1
|
Yu Y, Lu S, Jin H, Zhu H, Wei X, Zhou T, Zhao M. RNA N6-methyladenosine methylation and skin diseases. Autoimmunity 2023; 56:2167983. [PMID: 36708146 DOI: 10.1080/08916934.2023.2167983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Skin diseases are global health issues caused by multiple pathogenic factors, in which epigenetics plays an invaluable role. Post-transcriptional RNA modifications are important epigenetic mechanism that regulate gene expression at the genome-wide level. N6-methyladenosine (m6A) is the most prevalent modification that occurs in the messenger RNAs (mRNA) of most eukaryotes, which is installed by methyltransferases called "writers", removed by demethylases called "erasers", and recognised by RNA-binding proteins called "readers". To date, m6A is emerging to play essential part in both physiological processes and pathological progression, including skin diseases. However, a systematic summary of m6A in skin disease has not yet been reported. This review starts by illustrating each m6A-related modifier specifically and their roles in RNA processing, and then focus on the existing research advances of m6A in immune homeostasis and skin diseases.
Collapse
Affiliation(s)
- Yaqin Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Shuang Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Hui Jin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Xingyu Wei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Tian Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| |
Collapse
|
2
|
Alharbi RM. Hydroclathrus clathratus as anti-damaging agent against lung injury in male albino rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The present investigation is designed to evaluate the antioxidant and protective efficacy of the brown alga, Hydroclathrus clathratus (C.Agardh) M. Howe, against copper-induced lung injury in male albino rats. The present study was carried out on 24 adult male albino rats, they were randomly divided into four groups (n = 6) (A group, control rats; B group, rats received 100 mg/kg body weight of H. clathratus ethanolic extract; C group, rats augmented with 100 mg/kg body weight of CuSO4; and D group, rats were supplemented with 100 mg/kg of CuSO4 and 100 mg/kg of H. clathratus ethanolic extract). All the experimental treatments were given orally and daily for 28 days.
Results
It was showing that Cu treatment was found to induce lung toxicity, histopathologically, Cu revealed severe degenerative and necrotic lesions in the lung. Also, Cu caused a significant decrease in glutathione-S-transferase (GST) count and glutathione (GSH); meanwhile, malondialdehyde (MDA) content was increased. Consistently, mRNA and protein expression levels of proapoptotic (caspase-3 and Bax) marker showed a significant upregulation, whereas the anti-apoptotic (Bcl-2) level was significantly downregulated in lung tissues of CuSO4-intubated groups. Moreover, H. clathratus plus CuSO4-treated group showed improvement in the histopathological changes of lung injury. The bronchi and bronchioles appeared like those of the control, where the alveoli showed thin septa in some parts and thickened septa in other parts.
Conclusion
Findings revealed that the natural antioxidant activity of H. clathratus could protect the lung tissue from the damage produced by CuSO4.
Collapse
|
3
|
Malandrino P, Russo M, Gianì F, Pellegriti G, Vigneri P, Belfiore A, Rizzarelli E, Vigneri R. Increased Thyroid Cancer Incidence in Volcanic Areas: A Role of Increased Heavy Metals in the Environment? Int J Mol Sci 2020; 21:ijms21103425. [PMID: 32408629 PMCID: PMC7279170 DOI: 10.3390/ijms21103425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Thyroid cancer incidence is significantly increased in volcanic areas, where relevant non-anthropogenic pollution with heavy metals is present in the environment. This review will discuss whether chronic lifelong exposure to slightly increased levels of metals can contribute to the increase in thyroid cancer in the residents of a volcanic area. The influence of metals on living cells depends on the physicochemical properties of the metals and their interaction with the target cell metallostasis network, which includes transporters, intracellular binding proteins, and metal-responsive elements. Very little is known about the carcinogenic potential of slightly increased metal levels on the thyroid, which might be more sensitive to mutagenic damage because of its unique biology related to iodine, which is a very reactive and strongly oxidizing agent. Different mechanisms could explain the specific carcinogenic effect of borderline/high environmental levels of metals on the thyroid, including (a) hormesis, the nonlinear response to chemicals causing important biological effects at low concentrations; (b) metal accumulation in the thyroid relative to other tissues; and (c) the specific effects of a mixture of different metals. Recent evidence related to all of these mechanisms is now available, and the data are compatible with a cause–effect relationship between increased metal levels in the environment and an increase in thyroid cancer incidence.
