1
|
Wojdasiewicz A, Panasiuk A, Bełdowska M. The non-selective Antarctic filter feeder Salpa thompsoni as a bioindicator of mercury origin. Sci Rep 2024; 14:2245. [PMID: 38278823 PMCID: PMC10817981 DOI: 10.1038/s41598-024-52770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
Hg is considered as the most toxic metal in the environment. Sources of Hg in the environment include burning fossil fuels, burning waste, and forest fires. The long residence time of the gaseous form in the atmosphere allows mercury to be transported over long distances. The pelagic tunicate Salpa thompsoni is an important component of the Antarctic environment. Over the past few decades an expansion of this species to the higher latitudes has been noted, mainly due to the ongoing climate change. The study material consisted of samples of S. thompsoni individuals, collected in the waters surrounding Elephant Island (Western Antarctic). Total mercury and five of its fractions were determined. Whole organisms were analyzed as well as internal organs: stomachs, muscle strips, and tunics. Obtained results showed that the highest concentrations of mercury in salps were observed in stomachs. With the Hg fraction results, it can be concluded that the main route of exposure of S. thompsoni to Hg is presumably absorption from the food-filtered organic and non-organic particles. Moreover, the process of transformation of simple soluble forms into organic forms of Hg in stomachs and intestines and its distribution to other tissues was observed.
Collapse
Affiliation(s)
- Adriana Wojdasiewicz
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Anna Panasiuk
- Department of Marine Biology and Biotechnology, Laboratory of Plankton Biology, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Magdalena Bełdowska
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
2
|
Korejwo E, Saniewska D, Bełdowski J, Balazy P, Saniewski M. Mercury concentration and speciation in benthic organisms from Isfjorden, Svalbard. MARINE POLLUTION BULLETIN 2022; 184:114115. [PMID: 36137440 DOI: 10.1016/j.marpolbul.2022.114115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Polar regions are an important part of the global mercury cycle and interesting study sites due to different possible mercury sources. The full understanding of mercury transformations in the Arctic is difficult because this region is the systems in transition -where the effects of the global climate change are the most prominent. Benthic organisms can be valuable bioindicators of heavy metal contamination. In July 2018, selected benthic organisms: macroalgae, brittle stars, sea urchins, gastropods, and starfish were collected in Isfjorden, Spitsbergen. Two of the sampling stations were located inside the fjord system and one at the entrance to the fjord. The results showed that the starfish were the most contaminated with mercury. Total mercury concentrations in these organisms were at least 10 times higher than in other organisms. However, they effectively deal with mercury by transporting it to hard tissue. The dominant form of mercury was the labile form.
Collapse
Affiliation(s)
- Ewa Korejwo
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-412 Sopot. Poland.
| | - Dominika Saniewska
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jacek Bełdowski
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-412 Sopot. Poland
| | - Piotr Balazy
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-412 Sopot. Poland
| | - Michał Saniewski
- Institute of Meteorology and Water Management - National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland
| |
Collapse
|
3
|
Kim J, Kwon SY, Kim K, Han S. Import, export, and speciation of mercury in Kongsfjorden, Svalbard: Influences of glacier melt and river discharge. MARINE POLLUTION BULLETIN 2022; 179:113693. [PMID: 35525059 DOI: 10.1016/j.marpolbul.2022.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The major sources and sinks of total mercury (THg) and methylmercury (MeHg) in Kongsfjorden were estimated based on spreadsheet-based ecological risk assessment for the fate of mercury (SERAFM). SERAFM was parameterized and calibrated to fit Kongsfjorden using the physical properties of the fjord, runoff coefficients of Hg, transformation rate constants of Hg, partition coefficients of Hg, Hg loadings from freshwater, and solid balance parameters. The modeled Hg concentrations in the seawater matched with the measured concentrations, with a mean bias of 12% and a calibration error of 0.035. The mass budget showed that the major THg sources were tidal inflow and glacial runoff, while the major MeHg sources were tidal inflow and in situ methylation in shallow halocline water, which agreed with the distributions of THg and MeHg in seawater. The coupling of observation and fate modeling in Kongsfjorden provides a basic understanding of Hg cycles in the Arctic fjords.
Collapse
Affiliation(s)
- Jihee Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Science, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
4
|
Rudnicka-Kępa P, Zaborska A. Sources, fate and distribution of inorganic contaminants in the Svalbard area, representative of a typical Arctic critical environment-a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:724. [PMID: 34648070 PMCID: PMC8516776 DOI: 10.1007/s10661-021-09305-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Global environmental changes not only contribute to the modification of global pollution transport pathways but can also alter contaminant fate within the Arctic. Recent reports underline the importance of secondary sources of pollution, e.g. melting glaciers, thawing permafrost or increased riverine run-off. This article reviews reports on the European Arctic-we concentrate on the Svalbard region-and environmental contamination by inorganic pollutants (heavy metals and artificial radionuclides), including their transport pathways, their fate in the Arctic environment and the concentrations of individual elements in the ecosystem. This review presents in detail the secondary contaminant sources and tries to identify knowledge gaps, as well as indicate needs for further research. Concentrations of heavy metals and radionuclides in Svalbard have been studied, in various environmental elements since the beginning of the twentieth century. In the last 5 years, the highest concentrations of Cd (13 mg kg-1) and As (28 mg kg-1) were recorded for organic-rich soils, while levels of Pb (99 mg kg-1), Hg (1 mg kg-1), Zn (496 mg kg-1) and Cu (688 mg kg-1) were recorded for marine sediments. Increased heavy metal concentrations were also recorded in some flora and fauna species. For radionuclides in the last 5 years, the highest concentrations of 137Cs (4500 Bq kg-1), 238Pu (2 Bq kg-1) and 239 + 240Pu (43 Bq kg-1) were recorded for cryoconites, and the highest concentration of 241Am (570 Bq kg-1) was recorded in surface sediments. However, no contamination of flora and fauna with radionuclides was observed.
