1
|
Yoshinaga TT, Giovanella P, de Farias GS, Dos Santos JA, Pellizzer EP, Sette LD. Fungi from Antarctic marine sediment: characterization and assessment for textile dye decolorization and detoxification. Braz J Microbiol 2024:10.1007/s42770-024-01485-w. [PMID: 39259479 DOI: 10.1007/s42770-024-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/25/2024] [Indexed: 09/13/2024] Open
Abstract
Cold-adapted microorganisms can produce enzymes with activity at low and mild temperatures, which can be applied to environmental biotechnology. This study aimed to characterize 20 Antarctic fungi to identify their genus (ITS rDNA marker) and growth temperatures and evaluate their ability to decolorize and detoxify the textile dye indigo carmine (IC). An individual screening was performed to assess the decolorization and detoxification of IC by the isolates, as well as in consortia with other fungi. The isolates were affiliated with seven ascomycete genera: Aspergillus (n = 4), Cosmospora (n = 2), Leuconeurospora (n = 2), Penicillium (n = 3), Pseudogymnoascus (n = 6), Thelebolus (n = 2), and Trichoderma (n = 1). The two isolates from the genus Leuconeurospora were characterized as psychrophilic, while the others were psychrotolerant. The Penicillium isolates were able to decolorize between 60 and 82% of IC. The isolates identified as Pseudogymnoascus showed the best detoxification capacity, with results varying from 49 to 74%. The consortium using only Antarctic ascomycetes (C1) showed 45% of decolorization, while the consortia with the addition of basidiomycetes (C1 + Peniophora and C1 + Pholiota) showed 40% and 50%, respectively. The consortia C1 with the addition of the basidiomycetes presented a lower toxicity after the treatments. In addition, a higher fungal biomass was produced in the presence of dye when compared with the experiment without the dye, which can be indicative of dye metabolization. The results highlight the potential of marine-derived Antarctic fungi in the process of textile dye degradation. The findings encourage further studies to elucidate the degradation and detoxification pathways of the dye IC by these fungal isolates.
Collapse
Affiliation(s)
- Thaís Tiemi Yoshinaga
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
| | - Patrícia Giovanella
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
- Centro de Estudos Ambientais, Universidade Estadual Paulista (UNESP), Rio Claro, CEP 13506-900, SP, Brazil
| | - Gabriele Santana de Farias
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
| | - Juliana Aparecida Dos Santos
- Universidade do Vale do Sapucaí (Univás), Av. Prefeito Tuany Toledo, 470 - Fatima, Pouso Alegre, 37550-000, MG, Brazil
| | - Elisa Pais Pellizzer
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
| | - Lara Durães Sette
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil.
- Centro de Estudos Ambientais, Universidade Estadual Paulista (UNESP), Rio Claro, CEP 13506-900, SP, Brazil.
| |
Collapse
|
2
|
Wolski EA. The versatility of <i>Penicillium</i> species to degrade organic pollutants and its use for wastewater treatment. STUDIES IN FUNGI 2023. [DOI: 10.48130/sif-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
3
|
Testing Thymol-Based DES for the Elimination of 11 Textile Dyes from Water. SEPARATIONS 2022. [DOI: 10.3390/separations9120442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Textile industries release dangerous wastewater that contain dyes into the environment. Due to their toxic, carcinogenic and mutagenic nature, they must be removed before the discharge. Liquid–liquid extraction has proven to be an efficient method for the removal of these dyes. As extractants, deep eutectic solvents (DESs) have shown excellent results in recent years, as well as presenting several green properties. Therefore, four different hydrophobic DESs based on natural components were prepared thymol:decanoic acid (T:D (1:1)), thymol:DL-menthol (T:M (1:1)), thymol:DL-menthol (T:M (1:2)) and thymol:coumarin (T:C (2:1)) for the extraction of Malachite Green (MG), Brilliant Blue G (BBG), Acid Yellow 73 (AY73), Reactive Red 29 (RR29), Acid Blue 113 (AB113), Reactive Black 5 (RB5), Remazol Brilliant Blue (RBB), Direct Yellow 27 (DY27), Acid Blue 80 (AB80), Direct Blue 15 (DB15) and Acid Violet 43 (AV43) dyes from water. The operational parameters of the liquid–liquid extraction were selected in order to save time and materials, resulting in 30 min of stirring, 15 min of centrifugation and an aqueous:organic ratio of 5:1. In these conditions, the highest values of extraction obtained were 99% for MG, 89% for BBG and 94% for AY73. Based on these results, the influence of the aqueous:organic phase ratio and the number of necessary stages to achieve water decolorization was studied.
Collapse
|
4
|
Santal AR, Rani R, Kumar A, Sharma JK, Singh NP. Biodegradation and detoxification of textile dyes using a novel bacterium Bacillus sp. AS2 for sustainable environmental cleanup. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2113518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ritu Rani
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anil Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | | | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
5
|
ZnO Nano-swirlings for Azo Dye AR183 photocatalytic degradation and antimycotic activity. Sci Rep 2022; 12:14023. [PMID: 35982131 PMCID: PMC9388521 DOI: 10.1038/s41598-022-17924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
The sol-gel technique was used to fabricate ZnO Nano-swirlings (ZNsw) at a predetermined agitation rate (of >> 1900 rpm), with around 21.94 gm of zinc acetate dihydrate and 0.2 g cetyltrimethylammoniumbromide (CTAB) and a cationic surfactant (drop-wise). The impact of the predetermined agitation condition on the molecular size and morphology of ZNsw is examined, and the outcomes are dissected by useful characterization tools and techniques viz. XRD, SEM embedded with EDS, TEM, FT-IR and UV-visible. The SEM and TEM results suggest that the product formed into a big cluster of adequate ZNsw, containing a significant quantity of folded long thread-lengths. Each group indicated a fair amount of the volume of these lengths. The photocatalytic process of ZNsw was carried out as a result of the irradiation time due to the deterioration of Azo Dye AR183, resulting in approximately 79 percent dye discoloration following an 80-min UV light irradiation in the presence of ZNsw. Additionally, the synthesized ZNsw was tested for antagonistic activity, and the growth hindrance of two plant pathogenic fungal strains found. Per cent inhibition in growth of Rhizoctonia solani and Alternaria alternata were observed in response to ZNsw.
