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Álava, Spain.
| |
Collapse
|
6
|
Parida VK, Sikarwar D, Majumder A, Gupta AK. An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114609. [PMID: 35101807 PMCID: PMC8789570 DOI: 10.1016/j.jenvman.2022.114609] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 05/23/2023]
Abstract
Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, β-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Divyanshu Sikarwar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
7
|
Khan AH, Aziz HA, Khan NA, Dhingra A, Ahmed S, Naushad M. Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: A risk analysis of Yamuna River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148484. [PMID: 34217082 DOI: 10.1016/j.scitotenv.2021.148484] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of pharmaceutical residues in the aquatic ecosystem is an emerging concern of environmentalists. This study primarily investigated the seasonal variation of high-priority pharmaceutical residues in the Yamuna River, accompanied by 22 drains discharge from different parts of Delhi. Five sampling sites were selected for analyzing high-priority pharmaceuticals along with physico-chemical and biological parameters for 3 season's viz. pre-monsoon (PrM), monsoon (DuM), and post-monsoon (PoM), respectively. The maximum occurrences were detected during the PoM, compared to the PrM and DuM seasons. The maximum concentration of BOD, COD, and Phosphate was detected at the last sampling station (SP-5). Similarly, all targeted pharmaceuticals concentration were maximum at the last sampling point i.e. Okhla barrage (SP-5, max: DIC = 556.1 ng/l, IBU = 223.4 ng/l, CAR = 183.1 ng/l, DIA = 457.8 ng/l, OFL = 1726.5 ng/l, FRU = 312.2 ng/l and SIM = 414.9 ng/l) except at Barapulla downstream (SP-4, max: ERY = 178.1 ng/l). The mean concentrations of Fecal coliform (FC) ranged from 1700 to 6500 CFU/100 ml. The maximum colonies were detected in PrM season (6500 CFU/100 ml) followed by PoM (5800 CFU/100 ml) and least in DuM (1700 CFU/100 ml). Risk quotient (RQ) analysis of high-priority pharmaceuticals indicated high ecotoxicological risks exposure (>1) from DIC, DIA, OFL, and SIM in all seasons at all the sampling sites. However, lower risk was predicted for IBU, CAR, ERY, and FRU, respectively. This risk assessment indicated an aquatic ecosystem potentially exposed to high risks from these pharmaceutical residues. Moreover, seasonal agricultural application, rainfall, and temperature could influence the levels and compositions of pharmaceutical residue in the aquatic ecosystem. Hence, attention is required particularly to this stream since it is only a local lifeline source for urban consumers for domestic water supply and farmers for cultivation.
Collapse
Affiliation(s)
- Afzal Husain Khan
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Aastha Dhingra
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Sirajuddin Ahmed
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Sarala S, Geetha SK, Muthu S, Irfan A. Computational investigation, comparative approaches, molecular structural, vibrational spectral, non-covalent interaction (NCI), and electron excitations analysis of benzodiazepine derivatives. J Mol Model 2021; 27:266. [PMID: 34453612 DOI: 10.1007/s00894-021-04877-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022]
Abstract
The present work explores the structural parameters and vibrational frequencies as well as molecular interactions of benzodiazepine derivatives, such as clothiapine (CT), clozapine (CZ), and loxapine (LX). Employing fitting experimental data to theoretical results is used to assess the structural parameters of heading composites. The main assignment is passed out according to the overall distribution of energy of the vibrational modes. From the hyper-conjugative interaction, the permanency of the structure had been predicted through natural bond orbital analysis; it is also used to identify the bonding and antibonding regions of the molecules. Moreover, electrostatic potential (ESP), density of states (DOS), and charge transfer occurring of the molecule among HOMO as well as LUMO energy were calculated and presented; utilizing electron localized field (ELF), localized orbital locator (LOL), and reduced density gradient (RDG), the chemical interactive regions are found. Additionally, mean polarizability (αtot), the first-order hyperpolarizability (βtot), and softness and hardness of the entitled compounds were also performed. The interaction between protein-ligand was also predicted by docking studies.