Collapse
Affiliation(s)
- Pasqualino Malandrino
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy; (P.M.); (M.R.); (F.G.); (G.P.); (A.B.)
| | - Marco Russo
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy; (P.M.); (M.R.); (F.G.); (G.P.); (A.B.)
| | - Fiorenza Gianì
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy; (P.M.); (M.R.); (F.G.); (G.P.); (A.B.)
| | - Gabriella Pellegriti
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy; (P.M.); (M.R.); (F.G.); (G.P.); (A.B.)
| | - Paolo Vigneri
- Medical Oncology and the Center of Experimental Oncology and Hematology, Department of Clinical and Experimental Medicine, University of Catania, A.O.U. Policlinico Vittorio Emanuele, 95125 Catania, Italy;
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy; (P.M.); (M.R.); (F.G.); (G.P.); (A.B.)
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
- Consiglio Nazionale delle Ricerche, Cristallography Institute (Catania Section), via P. Gaifami 18, 95126 Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), via Celso Ulpiani 27, 70126 Bari, Italy
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy; (P.M.); (M.R.); (F.G.); (G.P.); (A.B.)
- Consiglio Nazionale delle Ricerche, Cristallography Institute (Catania Section), via P. Gaifami 18, 95126 Catania, Italy
- Correspondence: ; Tel.: +39-095-759-8747
| |
Collapse
|
4
|
Chen H, Zhao T, Sun D, Wu M, Zhang Z. Changes of RNA N 6-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells. Toxicol In Vitro 2019; 56:84-92. [PMID: 30654086 DOI: 10.1016/j.tiv.2019.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/01/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Arsenite exposure can induce a biphasic response called "hormesis", and oxidative stress has been proposed to play critical roles in the hormesis effect. However, the precise mechanisms underlying the hormesis effect induced by arsenite is largely unknown. Recently, N6-methyladenosine (m6A) modification has been implicated to play an important role in the biological processes of cells. Nevertheless, whether and how m6A is involved in the hormesis of cell growth and death caused by arsenite via oxidative stress have remained a mystery. Here, oxidative stress and m6A as well as its methyltransferases/demethylase of human keratinocyte cells after low/high doses of arsenite exposure were simultaneously evaluated. Our results demonstrated that the treatment of human HaCaT cells with low levels of arsenite up-regulated m6A modification as well as its methyltransferases (METTL3/METTL14/WTAP) and inactivated the demethylase (FTO), exerting "protective response" against oxidative stress and promoting HaCaT cells survival. On the contrary, high doses of arsenite induced down-regulation of m6A level and enhanced oxidative stress, showing "inhibitive effects" on cell viability in HaCaT cells. Our results suggest that the reversible m6A modification is associated with the arsenite-driven hormesis on cytotoxicity.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Mei Wu
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Morgan MB, Edge SE, Venn AA, Jones RJ. Developing transcriptional profiles in Orbicella franksi exposed to copper: Characterizing responses associated with a spectrum of laboratory-controlled environmental conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:60-76. [PMID: 28599170 DOI: 10.1016/j.aquatox.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/23/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, School of Mathematics and Natural Sciences, 2277 Martha Berry Hwy, Mount Berry, GA, 30149, USA.
| | - Sara E Edge
- Hawaii Pacific University, 45-045 Kamehameha Hwy, Kaneohe, HI, 96744, USA
| | - Alexander A Venn
- Marine Biology Department et Laboratoire International Associé 647 "BIOSENSIB", Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco
| | - Ross J Jones
- Australian Institute of Marine Science (AIMS), Perth, 6009, Australia
| |
Collapse
|
6
|
Frawley RP, Smith MJ, White KL, Elmore SA, Herbert R, Moore R, Staska LM, Behl M, Hooth MJ, Kissling GE, Germolec DR. Immunotoxic effects of sodium tungstate dihydrate on female B6C3F1/N mice when administered in drinking water. J Immunotoxicol 2016; 13:666-75. [PMID: 27223060 DOI: 10.3109/1547691x.2016.1154118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tungsten is a naturally occurring, high-tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0-2000 mg STD/L in their drinking water for 28 d, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3(+) T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely affect cell-mediated immunity.