Collapse
|
6
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
7
|
KITA DANIELAM, GIOVANELLA PATRICIA, YOSHINAGA THAÍST, PELLIZZER ELISAP, SETTE LARAD. Antarctic fungi applied to textile dye bioremediation. AN ACAD BRAS CIENC 2022; 94:e20210234. [DOI: 10.1590/0001-3765202220210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- DANIELA M. KITA
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - PATRICIA GIOVANELLA
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | | | | | - LARA D. SETTE
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| |
Collapse
|
8
|
Rajasekar R, Samuel M, Edison TNJI, Raman N. Sustainable synthesis of silver nanoparticles using Alstonia scholaris for enhanced catalytic degradation of methylene blue. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Efficient biodegradation of Congo red dye using fungal consortium incorporated with Penicillium oxalicum and Aspergillus tubingensis. Folia Microbiol (Praha) 2021; 67:33-43. [PMID: 34468947 DOI: 10.1007/s12223-021-00915-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
A novel approach had been carried out to develop fungal consortium, namely, RH-2, containing two marine procured fungal isolates in order to evaluate biodegradation of recalcitrant diazo dye Congo red. The fungi were isolated from the seacoast of Diu, India. According to the ITS sequencing, the strains were identified as Penicillium oxalicum (DS-2) and Aspergillus tubingensis (DS-4). Discs of 12 mm were cut out from the edge of both the fungal isolates (DS-2 and DS-4) and inoculated in flasks consisting of potato dextrose broth with 100 mg/L Congo red for the development of fungal consortium RH-2. The degradation by the fungal consortium RH-2 was more effective than the fungal monocultures DS-2 and DS-4 with the respective degradation reaching 97.15 ± 0.15%, 68.96 ± 0.09%, and 29.96 ± 0.21% in addition of yeast extract (1% w/v) within 12 h. The influence of dextrose (1% w/v), yeast extract (1% w/v), pH 5, and salt concentration (1% w/v) enhanced the degradation potential of fungal consortium RH-2. The maximal degradation was correlated with the production of laccase (12.498 ± 0.21 U/mL) and manganese peroxidase (10.314 ± 0.25 U/mL). The catabolism of Congo red was confirmed by UV-Visible spectroscopic analysis (Congo red λ-max = 499 nm) and ATR-FTIR spectroscopic analysis. The filtrates obtained after Congo red degradation were also evaluated for microbial toxicity against bacteria (Bacillus haynesii) and phytotoxicity analysis on plant seed (Trigonella foenum) which revealed that the filtrate acquired after the treatment of Congo red by fungal consortium RH-2 was less toxic than the original dye in nature. A novel aspect is determined by the evidence of mutualistic interaction between two different fungi for the rapid decolorization and degradation of dye providing a prospective of utilizing the developed consortium RH-2 as a cost-effective approach in textile wastewater treatment for cleaner environment.
Collapse
|
10
|
Preparation of Zinc Oxide Nanoparticles using Aspergillus niger as Antimicrobial and Anticancer Agents. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the current study, zinc oxide nanoparticles (ZnO-NP) were prepared using extracellular extracts of Aspergillus niger. Hence, the morphological structure, optical, and surface features of the synthesized nanoparticles were studied by X-ray diffraction, transmission electron microscopy, ultraviolet-visible and infrared absorption by Fourier transform. Use dynamic light scattering and zeta potential measurements to assess colloidal stability. The mean size of the synthetic particles is approximately 20 ± 5 nm and they have a hexagonal crystal structure. In addition, the prepared nanoparticles have strong light absorption in the ultraviolet region of λ = 265 and 370 nm. To achieve the goal of this study, the efficiency of ZnO-NP was determined as an antibacterial and antifungal against different bacterial and fungal strains. It was found that ZnO-NP showed significant antibacterial activity, where the inhibition zones were varied from 21 to 35mm in diameter against six bacterial species (i.e. K. pneumoniae, E. coli, A. baumannii, P. aeruginosa, S. aureus, and S. haemolyticus). In such a case, the minimal inhibitory concentration of zinc oxide nanoparticles against bacterial strains were 50, 12.5, 12.5, 50, 12.5, and 12.5μg/ml for K. pneumoniae, E. coli, A. baumannii, P. aeruginosa, S. aureus, and S. haemolyticus, respectively. Furthermore, ZnO-NP exhibits an antifungal behaviour against four fungal species (i.e., A. niger, P. marneffei, C. glabrata, and C. parapsilosis) with inhibition zone from 18 to 35mm in diameter. Whereas, the MICs for fungal isolates were 12.5μg/ml except A. niger was at 25μg/ml. Wi-38 cells were treated with ZnO-NPs exhibited different levels of cytotoxicity dependent upon the concentration of ZnO NPs using the MTT assay with IC50~800.42. Therefore, the present study introduces a facile and cost-effective extracellular green-synthesis of ZnO-NP to be used as antimicrobial and anticancer agents.
Collapse
|
11
|
Diatom Biosilica Doped with Palladium(II) Chloride Nanoparticles as New Efficient Photocatalysts for Methyl Orange Degradation. Int J Mol Sci 2021; 22:ijms22136734. [PMID: 34201641 PMCID: PMC8267799 DOI: 10.3390/ijms22136734] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022] Open
Abstract
A new catalyst based on biosilica doped with palladium(II) chloride nanoparticles was prepared and tested for efficient degradation of methyl orange (MO) in water solution under UV light excitation. The obtained photocatalyst was characterized by X-ray diffraction, TEM and N2 adsorption/desorption isotherms. The photocatalytic degradation process was studied as a function of pH of the solution, temperature, UV irradiation time, and MO initial concentration. The possibilities of recycling and durability of the prepared photocatalysts were also tested. Products of photocatalytic degradation were identified by liquid chromatography–mass spectrometry analyses. The photocatalyst exhibited excellent photodegradation activity toward MO degradation under UV light irradiation. Rapid photocatalytic degradation was found to take place within one minute with an efficiency of 85% reaching over 98% after 75 min. The proposed mechanism of photodegradation is based on the assumption that both HO• and O2•− radicals, as strongly oxidizing species that can participate in the dye degradation reaction, are generated by the attacks of photons emitted from diatom biosilica (photonic scattering effect) under the influence of UV light excitation. The degradation efficiency significantly increases as the intensity of photons emitted from biosilica is enhanced by palladium(II) chloride nanoparticles immobilized on biosilica (synergetic photonic scattering effect).