Collapse
Affiliation(s)
- S Sarala
- Department of Physics, Kanchi Shri Krishna College of Arts and Science, Kanchipuram, 631551, Tamil Nadu, India.,Department of Physics, Government Arts College for Men (Autonomous), Nandanam, Chennai, 600035, Tamil Nadu, India.,University of Madras, Chepauk, Chennai, 600005, Tamil Nadu, India
| | - S K Geetha
- Department of Physics, Government Arts College for Men (Autonomous), Nandanam, Chennai, 600035, Tamil Nadu, India.
| | - S Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamil Nadu, India. .,Department of Physics, Puratchi Thalaivar Dr. M.G.R Govt. Arts and Science College, Uthiramerur, 603406, Tamil Nadu, India.
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
9
|
A Rapid Analytical Approach for Monitoring Pharmaceuticals in Hospital Wastewater—A DPX-Based Procedure with Environmentally-Friendly Extraction Phase Coupled to High Performance Liquid Chromatography–Diode Array/Fluorescence Detectors. SEPARATIONS 2021. [DOI: 10.3390/separations8080109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, a novel analytical methodology based on disposable pipette extraction (DPX) was developed using an alternative extraction phase for the extraction/determination of six pharmaceutical compounds, including carbamazepine, diclofenac, naproxen, fluoxetine, losartan and 17α-ethinylestradiol, in samples of hospital wastewater by high-performance liquid chromatography coupled to diode array and fluorescence detectors. The performance of three extraction phases was examined, including 3-n-propyl (3-methylpyridinium) silsesquioxane chloride (Si3Py+Cl−), the conductive polymer polypyrrole (PPy), and polypyrrole modified with cetyltrimethylammonium bromide (PPy.CTAB). The optimization of the experimental parameters was performed through univariate and multivariate approaches. The optimized condition was obtained with the use of 20 mg of Si3Py+Cl− as extraction phase; six extraction cycles with 700 μL of sample in each cycle and 15 s of extraction time; three desorption cycles with 100 μL of ACN (same aliquot) and 15 s of desorption time; and sample pH adjusted at 3.5 and addition of 15% (w/v) of NaCl in the sample. The methodology proposed exhibited environmentally-friendly aspects with a significantly reduced volume of organic solvent (only 100 µL) and a small amount of extraction phase (20 mg). In addition, the extraction phase employed exhibits a simple synthetic procedure, low cost, and high stability in organic solvent. Moreover, the method developed exhibits high throughput (extraction time of 6.5 min per sample), and robustness. The analytical figures of merit were obtained using hospital wastewater, and the values were very satisfactory. The correlation coefficients were higher than 0.9710. LODs and LOQs ranged from 0.030 µg L−1 to 1.510 µg L−1 and 0.10 µg L−1 to 5.00 µg L−1, respectively. Relative recoveries varied from 80 to 127%, and intra-day (n = 3) and inter-day (n = 9) precision was lower than 19%.
Collapse
|
10
|
Freitas LDAA, Radis-Baptista G. Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context. J Xenobiot 2021; 11:61-76. [PMID: 34069823 PMCID: PMC8162542 DOI: 10.3390/jox11020005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023] Open
Abstract
The occurrence of pharmaceuticals in the environment is an everyday recognized concern worldwide, and drugs as environmental contaminants have been detected in water and soil systems, posing risks to humans and wildlife. The presence of drugs in wastewater, groundwater, and even drinking water occurs in several countries, including Brazil, where the pharmaceutical market is expanding over the years. The adverse, harmful effects of pharmaceuticals in the environment range from the spreading of antimicrobial resistance and species survival to the interference with reproduction and increased cancer incidence in humans. Therefore, it is demanding to count on proper legislation to prevent these pollutants from entering the distinct environment compartments. In some developed countries, laws, directives, programs, and initiatives regarding drug disposal reach a mature status. In Brazil, federal laws dealing with drug residues' management are recent, with flaws that might facilitate non-compliance with drug pollution issues. Besides, pharmacies and drugstores are not obligated to collect unneeded household medicines, while particular State laws aim to ordinate the disposal of drug residues regionally. In this review, we consider the current knowledge about pharmaceutical (drug) pollution, the recommendation and regulations on the disposal of useless medicines in some countries, and in the context of the expanding pharmaceutical market in Brazil. The awareness of emerging contaminants in the environment, besides the joint effort of authorities, consumers, and the general public nationwide, will be required to avoid pharmaceutical/drug pollution and achieve an eco-friendly environment and a sustainable society.