Collapse
Affiliation(s)
- Rachel P Frawley
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Matthew J Smith
- b Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , VA
| | - Kimber L White
- b Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , VA
| | - Susan A Elmore
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Ron Herbert
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Rebecca Moore
- c Experimental Pathology Laboratories Inc., Research Triangle Park , NC , USA
| | | | - Mamta Behl
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Michelle J Hooth
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Grace E Kissling
- e Division of Intramural Research , NIEHS, Research Triangle Park , NC , USA
| | - Dori R Germolec
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| |
Collapse
|
7
|
Obinaju BE, Martin FL. ATR-FTIR spectroscopy reveals polycyclic aromatic hydrocarbon contamination despite relatively pristine site characteristics: Results of a field study in the Niger Delta. ENVIRONMENT INTERNATIONAL 2016; 89-90:93-101. [PMID: 26826366 DOI: 10.1016/j.envint.2016.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
Fourier-transform infrared (FTIR) spectroscopy is an emerging technique to detect biochemical alterations in biological tissues, particularly changes due to sub-lethal exposures to environmental contaminants. We have previously shown the potential of attenuated total reflection FTIR (ATR-FTIR) spectroscopy to detect real-time exposure to contaminants in sentinel organisms as well as the potential to relate spectral alterations to the presence of specific environmental agents. In this study based in the Niger Delta (Nigeria), changes occurring in fish tissues as a result of polycyclic aromatic hydrocarbon (PAH) exposure at contaminated sites are compared to the infrared (IR) spectra of the tissues obtained from a relatively pristine site. Multivariate analysis revealed that PAH contamination could be occurring at the pristine site, based on the IR spectra and significant (P<0.0001) differences between sites. The study provides evidence of the IR spectroscopy techniques' sensitivity and supports their potential application in environmental biomonitoring.
Collapse
Affiliation(s)
- Blessing E Obinaju
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|
8
|
ROYCHOUDHURY S, NATH S, MASSANYI P, STAWARZ R, KACANIOVA M, KOLESAROVA A. Copper-Induced Changes in Reproductive Functions: In Vivo and In Vitro Effects. Physiol Res 2016; 65:11-22. [DOI: 10.33549/physiolres.933063] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The goal of this study is to summarize the current knowledge on the effects of one of the essential metals, copper (Cu) on the reproductive system. The development of past four decades addressing effects of Cu on reproductive organs is reviewed. The most relevant data obtained from in vivo and in vitro experiments performed on humans and other mammals, including effects of copper nanoparticles (CuNPs) on the reproductive functions are presented. Short term Cu administration has been found to exert deleterious effect on intracellular organelles of rat ovarian cells in vivo. In vitro administration in porcine ovarian granulosa cells releases insulin-like growth factor (IGF-I), steroid hormone progesterone (P4), and induces expression of peptides related to proliferation and apoptosis. Adverse effect of Cu on male reproductive functions has been indicated by the decrease in spermatozoa parameters such as concentration, viability and motility. Copper nanoparticles are capable of generating oxidative stress in vitro thereby leading to reproductive toxicity. Toxic effect of CuNPs has been evident more in male mice than in females. Even though further investigations are necessary to arrive at a definitive conclusion, Cu notably influences the reproductive functions by interfering with both male and female reproductive systems and also hampers embryo development in dose-dependent manner.