Collapse
|
12
|
de Almeida AP, Macrae A, Ribeiro BD, do Nascimento RP. Decolorization and detoxification of different azo dyes by Phanerochaete chrysosporium ME-446 under submerged fermentation. Braz J Microbiol 2021; 52:727-738. [PMID: 33694059 PMCID: PMC8105446 DOI: 10.1007/s42770-021-00458-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/23/2021] [Indexed: 11/28/2022] Open
Abstract
Azo dyes are widely used in the textile industry due to their resistance to light, moisture, and oxidants. They are also an important class of environmental contaminant because of the amount of dye that reaches natural water resources and because they can be toxic, mutagenic, and carcinogenic. Different technologies are used for the decolorization of wastewater containing dyes; among them, the biological processes are the most promising environmentally. The aim of this study was to evaluate the potential of Phanerochaete chrysosporium strain ME-446 to safely decolorize three azo dyes: Direct Yellow 27 (DY27), Reactive Black 5 (RB5), and Reactive Red 120 (RR120). Decolorization efficiency was determined by ultraviolet-visible spectrophotometry and the phytotoxicity of the solutions before and after the fungal treatment was analyzed using Lactuca sativa seeds. P. chrysosporium ME-446 was highly efficient in decolorizing DY27, RB5, and RR120 at 50 mg L-1, decreasing their colors by 82%, 89%, and 94% within 10 days. Removal of dyes was achieved through adsorption on the fungal mycelium as well as biodegradation, inferred by the changes in the dyes' spectral peaks. The intensive decolorization of DY27 and RB5 corresponded to a decrease in phytotoxicity. However, phytotoxicity increased during the removal of color for the dye RR120. The ecotoxicity tests showed that the absence of color does not necessarily translate to an absence of toxicity.
Collapse
Affiliation(s)
- Alana Pereira de Almeida
- Laboratório de Ecologia e Processos Microbianos, Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil.
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Decania, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, RJ, Brazil.
| | - Andrew Macrae
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Decania, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, RJ, Brazil
- Laboratório de Biotecnologia Sustentável e Bioinformática Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Bernardo Dias Ribeiro
- Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Rodrigo Pires do Nascimento
- Laboratório de Ecologia e Processos Microbianos, Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Decania, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, RJ, Brazil
| |
Collapse
|
13
|
Environmental and Industrial Perspective of Beneficial Fungal Communities: Current Research and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Ortiz-Monsalve S, Gutterres M, Valente P, Plácido J, Bustamante-López S, Kelly D, Kelly SL. Degradation of a leather-dye by the combination of depolymerised wood-chip biochar adsorption and solid-state fermentation with Trametes villosa SCS-10. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00349-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractAdsorption into biochar-derived materials and mycoremediation are promising technologies for removing dyes from solid and liquid matrices. This study presents a combined treatment with adsorption into wood-chip biochar and mycodegradation under solid-state fermentation by Trametes villosa for removing the leather-dye Acid Blue 161. In the first stage, untreated wood-chip biochar, NaOH–depolymerised biochar and KMnO4–depolymerised biochar were assessed for their dye removal efficiency by adsorption. KMnO4–depolymerised biochar exhibited the highest adsorption (85.1 ± 1.9%) after 24 h of contact. KMnO4–depolymerisation modified some physical and chemical properties on the untreated wood-chip biochar, increasing the surface area (50.4 m2 g–1), pore size (1.9 nm), and presence of surface functional groups. Response surface methodology coupled with a Box–Behnken design was used to optimise the AB161 adsorption into the KMnO4–depolymerised biochar. The optimised conditions, pH 3.0, dye concentration 100 mg L–1 and sorbent dosage 2 g L–1, led to a higher dye removal efficiency by adsorption (91.9 ± 1.0%). In a second stage, the wood-chip biochar supplemented with nutrients (1% malt extract and 0.5% peptone) was employed as a solid matrix for growing T. villosa and regenerating the dye-saturated material. After 15 days, T. villosa was able to grow (86.8 ± 0.8%), exhibit laccase activity (621.9 ± 62.3 U L–1), and biodegrade (91.4 ± 1.3%) the dye adsorbed into the KMnO4–depolymerised biochar. Finally, the mycoregenerated biochar was reutilised in a new cycle of adsorption reaching 79.5 ± 2.0% of dye removal efficiency by adsorption. This study revealed the potential of the combined treatment and is an initial assessment for developing commercial alternatives for treating leather industry wastewaters.
Collapse
|
15
|
Catalytic Removal of Alizarin Red Using Chromium Manganese Oxide Nanorods: Degradation and Kinetic Studies. Catalysts 2020. [DOI: 10.3390/catal10101150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dye removal through photocatalytic degradation employing nanomaterials as catalysts is a growing research area. In current studies, photocatalytic alizarin red (AR) dye degradation has been investigated by designing a series of Cr based manganese oxide nanomaterials (MH1–MH5). Synthesized nanomaterials were characterized by powder X-ray diffraction, scanning electron microscopy/energy dispersive x-ray, Brunauer–Emmett–Teller, and photoluminescence techniques and were utilized for photocatalytic AR dye degradation under UV light. AR dye degradation was monitored by UV–visible spectroscopy and percent degradation was studied for the effect of time, catalyst dose, different dye concentrations, and different pH values of dye solution. All the catalysts have shown more than 80% dye degradation exhibiting good catalytic efficiencies for dye removal. The catalytic pathway was analyzed by applying the kinetic model. A pseudo second-order model was found the best fitted kinetic model indicating a chemically-rate controlled mechanism. Values of constant R2 for all the factors studied were close to unity depicting a good correlation between experimental data.