Collapse
Affiliation(s)
- Letícia de Araújo Almeida Freitas
- Post-Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE 60416-030, Brazil;
| | - Gandhi Radis-Baptista
- Post-Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE 60416-030, Brazil;
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, CE 60165-081, Brazil
| |
Collapse
|
11
|
Hammoud A, Chhin D, Nguyen DK, Sawan M. A new molecular imprinted PEDOT glassy carbon electrode for carbamazepine detection. Biosens Bioelectron 2021; 180:113089. [PMID: 33662846 DOI: 10.1016/j.bios.2021.113089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022]
Abstract
An electrochemical sensor for the detection of carbamazepine was fabricated by the electropolymerization of PEDOT on glassy carbon electrodes. Molecular imprinted polymer sites were synthesized by cyclic voltammetry on the electrodes' surfaces providing high selectivity and sensitivity towards carbamazepine molecules. Scanning electron microscopy validated the formation of the polymer. Extraction of carbamazepine from the polymer was performed by immersion in acetonitrile and validated by ultraviolet-visible spectroscopy along with cyclic voltammetry experiments comparing pre- and post-template extraction data. Further cyclic voltammetry and square-wave voltammetry tests aided in characterizing the electrodes' response to carbamazepine concentration in PBS solution with [Fe(CN)6]3-/4- as a redox pair/mediator. The limits of detection and quantification were found to be 0.98 x 10-3 M and 2.97 x 10-3 M respectively. The biosensor was highly sensitive to carbamazepine molecules in comparison to non-imprinted electrodes, simple to construct and easy to operate.
Collapse
Affiliation(s)
- A Hammoud
- Department of Electrical Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| | - D Chhin
- Département de Chimie, UQAM, Montréal, QC, Canada
| | - D K Nguyen
- Centre Hospitalier de L'Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - M Sawan
- Department of Electrical Engineering, Polytechnique Montréal, Montréal, QC, Canada; School of Engineering, Westlake University, And Westlake Institute for Advanced Study, Zhejiang, China
| |
Collapse
|
12
|
Majumder A, Gupta AK, Ghosal PS, Varma M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104812. [PMID: 33251108 PMCID: PMC7680650 DOI: 10.1016/j.jece.2020.104812] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 05/05/2023]
Abstract
The hospital wastewater imposes a potent threat to the security of human health concerning its high vulnerability towards the outbreak of several diseases. Furthermore, the outbreak of COVID-19 pandemic demanded a global attention towards monitoring viruses and other infectious pathogens in hospital wastewater and their removal. Apart from that, the presence of various recalcitrant organics, pharmaceutically active compounds (PhACs), etc. imparts a complex pollution load to water resources and ecosystem. In this review, an insight into the occurrence, persistence and removal of drug-resistant microorganisms and infectious viruses as well as other micro-pollutants have been documented. The performance of various pilot/full-scale studies have been evaluated in terms of removal of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), PhACs, pathogens, etc. It was found that many biological processes, such as membrane bioreactor, activated sludge process, constructed wetlands, etc. provided more than 80% removal of BOD, COD, TSS, etc. However, the removal of several recalcitrant organic pollutants are less responsive to those processes and demands the application of tertiary treatments, such as adsorption, ozone treatment, UV treatment, etc. Antibiotic-resistant microorganisms, viruses were found to be persistent even after the treatment of hospital wastewater, and high dose of chlorination or UV treatment was required to inactivate them. This article circumscribes the various emerging technologies, which have been used to treat PhACs and pathogens. The present review also emphasized the global concern of the presence of SARS-CoV-2 RNA in hospital wastewater and its removal by the existing treatment facilities.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahesh Varma
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
13
|
Khan NA, Ahmed S, Farooqi IH, Ali I, Vambol V, Changani F, Yousefi M, Vambol S, Khan SU, Khan AH. Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: A critical review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115921] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Starling MCVM, Amorim CC, Leão MMD. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:17-36. [PMID: 29728279 DOI: 10.1016/j.jhazmat.2018.04.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