Collapse
Affiliation(s)
- S. ROYCHOUDHURY
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | | | | | | | | | | |
Collapse
|
9
|
Wang X, Mu X, Zhang J, Huang Q, Alamdar A, Tian M, Liu L, Shen H. Serum metabolomics reveals that arsenic exposure disrupted lipid and amino acid metabolism in rats: a step forward in understanding chronic arsenic toxicity. Metallomics 2015; 7:544-52. [PMID: 25697676 DOI: 10.1039/c5mt00002e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic arsenic exposure through drinking water threatens public health worldwide. Although its multiorgan toxicity has been reported, the impact of chronic arsenic exposure on the metabolic network remains obscure. In this study, male Sprague Dawley rats were exposed to 0.5, 2 or 10 ppm sodium arsenite for three months. An ultra-high performance liquid chromatography/mass spectrometry based metabolomics approach was utilized to unveil the global metabolic response to chronic arsenic exposure in rats. Distinct serum metabolome profiles were found to be associated with the doses. Eighteen differential metabolites were identified, and most of them showed dose-dependent responses to arsenic exposure. Metabolic abnormalities mainly involved lipid metabolism and amino acid metabolism. The metabolic alterations were further confirmed by hepatic gene expression. Expressions of cpt2, lcat, cact, crot and mtr were significantly elevated in high dose groups. This study provides novel evidence to support the association between arsenic exposure and metabolic disruption, and it contributes to understanding the mechanism of chronic arsenic toxicity.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lachner D, Oliveira LF, Martinez CB. Effects of the water soluble fraction of gasoline on ZFL cell line: Cytotoxicity, genotoxicity and oxidative stress. Toxicol In Vitro 2015; 30:225-30. [DOI: 10.1016/j.tiv.2015.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/02/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
11
|
Obinaju BE, Fullwood NJ, Martin FL. Distinguishing nuclei-specific benzo[a]pyrene-induced effects from whole-cell alterations in MCF-7 cells using Fourier-transform infrared spectroscopy. Toxicology 2015; 335:27-34. [PMID: 26148868 DOI: 10.1016/j.tox.2015.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 02/04/2023]
Abstract
Exposure to chemicals such as benzo[a]pyrene (B[a]P) can generate intracellular toxic mechanisms. Fourier-transform infrared (FTIR) spectroscopy is a novel approach that allows the non-destructive analysis of underlying chemical bond alterations in patho-physiological processes. This study set out to examine whether B[a]P-induced whole cell alterations could be distinguished from effects on nuclei of exposed cells. Using attenuated total reflection FTIR (ATR-FTIR) spectroscopy, alterations in nuclei isolated from B[a]P-treated MCF-7 cells concentrated either in G0/G1- or S-phase were observed. B[a]P-induced effects in whole-cells included alterations to lipids, DNA and protein spectral regions. Absorbance areas for protein and DNA/RNA regions in B[a]P-treated whole cells differed significantly (P<0.0001) from vehicle controls and these observations correlated with alterations noted in isolated nuclei. Our findings provide evidence that FTIR spectroscopy has the ability to identify specific chemical-induced alterations.
Collapse
Affiliation(s)
- Blessing E Obinaju
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Nigel J Fullwood
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, UK
| | - Francis L Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|
12
|
Obinaju BE, Graf C, Halsall C, Martin FL. Linking biochemical perturbations in tissues of the African catfish to the presence of polycyclic aromatic hydrocarbons in Ovia River, Niger Delta region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 201:42-9. [PMID: 25765972 DOI: 10.1016/j.envpol.2015.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 05/28/2023]
Abstract
Petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) are a pollution issue in the Niger Delta region due to oil industry activities. PAHs were measured in the water column of the Ovia River with concentrations ranging from 0.1 to 1055.6 ng L(-1). Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy detected alterations in tissues of the African catfish (Heterobranchus bidorsalis) from the region showed varying degrees of statistically significant (P<0.0001, P<0.001, P<0.05) changes to absorption band areas and shifts in centroid positions of peaks. Alteration patterns were similar to those induced by benzo[a]pyrene in MCF-7 cells. These findings have potential health implications for resident local communities as H. bidorsalis constitutes a key nutritional source. The study provides supporting evidence for the sensitivity of infrared spectroscopy in environmental studies and supports their potential application in biomonitoring.
Collapse
Affiliation(s)
- Blessing E Obinaju
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Carola Graf
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|