Collapse
|
16
|
Ben Ali W, Chaduli D, Navarro D, Lechat C, Turbé-Doan A, Bertrand E, Faulds CB, Sciara G, Lesage-Meessen L, Record E, Mechichi T. Screening of five marine-derived fungal strains for their potential to produce oxidases with laccase activities suitable for biotechnological applications. BMC Biotechnol 2020; 20:27. [PMID: 32398071 PMCID: PMC7218534 DOI: 10.1186/s12896-020-00617-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Environmental pollution is one of the major problems that the world is facing today. Several approaches have been taken, from physical and chemical methods to biotechnological strategies (e.g. the use of oxidoreductases). Oxidative enzymes from microorganisms offer eco-friendly, cost-effective processes amenable to biotechnological applications, such as in industrial dye decolorization. The aim of this study was to screen marine-derived fungal strains isolated from three coastal areas in Tunisia to identify laccase-like activities, and to produce and characterize active cell-free supernatants of interest for dye decolorization. RESULTS Following the screening of 20 fungal strains isolated from the harbors of Sfax and Monastir (Tunisia), five strains were identified that displayed laccase-like activities. Molecular-based taxonomic approaches identified these strains as belonging to the species Trichoderma asperellum, Stemphylium lucomagnoense and Aspergillus nidulans. Among these five isolates, one T. asperellum strain (T. asperellum 1) gave the highest level of secreted oxidative activities, and so was chosen for further studies. Optimization of the growth medium for liquid cultures was first undertaken to improve the level of laccase-like activity in culture supernatants. Finally, the culture supernatant of T. asperellum 1 decolorized different synthetic dyes belonging to diverse dye families, in the presence or absence of 1-hydroxybenzotriazole (HBT) as a mediator. CONCLUSIONS The optimal growth conditions to produce laccase-like active cell-free supernatants from T. asperellum 1 were 1.8 mM CuSO4 as an inducer, 1% NaCl to mimic a seawater environment and 3% sucrose as a carbon source. The culture supernatant of T. asperellum 1 effectively decolorized different synthetic dyes belonging to diverse chemical classes, and the presence of HBT as a mediator improved the decolorization process.
Collapse
Affiliation(s)
- Wissal Ben Ali
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire de Biochimie et de Génie enzymatique des lipases, Université de Sfax, Sfax, Tunisie. .,Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France.
| | - Delphine Chaduli
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France.,INRA, Aix-Marseille Université, UMR1163, CIRM-CF, Marseille, France
| | - David Navarro
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France.,INRA, Aix-Marseille Université, UMR1163, CIRM-CF, Marseille, France
| | - Christian Lechat
- Ascofrance, 64 route de Chizé, F-79360, Villiers-en-Bois, France
| | - Annick Turbé-Doan
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Emmanuel Bertrand
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Craig B Faulds
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Giuliano Sciara
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Laurence Lesage-Meessen
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Eric Record
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Tahar Mechichi
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire de Biochimie et de Génie enzymatique des lipases, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
17
|
Olicón-Hernández DR, Camacho-Morales RL, Pozo C, González-López J, Aranda E. Evaluation of diclofenac biodegradation by the ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:607-614. [PMID: 30699381 DOI: 10.1016/j.scitotenv.2019.01.248] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Diclofenac (DFC) is a common anti-inflammatory drug, and has attracted the significant attention due to its massive use around the world and its environmental impact. In this work, we describe for the first time the use of Penicillium oxalicum, an ascomycetes fungus, for the biotransformation of DFC at flask and bench bioreactor scales. We present a complete study of the role of enzymes, metabolic pathway, acute toxicity assays and comparison between free and immobilised biomass. Pellets of P. oxalicum degraded 100 μM of DFC within 24 h, and the activity of CYP450 enzymes was key for the elimination of the drug. The scaling-up to bench bioreactor was optimised by the reduction of nutrients, and characterising the actions of free pellets, polyurethane foam- and plastic K1-immobilised biomass revealed free pellets to be the most efficient DFC removal system (total elimination occurred in 36 h). Hydroxylated metabolites were detected during the process, suggesting that a mixture of biological and physical processes were involved in the elimination of DFC. The use of P. oxalicum reduced the acute toxicity of the medium supplemented with diclofenac and represents a novel and attractive alternative for the elimination of pharmaceutical compounds.
Collapse
Affiliation(s)
| | - R Lucero Camacho-Morales
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain
| | - Clementina Pozo
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - Jesús González-López
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - Elisabet Aranda
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, ZIP 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
18
|
Synthesis of biphasic nanomaterials based on ZnO and SnO2: Application towards photocatalytic degradation of acid red dye. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Green synthesis of silver nanoparticles using Piper longum catkin extract irradiated by sunlight: antibacterial and catalytic activity. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03812-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Biodecolourization and biodetoxification of dye-containing wastewaters from leather dyeing by the native fungal strain Trametes villosa SCS-10. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SØ. Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management. Front Microbiol 2018; 9:2992. [PMID: 30568644 PMCID: PMC6289982 DOI: 10.3389/fmicb.2018.02992] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
How to sustainably feed a growing global population is a question still without an answer. Particularly farmers, to increase production, tend to apply more fertilizers and pesticides, a trend especially predominant in developing countries. Another challenge is that industrialization and other human activities produce pollutants, which accumulate in soils or aquatic environments, contaminating them. Not only is human well-being at risk, but also environmental health. Currently, recycling, land-filling, incineration and pyrolysis are being used to reduce the concentration of toxic pollutants from contaminated sites, but too have adverse effects on the environment, producing even more resistant and highly toxic intermediate compounds. Moreover, these methods are expensive, and are difficult to execute for soil, water, and air decontamination. Alternatively, green technologies are currently being developed to degrade toxic pollutants. This review provides an overview of current research on microbial inoculation as a way to either replace or reduce the use of agrochemicals and clean environments heavily affected by pollution. Microorganism-based inoculants that enhance nutrient uptake, promote crop growth, or protect plants from pests and diseases can replace agrochemicals in food production. Several examples of how biofertilizers and biopesticides enhance crop production are discussed. Plant roots can be colonized by a variety of favorable species and genera that promote plant growth. Microbial interventions can also be used to clean contaminated sites from accumulated pesticides, heavy metals, polyaromatic hydrocarbons, and other industrial effluents. The potential of and key processes used by microorganisms for sustainable development and environmental management are discussed in this review, followed by their future prospects.