This is the first review to present data obtained in Brazil over the years regarding contaminants of emerging concern (CEC) and to contrast it with contamination in other countries. Data gathered indicated that caffeine, paracetamol, atenolol, ibuprofen, cephalexin and bisphenol A occur in the μg L-1 range in streams near urban areas. While endocrine disruptors are frequently detected in surface waters, highest concentrations account for 17α-ethynylestradiol and 17β-estradiol. Organochlorine pesticides are the most frequently found and persistent in sediments in agricultural regions. Moreover, in tropical agricultural fields, pesticide volatilization and its implications to ecosystem protection must be better investigated. The reality represented here for Brazil may be transposed to other developing countries due to similarities related to primitive basic sanitation infrastructure and economic and social contexts, which contribute to continuous environmental contamination by CEC. Municipal wastewater treatment facilities in Brazil, treat up to the secondary stage and lead to limited CEC removal. This is also true for other nations in Latin America, such as Argentina, Colombia and Mexico. Therefore, it is an urgent priority to improve sanitation infrastructure and, then, the implementation of tertiary treatment shall be imposed.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| | - Camila C Amorim
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901.
| | - Mônica Maria D Leão
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| |
Collapse
|
15
|
Reichert JF, Souza DM, Martins AF. Antipsychotic drugs in hospital wastewater and a preliminary risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:559-567. [PMID: 30576891 DOI: 10.1016/j.ecoenv.2018.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
The residues of pharmaceutical and personal care products are the cause of increasing concern around the world. The aim of this study was to carry out the quantification of six antipsychotic drugs in hospital wastewater with the aid of liquid chromatography-mass spectrometry and, subsequently, make a preliminary assessment of the environmental risk posed. Dispersive liquid-liquid microextraction and solid phase extraction were optimized by multivariate design and validated in compliance with international guidelines. The extraction procedures were successfully applied to the quantification of the six selected antipsychotics in samples that were formed each day and collected at two main sampling points of the sewage network over the period of a week, in December 2017. Olanzapine (0.31─0.52 µg L-1), clozapine (0.56─0.97 µg L-1), haloperidol (1.43─2.73 µg L-1), risperidone (0.92─0.98 µg L-1) and chlorpromazine (0.52 µg L-1) were found in at least one sampling point. In the case of most analytes, the highest concentrations were determined at sampling point A, which are derived from the psychiatric wing. The environmental risk quotient for clozapine, chlorpromazine and risperidone was ˃600, a very high-risk index, which signals the need for a better control of the emission of antipsychotics and an improvement of the wastewater treatment, especially, with regard to wastewater discharged from the hospital psychiatric wing.
Collapse
Affiliation(s)
- Jaqueline F Reichert
- Chemistry Department, Federal University of Santa Maria, Campus Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Darliana M Souza
- Chemistry Department, Federal University of Santa Maria, Campus Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Ayrton F Martins
- Chemistry Department, Federal University of Santa Maria, Campus Camobi, CEP 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
16
|
Cunha DL, Mendes MP, Marques M. Environmental risk assessment of psychoactive drugs in the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:78-90. [PMID: 30397754 DOI: 10.1007/s11356-018-3556-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
The consumption of psychoactive pharmaceuticals has increased worldwide, and wastewater treatment plants are not able to eliminate them from the effluent. An extensive review was carried out to assess the environmental risk (ERA model) based on secondary data about potential impacts on non-target organisms of seven psychoactive drugs consumed worldwide (alprazolam, bromazepam, citalopram, clonazepam, diazepam, lorazepam, and oxazepam). Risk quotients (RQs) were calculated according to the European Medicines Agency (EMA) on ERA of Medicinal Products For Human Use based on (i) the predicted and measured environmental concentrations (PEC and MEC, respectively) of the psychoactive drug in surface water, groundwater, and wastewater effluent and (ii) the predicted no-effect concentration (PNEC) derived from ecotoxicological assays or ECOSAR software. Furthermore, this study reviews and discusses non-standardized ecotoxicity assays, such as sublethal and behavioral effects on different organisms. In total, 903 MEC entries of psychoactive drugs and 162 data on ecotoxicological assays were gathered from the literature survey addressing behavioral effects (115), acute/chronic effects (35), and sublethal effects (12). Citalopram and diazepam were the only substances that are likely to pose an environmental risk (RQ > 1) to surface waters. Even though there is considerable amount of data on behavioral effects of psychoactive drugs to aquatic species, results are currently not integrated into the EMA risk assessment framework. The large amount of data on psychoactive drug concentrations and effects on non-target organisms collected, interpreted, and discussed in the present study should be used as a baseline for future improvement of ERA strategies.
Collapse
Affiliation(s)
- Deivisson L Cunha
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, Rio de Janeiro, RJ, CEP 20550-900, Brazil.
| | - Maíra P Mendes
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, S7N 5B3, Canada
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, Rio de Janeiro, RJ, CEP 20550-900, Brazil
| |
Collapse
|
17
|
Mayoudom EVT, Nguidjoe E, Mballa RN, Tankoua OF, Fokunang C, Anyakora C, Blackett KN. Identification and quantification of 19 pharmaceutical active compounds and metabolites in hospital wastewater in Cameroon using LC/QQQ and LC/Q-TOF. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:723. [PMID: 30430263 DOI: 10.1007/s10661-018-7097-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Human pharmaceutical residues are a serious environmental concern. They have been reported to have eco, geno, and human toxic effects, and thus their importance as micropollutants cannot be ignored. These have been studied extensively in Europe and North America. However, African countries are still lagging behind in research on these micropollutants. In this study, the wastewaters of the University Teaching Hospital of Yaoundé (UTHY) were screened for the presence of active pharmaceutical ingredients and their metabolites. The screening was carried out using two methods: high-performance liquid chromatography coupled to a triple quadrupole analyzer (LC/QQQ) and high-performance coupled to a mass spectrometer with a time of flight analyzer (LC/Q-TOF). A total of 19 active pharmaceutical ingredients and metabolites were identified and quantified. The compounds identified include paracetamol (211.93 μg/L), ibuprofen (141 μg/L), tramadol (76 μg/L), O-demethyltramadol (141 μg/L), erythromycinanhydrate (7 μg/L), ciprofloxacin (24 μg/L), clarinthromycine (0.088 μg/L), azitromycine (0.39 μg/L), sulfamethoxazole 0.16 μg/L), trimetoprime (0.27 μg/L), caffeine (5.8 μg/L), carnamaeepine (0.94 μg/L), atenolol (0.43 μg/L), propranolol (0.3 μg/L), cimetidine (34 μg/L), hydroxy omeprazole (5 μg/L), diphenhydramine (0.38 μg/L), metformine (154 μg/L), and sucralose (13.07 μg/L).
Collapse
Affiliation(s)
- Edwige Vanessa Tchadji Mayoudom
- Department of Pharmacology and Toxicology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Evrard Nguidjoe
- Department of Pharmacology and Toxicology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Rose Ngono Mballa
- Department of Galenic Pharmacy and Pharmaceutical Legislation, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
- Laboratory for the Control of Drug Quality and Expertise, LACOME, Yaounde, Cameroon
| | - Olivia Fossi Tankoua
- Department of Pharmacology and Toxicology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Charles Fokunang
- Department of Pharmacology and Toxicology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Chimezie Anyakora
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
- Centre for Applied Research on Separation Science, Lagos, Nigeria.