Collapse
Affiliation(s)
- Maqshoof Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Lisa Pataczek
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Thomas H. Hilger
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Azhar Hussain
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | | | - Svein Ø. Solberg
- World Vegetable Center, Tainan, China
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
22
|
Guadie A, Gessesse A, Xia S. Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated Rift Valley Soda lake. CHEMOSPHERE 2018; 206:59-69. [PMID: 29730566 DOI: 10.1016/j.chemosphere.2018.04.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 03/29/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Considering the saline-alkaline nature of textile wastewater and treatment requirements, microbial samples were collected from Ethiopian Rift Valley Soda Lakes. A large number of bacteria (121) were isolated from dye-uncontaminated Lakes Chitu (81.0%), Abijata (15.7%) and Arenguadie (3.3%), of which 95 isolates (78.5%) were found dye decolorizer. Many dye decolorizer from Lake Chitu positively correlated with higher pH (10.3 ± 0.1), salinity (64.6 ± 2.0%), conductivity (6.1 ± 0.3 mS cm-1) and Na+ (18.4 ± 0.6 g L-1) values observed than Abijata and Arenguadie Lakes. Through subsequent screening mechanism, strain A55 was selected to investigate the effect of nutrient (carbon and nitrogen), dissolved oxygen and dye concentration using Reactive Red 184 (RR 184). Based on morphological, biochemical and 16S rRNA gene sequence analysis, the strain was identified as Halomonas sp. Decolorization efficiencies were significantly enhanced with carbon (≥98%) and organic nitrogen (∼100%) than non-carbon/nitrogen (both<55%) supplements. Complete decolorization efficiencies were also observed under anoxic and anaerobic growth conditions. However, growing the isolate with nitrate (<30%) and aerobic (<10%) condition significantly decreased (p < 0.05) color removal efficiency. Kinetic analysis showed that pseudo-first-order best describes RR 184 decolorization process. Overall, the ability of Halomonas sp. strain A55 decolorized different dyes indicate that alkaline soda lake isolates are the potential candidate for treating color containing effluent.
Collapse
Affiliation(s)
- Awoke Guadie
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
23
|
He XL, Song C, Li YY, Wang N, Xu L, Han X, Wei DS. Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:232-239. [PMID: 29288904 DOI: 10.1016/j.ecoenv.2017.12.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
A fast-growing fungus with remarkable ability to degrade several azo dyes under non-sterile conditions was isolated and identified. This fungus was identified as Trichoderma tomentosum. Textile effluent of ten-fold dilution could be decolorized by 94.9% within 72h before optimization. Acid Red 3R model wastewater with a concentration of 85.5mgL-1 could be decolorized by 99.2% within the same time after optimization. High-level of manganese peroxidase and low-level of lignin peroxidase activities were detected during the process of decolorization from the culture supernatant, indicating the possible involvement of two enzymes in azo dye decolorization. No aromatic amine products were detected from the degradation products of Acid Red 3R by gas chromatography-mass spectrometry (GC/MS) analysis, indicating the possible involvement of a special symmetrical oxidative degradation pathway. Phytotoxicity assay confirmed the lower toxicity toward the test plant seeds of the degradation products when compared to the original dye.
Collapse
Affiliation(s)
- Xiao-Ling He
- a State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Engineering Center for Safety Evaluation of Water Quality & Safeguards Technology, School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Chao Song
- a State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Engineering Center for Safety Evaluation of Water Quality & Safeguards Technology, School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yuan-Yuan Li
- a State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Engineering Center for Safety Evaluation of Water Quality & Safeguards Technology, School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Ning Wang
- a State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Engineering Center for Safety Evaluation of Water Quality & Safeguards Technology, School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Lei Xu
- a State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Engineering Center for Safety Evaluation of Water Quality & Safeguards Technology, School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Xin Han
- Tianjin Rongtai Water Corporation, Tianjin 300000, China
| | - Dong-Sheng Wei
- Key Laboratory of molecular microbiology and technology, Ministry of education, College of Life Sciences, Nankai University, Tianjin 300071,China.
| |
Collapse
|
24
|
Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN, Singh RS. Recent advancements in bioremediation of dye: Current status and challenges. BIORESOURCE TECHNOLOGY 2018; 253:355-367. [PMID: 29352640 DOI: 10.1016/j.biortech.2018.01.029] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/01/2018] [Accepted: 01/05/2018] [Indexed: 05/23/2023]
Abstract
The rampant industrialization and unchecked growth of modern textile production facilities coupled with the lack of proper treatment facilities have proliferated the discharge of effluents enriched with toxic, baleful, and carcinogenic pollutants including dyes, heavy metals, volatile organic compounds, odorants, and other hazardous materials. Therefore, the development of cost-effective and efficient control measures against such pollution is imperative to safeguard ecosystems and natural resources. In this regard, recent advances in biotechnology and microbiology have propelled bioremediation as a prospective alternative to traditional treatment methods. This review was organized to address bioremediation as a practical option for the treatment of dyes by evaluating its performance and typical attributes. It further highlights the current hurdles and future prospects for the abatement of dyes via biotechnology-based remediation techniques.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Nadeem Raza
- Government Emerson College affiliated with Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, United Kingdom
| | - Kangkan Roy
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Birendra Nath Rai
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
25
|
Ignat M, Rotaru R, Samoila P, Sacarescu L, Timpu D, Harabagiu V. Relationship between the component synthesis order of zinc ferrite–titania nanocomposites and their performances as visible light-driven photocatalysts for relevant organic pollutant degradation. CR CHIM 2018. [DOI: 10.1016/j.crci.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Tian H, Ma YJ, Li WY, Wang JW. Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8963-8975. [PMID: 29332277 DOI: 10.1007/s11356-017-1186-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS), a widely used antimicrobial and preservative agent, is an emerging contaminant in aqueous and soil environment. Microbial degradation of TCS has not been reported frequently because of its inhibition of microbe growth. To explore the new microbial resources for TCS biodegradation, fungal endophytes were isolated and screened for the degradation potential. The endophytic strain B4 isolated from Artemisia annua L. showed higher degradation efficiency and was identified as Penicillium oxalicum based on its morphology and ITS sequences of ribosomal DNA. In both medium and synthetic wastewater, TCS (5 mg/L) was almost completely degraded within 2 h by the strain B4. The high capacity of TCS uptake (127.60 ± 8.57 mg/g dry weight, DW) of fungal mycelium was observed during the first 10 min after TCS addition. B4 rapidly reduced initial content (5.00 mg/L) of TCS to 0.41 mg/L in medium in 10 min. Then, the accumulation of TCS in mycelium was degraded from 0.45 to 0.05 mg/g DW after 1-h treatment. The degradation metabolites including 2-chlorohydroquinone, 2, 4-dichloropheno, and hydroquinone were found to be restrained in mycelia. The end products of the biodegradation in medium showed no toxicity to Escherichia coli. The new characteristics of high adsorption, fast degradation, and low residual toxicity highlight the potential of endophytic P. oxalicum B4 in TCS bioremediation.