| | | |
Collapse
|
18
|
de Andrade JR, Oliveira MF, da Silva MGC, Vieira MGA. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b05137] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Júlia R. de Andrade
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| | - Maria F. Oliveira
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| | - Meuris G. C. da Silva
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| | - Melissa G. A. Vieira
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| |
Collapse
|
19
|
Cunha DL, de Araujo FG, Marques M. Psychoactive drugs: occurrence in aquatic environment, analytical methods, and ecotoxicity-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24076-24091. [PMID: 28942593 DOI: 10.1007/s11356-017-0170-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
This review focused on seven psychoactive drugs being six benzodiazepines (alprazolam, bromazepam, clonazepam, diazepam, lorazepam, and oxazepam) and one antidepressant (citalopram) widely consumed by modern society and detected in different aqueous matrices (drinking water, surface water, groundwater, seawater, estuary water, influent and effluent of wastewater treatment plants). The review included 219 selected scientific papers from which 1642 data/entries were obtained, each entry corresponding to one target compound in one aqueous matrix. Concentrations of all investigated drugs in all aqueous matrices varied from 0.14 to 840,000 ng L-1. Citalopram presented the highest concentrations in the aqueous matrices. Based on the Wilcoxon-Mann-Whitney test, differences between wastewater influents and effluents were not significant for most wastewater categories, suggesting that conventional wastewater treatment systems as such do not remove or remove partially these compounds. High-income countries showed much lower concentrations in surface water than the group formed by upper-middle-, lower-middle-, and low-income countries. Regarding analytical methods, solid-phase extraction (SPE) was by far the most used extraction method (83%) and performance liquid chromatography (HPLC) (73%) coupled to mass spectrometry (99%) the most common analytical method. Changes in behavior and in survival rates were the most common effects reported on bioindicators (aquatic species) due to the presence of these drugs in water. Concentrations of psychoactive drugs found in surface waters were most of the time within the range that caused measurable toxic effects in ecotoxicity assays.
Collapse
Affiliation(s)
- Deivisson Lopes Cunha
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil
- Post-Graduation Program in Environment (PPGMA), UERJ, Rio de Janeiro, Brazil
| | - Frederico Goytacazes de Araujo
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil
- Post-Graduation Program in Chemistry (PPGQ), UERJ, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil.
| |
Collapse
|
20
|
Abreu MS, Giacomini ACV, Gusso D, Rosa JGS, Koakoski G, Kalichak F, Idalêncio R, Oliveira TA, Barcellos HHA, Bonan CD, Barcellos LJG. Acute exposure to waterborne psychoactive drugs attract zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:37-43. [PMID: 26325205 DOI: 10.1016/j.cbpc.2015.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 01/08/2023]
Abstract
Psychotropic medications are widely used, and their prescription has increased worldwide, consequently increasing their presence in aquatic environments. Therefore, aquatic organisms can be exposed to psychotropic drugs that may be potentially dangerous, raising the question of whether these drugs are attractive or aversive to fish. To answer this question, adult zebrafish were tested in a chamber that allows the fish to escape or seek a lane of contaminated water. These attraction and aversion paradigms were evaluated by exposing the zebrafish to the presence of acute contamination with these compounds. The zebrafish were attracted by certain concentrations of diazepam, fluoxetine, risperidone and buspirone, which were most likely detected by olfaction, because this behavior was absent in anosmic fish. These findings suggest that despite their deleterious effects, certain psychoactive drugs attract fish.
Collapse
Affiliation(s)
- Murilo S Abreu
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Ana Cristina V Giacomini
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil; Universidade de Passo Fundo (UPF), BR 285, Bairro São José, Passo Fundo, RS, 99052-900, Brazil
| | - Darlan Gusso
- Universidade de Passo Fundo (UPF), BR 285, Bairro São José, Passo Fundo, RS, 99052-900, Brazil
| | - João G S Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Fabiana Kalichak
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Renan Idalêncio
- Universidade de Passo Fundo (UPF), BR 285, Bairro São José, Passo Fundo, RS, 99052-900, Brazil; Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Hospital Veterinário, BR 285, Bairro São José, Passo Fundo, RS, 99052-900, Brazil
| | - Thiago A Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Heloísa H A Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil; Universidade de Passo Fundo (UPF), BR 285, Bairro São José, Passo Fundo, RS, 99052-900, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS, Brazil
| | - Leonardo J G Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil; Universidade de Passo Fundo (UPF), BR 285, Bairro São José, Passo Fundo, RS, 99052-900, Brazil; Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Hospital Veterinário, BR 285, Bairro São José, Passo Fundo, RS, 99052-900, Brazil.
| |
Collapse
|
21
|
de Almeida CAA, Oliveira MS, Mallmann CA, Martins AF. Determination of the psychoactive drugs carbamazepine and diazepam in hospital effluent and identification of their metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17192-201. [PMID: 26139407 DOI: 10.1007/s11356-015-4948-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/23/2015] [Indexed: 05/25/2023]
Abstract
This study addresses the occurrence of carbamazepine and diazepam and their metabolites in the wastewater of the University Hospital (HUSM) of the Federal University of Santa Maria, RS-Brazil. Samples were collected from three sampling points of the sewage treatment system: point A ('emergency effluent'), point B ('general effluent') and point C ('water course-receptor'). Eight metabolites were identified: carbamazepine-10-11-epoxide, 10-dihydro-carbamazepine, 2-OH-carbamazepine, iminoquinone, acridone, nordiazepam, oxazepam and temazepam. The mean concentrations in the emergency, general effluent and water course-receptor were as follows: 433.0 ± 4.7, 349.0 ± 5.0 and 485.0 ± 5.6 ng L(-1), for carbamazepine and 550.0 ± 4.3, 441.0 ± 7.9 and 586.6 ± 9.3 ng L(-1), for diazepam, respectively. Liquid chromatography with electrospray ionization tandem mass spectrometry (LC-QqLIT-MS) proved to be a method fit-to-purpose. The determination of carbamazepine and diazepam, and the identification of active metabolites showing environmental persistence (carbamazepine-10-11-epoxide, nordiazepam and oxazepam) revealed the need for a more effective treatment of the HUSM effluent. As far as we know, no similar study has been carried out on the wastewater of Brazilian hospitals.
Collapse
Affiliation(s)
- Carlos A A de Almeida
- Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Maurício S Oliveira
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Carlos A Mallmann
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Ayrton F Martins
- Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Departamento de Química, Universidade Federal de Santa Maria, Campus Camobi, CEP 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
22
|
Mendoza A, Aceña J, Pérez S, López de Alda M, Barceló D, Gil A, Valcárcel Y. Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard. ENVIRONMENTAL RESEARCH 2015; 140:225-41. [PMID: 25880605 DOI: 10.1016/j.envres.2015.04.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 05/23/2023]
Abstract
This work analyses the presence of twenty-five pharmaceutical compounds belonging to seven different therapeutic groups and one iodinated contrast media (ICM) in a Spanish medium-size hospital located in the Valencia Region. Analysis of the target compounds in the hospital wastewater was performed by means of solid phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry analysis (HPLC-MS/MS). A screening level risk assessment combining the measured environmental concentrations (MECs) with dose-response data based on Predicted No Effect Concentration (PNEC) was also applied to estimate Hazard Quotients (HQs) for the compounds investigated. Additionally, the environmental hazard associated to the various compounds measured was assessed through the calculation of the Persistence, Bioaccumulation and Toxicity (PBT) Index, which categorizes compounds according to their environmentally damaging characteristics. The results of the study showed the presence of twenty-four out of the twenty-six compounds analysed at individual concentrations ranging from 5 ng L(-1) to 2 mg L(-1). The highest concentrations corresponded to the ICM iomeprol, found at levels between 424 and 2093 μg L(-1), the analgesic acetaminophen (15-44 μg L(-1)), the diuretic (DIU) furosemide (6-15 μg L(-1)), and the antibiotics (ABIs) ofloxacin and trimethoprim (2-5 μg L(-1)). The lowest levels corresponded to the anti-inflammatory propyphenazone, found at concentrations between 5 and 44 ng L(-1). Differences in terms of concentrations of the analysed compounds have been observed in all the therapeutic groups when comparing the results obtained in this and other recent studies carried out in hospitals with different characteristics from different geographical areas and in different seasons. The screening level risk assessment performed in raw water from the hospital effluent showed that the analgesics and anti-inflammatories (AAFs) acetaminophen, diclofenac, ibuprofen and naproxen, the antibiotics (ABIs) clarithromycin, ofloxacin and trimethoprim, and the β-blocker (BBL) propranolol were present at concentrations leading to HQ values higher than 10, thus indicating high risk. When applying a factor to take into account potential dilution and degradation processes, only the compound ibuprofen showed a HQ higher than 1. Likewise, the cumulative HQ or Toxic Units (TUs) calculated in the raw water for each of the therapeutic groups studied showed that these three classes of drugs were at concentrations high enough to potentially generate high risk to aquatic organisms while taking into account possible dilution and degradation processes only one of them, the AAFs can be considered to represent high risk. Finally, the environmental hazard assessment performed showed that the AAFs diclofenac and ibuprofen and the ABI clarithromycin have the highest, maximum value of 9 of PBT Index due to their inherent environmentally damaging characteristics of persistence, bioaccumulation and toxicity. The methodology followed in the present case study can be taken as a novel approach to classify and categorize pharmaceuticals on the basis of their occurrence in hospital effluents, their derived environmental risks, and their associated environmental hazard. This classification becomes important because it can be used as a model or orientation for hospitals in the process of developing environmentally sustainable policies and as an argument to justify the adoption of advanced, specific treatments for hospital effluents before being discharged into the public sewage system.