Collapse
Affiliation(s)
- Hao Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wan Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- Institute of Agricultural Product Processing, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
27
|
Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study. Sci Rep 2017; 7:11356. [PMID: 28900110 PMCID: PMC5595786 DOI: 10.1038/s41598-017-10132-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/06/2017] [Indexed: 11/08/2022] Open
Abstract
Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass, is discovered to promote the degradation of Azo dye by white-rot fungus Irpex lacteus CD2 in the lignin/dye/fungus system. Shotgun proteomics technique was used to understand degradation mechanism at the protein level for the lignin/dye/fungus system. Our proteomics study can identify about two thousand proteins (one third of the predicted white-rot fungal proteome) in a single experiment, as one of the most powerful proteomics platforms to study the fungal system to date. The study shows a significant enrichment of oxidoreduction functional category under the dye/lignin combined treatment. An in vitro validation is performed and supports our hypothesis that the synergy of Fenton reaction and manganese peroxidase might play an important role in DR5B dye degradation. The results could guide the development of effective bioremediation strategies and efficient lignocellulosic biomass conversion.
Collapse
|
28
|
Sun J, Guo N, Niu LL, Wang QF, Zang YP, Zu YG, Fu YJ. Production of Laccase by a New Myrothecium verrucaria MD-R-16 Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.] and its Application on Dye Decolorization. Molecules 2017; 22:E673. [PMID: 28441744 PMCID: PMC6154323 DOI: 10.3390/molecules22040673] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022] Open
Abstract
The present study was conducted to screen a laccase-producing fungal endophyte, optimize fermentation conditions, and evaluate the decolorization ability of the laccase. A new fungal endophyte capable of laccase-producing was firstly isolated from pigeon pea and identified as Myrothecium verrucaria based on a ITS-rRNA sequences analysis. Meanwhile, various fermentation parameters on the laccase production were optimized via response surface methodology (RSM). The optimal fermentation conditions were a fermentation time of five days, temperature 30 °C and pH 6.22. Laccase activity reached 16.52 ± 0.18 U/mL under the above conditions. Furthermore, the laccase showed effective decolorization capability toward synthetic dyes (Congo red, Methyl orange, Methyl red, and Crystal violet) in the presence of the redox mediator ABTS, with more than 70% of dyes decolorizing after 24 h of incubation. Additionally, the activity of laccase was relatively stable with pH (4.5-6.5) and a temperature range of 35-55 °C. Therefore, the high laccase production of the strain and the new fungal laccase could provide a promising alterative approach for industrial and environmental applications.
Collapse
Affiliation(s)
- Jiao Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Li-Li Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Qing-Fang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yu-Ping Zang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yuan-Gang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
29
|
Ameen F, Alshehrei F. Biodegradation optimization and metabolite elucidation of Reactive Red 120 by four different Aspergillus species isolated from soil contaminated with industrial effluent. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1259-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
30
|
Nouren S, Bhatti HN, Iqbal M, Bibi I, Kamal S, Sadaf S, Sultan M, Kausar A, Safa Y. By-product identification and phytotoxicity of biodegraded Direct Yellow 4 dye. CHEMOSPHERE 2017; 169:474-484. [PMID: 27889513 DOI: 10.1016/j.chemosphere.2016.11.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 05/27/2023]
Abstract
Citrus limon peroxidase mediated decolourization of Direct Yellow 4 (DY4) was investigated. The process variables (pH, temperature, incubation time, enzyme dose, H2O2 amount, dye concentration, co-metal ions and surfactants) were optimized for maximum degradation of dye. Maximum dye decolourization of 89.47% was achieved at pH 5.0, temperature 50 °C, enzyme dose 24 U/mL, H2O2 concentration 0.25 mM and DY4 concentration 18.75 mg/L and incubation time 10 min. The co-metal ions and surfactants did not affect the dye decolourization significantly. Response surface analysis revealed that predicted values were in agreement with experimentally determined responses. The degradation products were identified by UPLC/MS analysis and degradation pathway was proposed. Besides, phytotoxicity assay revealed a considerable detoxification in response of biodegradation of DY4 dye. C. limon showed promising efficiency for DY4 degradation and could possibly be used for the remediation of textile effluents.
Collapse
Affiliation(s)
- Shazia Nouren
- Department of Chemistry, Women University of Azad Jammu & Kashmir, Bagh, Pakistan.