Collapse
Affiliation(s)
- A Mendoza
- Research Group in Environmental Health and Ecotoxicology (ToxAmb). Rey Juan Carlos University. Avda. Tulipán, s/n. 28933 Móstoles (Madrid), Spain; Department of Occupational Health and Safety. University Hospital of Fuenlabrada. Camino del Molino, s/n. 28942 Fuenlabrada (Madrid), Spain.
| | - J Aceña
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain
| | - S Pérez
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain
| | - M López de Alda
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain
| | - D Barceló
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - A Gil
- Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology. Faculty of Health Sciences, Rey Juan Carlos University. Avda. Atenas, s/n. 28922 Alcorcón (Madrid), Spain
| | - Y Valcárcel
- Research Group in Environmental Health and Ecotoxicology (ToxAmb). Rey Juan Carlos University. Avda. Tulipán, s/n. 28933 Móstoles (Madrid), Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology. Faculty of Health Sciences, Rey Juan Carlos University. Avda. Atenas, s/n. 28922 Alcorcón (Madrid), Spain.
| |
Collapse
|
23
|
Verlicchi P, Al Aukidy M, Zambello E. What have we learned from worldwide experiences on the management and treatment of hospital effluent? - an overview and a discussion on perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 514:467-91. [PMID: 25698384 PMCID: PMC7112026 DOI: 10.1016/j.scitotenv.2015.02.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 05/19/2023]
Abstract
This study overviews lessons learned from experimental investigations on dedicated treatment systems of hospital effluent carried out worldwide in the last twenty years. It includes 48 peer reviewed papers from 1995 to 2015 assessing the efficacy of different treatment levels (preliminary, primary, secondary and polishing) of hospital wastewater in removing a wide spectrum of pharmaceutical compounds as well as conventional contaminants. Moreover, it highlights the rationale and the reasons for each study: reducing the discharge of micropollutants in surface water, improving existing wastewater treatment technologies and reducing the risk of spread of pathogens causing endemic diseases and finally, it offers a critical analysis of the conclusions and suggestions of each study. The most investigated technologies are membrane bioreactors equipped with ultrafiltration membranes in the secondary step, ozonation followed by activated carbon filtration (in powder and in granules) in the polishing step. Interesting research projects deal with photo-Fenton processes acting as primary treatments to enhance biodegradation before biological treatment, and as a polishing step, thus further reducing micro-contaminant occurrence. Investment and operational costs are also presented and discussed for the different treatment technologies tested worldwide, in particular membrane bioreactors and various advanced oxidation processes. This study also discusses the need for further research to evaluate toxicity resulting from advanced oxidation processes as well as the need to develop an accurate feasibility study that encompasses technical, ecotoxicological and economic aspects to identify the best available treatment in the different situations from a global view point.
Collapse
Affiliation(s)
- P Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy; Terra&Acqua Tech Technopole of the University of Ferrara, Via Borsari 46, 44123 Ferrara, Italy.
| | - M Al Aukidy
- Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy.
| | - E Zambello
- Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy.
| |
Collapse
|
24
|
|