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Ismat Bibi
- Department of Chemistry, Islamia University Bahawalpur, Pakistan
| | - Shagufta Kamal
- Department of Applied Chemistry, Govt. College University, Faisalabad, Pakistan
| | - Sana Sadaf
- Bio-analytical Chemistry Laboratory, Punjab Bio-Energy Institute, University of Agriculture, Faisalabad, Pakistan
| | - Misbah Sultan
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Abida Kausar
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Yusra Safa
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
31
|
Tang S, Yuan D, Zhang Q, Liu Y, Zhang Q, Liu Z, Huang H. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18800-18808. [PMID: 27316651 DOI: 10.1007/s11356-016-7030-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.
Collapse
Affiliation(s)
- Shoufeng Tang
- Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Deling Yuan
- Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Qi Zhang
- Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Yameng Liu
- Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Qi Zhang
- Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zhengquan Liu
- Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Haiming Huang
- Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
32
|
Chmelová D, Ondrejovič M. Purification and characterization of extracellular laccase produced byCeriporiopsis subvermisporaand decolorization of triphenylmethane dyes. J Basic Microbiol 2016; 56:1173-1182. [DOI: 10.1002/jobm.201600152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/06/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Daniela Chmelová
- Faculty of Natural Sciences; Department of Biotechnologies; University of SS. Cyril and Methodius; Trnava Slovak Republic
| | - Miroslav Ondrejovič
- Faculty of Natural Sciences; Department of Biotechnologies; University of SS. Cyril and Methodius; Trnava Slovak Republic
| |
Collapse
|
33
|
Zhang Y, Xie Z, Teng X, Fan J. Synthesis of molecularly imprinted polymer nanoparticles for the fast and highly selective adsorption of sunset yellow. J Sep Sci 2016; 39:1559-66. [DOI: 10.1002/jssc.201501295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Zhang
- Key Laboratory of Synthetic & Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry & Material Science; Northwest University; Xi'an China
| | - Zhihai Xie
- Key Laboratory of Synthetic & Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry & Material Science; Northwest University; Xi'an China
| | - Xiaoxiao Teng
- Key Laboratory of Synthetic & Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry & Material Science; Northwest University; Xi'an China
| | - Jin Fan
- Key Laboratory of Synthetic & Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry & Material Science; Northwest University; Xi'an China
| |
Collapse
|
34
|
Ge D, Zeng Z, Arowo M, Zou H, Chen J, Shao L. Degradation of methyl orange by ozone in the presence of ferrous and persulfate ions in a rotating packed bed. CHEMOSPHERE 2016; 146:413-418. [PMID: 26741546 DOI: 10.1016/j.chemosphere.2015.12.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/09/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
This work investigated the degradation of methyl orange by ozone in the presence of ferrous and persulfate ions (O3/Fe(2+)/S2O8(2-)) in a rotating packed bed. The effects of various operating parameters such as initial pH, rotational speed, gas-liquid ratio, ozone inlet concentration and reaction temperature on the degradation rate of methyl orange were studied with an aim to optimize the operation conditions. Results reveal that the degradation rate increased with an increase in rotational speed, gas-liquid ratio and ozone inlet concentration, and reached a maximum at 25 °C and initial pH 4. Contrast experiments involving ozone and ferrous ions (O3/Fe(2+)) were also carried out, and the results show approximately 10% higher degradation rate and COD removal in the O3/Fe(2+)/S2O8(2-) process than in the O3/Fe(2+) process. Additionally, the intermediates of the degradation process were analyzed to ascertain the degradation products.
Collapse
Affiliation(s)
- Deming Ge
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zequan Zeng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Moses Arowo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haikui Zou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jianfeng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Shao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
35
|
Tan L, He M, Song L, Fu X, Shi S. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. BIORESOURCE TECHNOLOGY 2016; 203:287-294. [PMID: 26744802 DOI: 10.1016/j.biortech.2015.12.058] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Isolation, identification and characterization of a salt-tolerant yeast capable of degrading and detoxifying azo dyes were investigated in this study. Possible degradation pathway of Acid Scarlet 3R was proposed through analyzing metabolic intermediates using UV-Vis and HPLC-MS methods. Furthermore, the Microtox test was performed to evaluate the acute toxicity of the dye before and after biodegradation. The results showed that a salt-tolerant yeast named TLHS-SF1 was isolated and identified as Scheffersomyces spartinae basing on 26S rDNA analysis. The optimal decolorization and growth parameters were: sucrose 2 g L(-1), (NH4)2SO4 0.6 g L(-1), yeast extract 0.08 g L(-1), NaCl ⩽ 30 g L(-1), 160 rmin(-1), 30 °C and pH 5.0-6.0. More than 90% of 80 mg L(-1) 3R could be decolorized within 16 h under the optimal conditions. 3R was possibly degraded successively through azo-reduction, deamination and desulfonation pathways, and its acute toxicity obviously decreased by strain TLHS-SF1.
Collapse
Affiliation(s)
- Liang Tan
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| | - Muyang He
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Li Song
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
36
|
Kaur S, Rattan V, Jindal R. Removal of Acid Red 183 Azo Dye using Tapered Fluidised Bed Reactor. Chem Ind 2016. [DOI: 10.1080/00194506.2016.1139471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Tao X, Li K, Yan H, Yang H, Li A. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:21-29. [PMID: 26618263 DOI: 10.1016/j.envpol.2015.11.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment.
Collapse
Affiliation(s)
- Xue Tao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Kun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Han Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
38
|
Lade H, Govindwar S, Paul D. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:6894-918. [PMID: 26086710 PMCID: PMC4483738 DOI: 10.3390/ijerph120606894] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022]
Abstract
A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.
Collapse
Affiliation(s)
- Harshad Lade
- Department of Environmental Engineering, Konkuk University, Seoul 143-701, Korea.
| | - Sanjay Govindwar
- Department of Biochemistry, Shivaji University, Kolhapur 416004, India.
| | - Diby Paul
- Department of Environmental Engineering, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
39
|
Zou XL. Combination of ozonation, activated carbon, and biological aerated filter for advanced treatment of dyeing wastewater for reuse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8174-8181. [PMID: 25843826 DOI: 10.1007/s11356-015-4423-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
Laboratorial scale experiments were performed to investigate and evaluate the performance and removal characteristics of organics, color, and genotoxicity by an integrated process including ozonation, activated carbon (AC), and biological aerated filter (BAF) for recycling biotreated dyeing wastewater (BTDW) collected from a cotton textile factory. Influent chemical oxygen demand (COD) in the range of 156 - 252 mg/L, 5-day biochemical oxygen demand (BOD5) of 13.5 - 21.7 mg/L, and color of 58 - 76° were observed during the 20-day continuous operation. Outflows with average COD of 43 mg/L, BOD5 of 6.6 mg/L, and color of 5.6° were obtained after being decontaminated by the hybrid system with ozone dosage of 0.25 mg O3applied/mg COD0, 40 min ozonation contact time, 30 min hydraulic retention time (HRT) for AC treatment, and 2.5 h HRT for BAF treatment. More than 82 % of the genotoxicity of BTDW was eliminated in the ozonation unit. The genotoxicity of the BAF effluent was less than 1.33 μg 4-nitroquinoline-N-oxide/L. Ozonation could change the organics molecular structures, destroy chromophores, increase the biodegradability, and obviously reduce the genotoxicity of BTDW. Results showed that the combined process could guarantee water reuse with high quality.
Collapse
Affiliation(s)
- Xiao-Ling Zou
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi, China,
| |
Collapse
|
40
|
Mnif I, Fendri R, Ghribi D. Biosorption of Congo Red from aqueous solution by Bacillus weihenstephanensis RI12; effect of SPB1 biosurfactant addition on biodecolorization potency. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:865-874. [PMID: 26360745 DOI: 10.2166/wst.2015.288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacillus weihenstephanensis RI12, isolated from hydrocarbon contaminated soil, was assessed for Congo Red bio-treatment potency. Results suggested the potential of this bacterium for use in effective treatment of Congo Red contaminated wastewaters under shaking conditions at acidic and neutral pH value. The strain could tolerate higher doses of dyes as it could decolorize up to 1,000 mg/l of Congo Red. When used as microbial surfactant to enhance Congo Red biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that Congo Red removal by this strain could be due to an adsorption phenomena. Germination potencies of tomato seeds using the treated dyes under different conditions showed the efficient biotreatment of the azo dye Congo Red especially with the addition of SPB1 biosurfactant. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing the effective decolorization period; the biosurfactant stimulated bacterial decolorization method may provide a highly efficient, inexpensive and time-saving procedure in the treatment of textile effluents.
Collapse
Affiliation(s)
- Inès Mnif
- National School of Engineers of Sfax, Unité "Enzymes et Bioconversion", ENIS, Université de Sfax, BP W 3038 Sfax, Tunisia and Higher Institute of Biotechnology of Sfax, Université de Sfax, Sfax, Tunisia E-mail:
| | - Raouia Fendri
- National School of Engineers of Sfax, Unité "Enzymes et Bioconversion", ENIS, Université de Sfax, BP W 3038 Sfax, Tunisia and Higher Institute of Biotechnology of Sfax, Université de Sfax, Sfax, Tunisia E-mail:
| | - Dhouha Ghribi
- National School of Engineers of Sfax, Unité "Enzymes et Bioconversion", ENIS, Université de Sfax, BP W 3038 Sfax, Tunisia and Higher Institute of Biotechnology of Sfax, Université de Sfax, Sfax, Tunisia E-mail:
| |
Collapse
|
41
|
Shen T, Jiang C, Wang C, Sun J, Wang X, Li X. A TiO2modified abiotic–biotic process for the degradation of the azo dye methyl orange. RSC Adv 2015. [DOI: 10.1039/c5ra06686g] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methyl orange was degraded by a TiO2modified abiotic–biotic process involving synergetic mechanisms of adsorption, biodegradation, dye sensitization and LMCT.
Collapse
Affiliation(s)
- Tingting Shen
- College of Environmental Science and Engineering
- Qilu University of Technology
- Ji’nan
- P. R. China
- College of Environmental Science and Engineering
| | - Chengcheng Jiang
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Ji’nan
- P. R. China
| | - Chen Wang
- College of Environmental Science and Engineering
- Qilu University of Technology
- Ji’nan
- P. R. China
| | - Jing Sun
- College of Environmental Science and Engineering
- Qilu University of Technology
- Ji’nan
- P. R. China
| | - Xikui Wang
- College of Environmental Science and Engineering
- Qilu University of Technology
- Ji’nan
- P. R. China
| | - Xiaoming Li
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
42
|
Saroj S, Kumar K, Prasad M, Singh RP. Differential expression of peroxidase and ABC transporter as the key regulatory components for degradation of azo dyes by Penicillium oxalicum SAR-3. Funct Integr Genomics 2014; 14:631-42. [PMID: 25270890 DOI: 10.1007/s10142-014-0405-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/10/2014] [Accepted: 09/21/2014] [Indexed: 11/24/2022]
Abstract
Fungal species are potential dye decomposers since these secrete spectra of extracellular enzymes involved in catabolism. However, cellular mechanisms underlying azo dye catalysis and detoxification are incompletely understood and obscure. A potential strain designated as Penicillium oxalicum SAR-3 demonstrated broad-spectrum catabolic ability of different azo dyes. A forward suppression subtractive hybridization (SSH) cDNA library of P. oxalicum SAR-3 constructed in presence and absence of azo dye Acid Red 183 resulted in identification of 183 unique expressed sequence tags (ESTs) which were functionally classified into 12 functional categories. A number of novel genes that affect specifically organic azo dye degradation were discovered. Although the ABC transporters and peroxidases emerged as prominent hot spot for azo dye detoxification, we also identified a number of proteins that are more proximally related to stress-responsive gene expression. Majority of the ESTs (29.5%) were grouped as hypothetical/unknown indicating the presence of putatively novel genes. Analysis of few ESTs through quantitative real-time reverse transcription polymerase chain reaction revealed their possible role in AR183 degradation. The ESTs identified in the SSH library provide a novel insight on the transcripts that are expressed in P. oxalicum strain SAR-3 in response to AR183.
Collapse
Affiliation(s)
- Samta Saroj
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | | | | |
Collapse
|