Collapse
Affiliation(s)
| | - Agata Zaborska
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
5
|
Steenhuisen F, van den Heuvel-Greve M. Exposure radius of a local coal mine in an Arctic coastal system; correlation between PAHs and mercury as a marker for a local mercury source. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:499. [PMID: 34291327 PMCID: PMC8295130 DOI: 10.1007/s10661-021-09287-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/12/2021] [Indexed: 05/26/2023]
Abstract
Mercury in the Arctic originates from emissions and releases at lower latitudes and, to a lesser extent, from local and regional sources. The relationship between mercury (Hg) and polycyclic aromatic hydrocarbons (PAHs) in sediment can be applied as an indicator of the mercury source. This research examines the Hg contamination gradient from a land-based coal mine to the surrounding coastal environment to quantify the impact of local sources. Total mercury and PAH (Σ14PAH) were measured in terrestrial and marine sediments as well as in marine biota. Samples were collected at the mine and two reference sites. Mercury and Σ14PAH concentrations in samples collected at the mine site were significantly higher than those at the reference sites. This was also found in the biota samples, although less pronounced. This work addresses the complexities of interpreting data concerning very low contaminant levels in a relatively pristine environment. A clear correlation between PAH and Hg concentration in sediment was found, although a large number of samples had levels below detection limits. PAH profiles, hierarchical clustering, and molecular diagnostic ratios provided further insight into the origin of PAHs and Hg, showing that signatures in sediments from the nearest reference site were more similar to the mine, which was not the case for the other reference site. The observed exposure radius from the mine was small and diluted from land to water to marine biota. Due to low contamination levels and variable PAH profiles, marine biota was less suitable for tracing the exposure radius for this local land-based Hg source. With an expected increase in mobility and availability of contaminants in the warming Arctic, changes in input of PAHs and Hg from land-based sources to the marine system need close monitoring.
Collapse
Affiliation(s)
- Frits Steenhuisen
- Arctic Centre, University of Groningen, Aweg 30, 9718, CW, Groningen, the Netherlands.
| | - Martine van den Heuvel-Greve
- Wageningen Marine Research, P.O. Box 77, 4400 AB, Yerseke, The Netherlands
- Marine Animal Ecology, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
6
|
Kwasigroch U, Bełdowska M, Jędruch A, Łukawska-Matuszewska K. Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35690-35708. [PMID: 33675497 PMCID: PMC8277639 DOI: 10.1007/s11356-021-13023-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The study aimed to determine the level of mercury (Hg) and its labile and stable forms in the surface sediments of the Baltic Sea. The work considers the impact of current and historical sources of Hg on sediment pollution, together with the influence of different environmental parameters, including water inflows from the North Sea. Surface sediments (top 5 cm) were collected in 2016-2017 at 91 stations located in different areas of the Baltic Sea, including Belt Sea, Arkona Basin, Bornholm Basin, Gdańsk Basin, West Gotland Basin, East Gotland Basin, and the Bothnian Sea. Besides, the particulate matter suspended in the surface and near-bottom water was also collected. The analysis of total Hg concentration and individual Hg forms in collected samples was carried out using a 5-step thermodesorption method. This method allows for the identification of three labile and thus biologically available, fractions of Hg, which are mercury halides, organic Hg, mercury oxide and sulphate. Two stable fractions, mercury sulphide and residual Hg, were also determined. The highest Hg concentrations, reaching 341 ng g-1, were measured in the highly industrialised Kiel Bay, which was additionally a munition dumping site during and after World War II. High Hg level, ranging from 228 to 255 ng g-1, was also recorded in the surface sediments of the Arkona Basin, which was a result of the cumulative effect of several factors, such as deposition of Hg-rich riverine matter, favourable hydrodynamic conditions and military activities in the past. The relatively elevated Hg concentrations, varying from 60 to 264 ng g-1, were found in the Gdańsk Basin, a region under strong anthropopressure and dominated by soft sediments. The sum of labile Hg in sediments was high and averaged 67% (with the domination of organic Hg compounds), which means that a large part of Hg can be released to the water column. It was found that the water inflows from the North Sea intensify the remobilisation of Hg and its transformation into bioavailable labile forms. As a consequence, the load of Hg introduced into the trophic chain can increase. Despite the significant reduction of Hg emission into the Baltic in the last decades, surface sediments can be an important secondary Hg source in the marine ecosystem. This is especially dangerous in the case of the western Baltic Sea.
Collapse
Affiliation(s)
- Urszula Kwasigroch
- Institute of Oceanography, University of Gdańsk, Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magdalena Bełdowska
- Institute of Oceanography, University of Gdańsk, Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Jędruch
- Institute of Oceanography, University of Gdańsk, Piłsudskiego 46, 81-378 Gdynia, Poland
| | | |
Collapse
|
7
|
Siedlewicz G, Korejwo E, Szubska M, Grabowski M, Kwasigroch U, Bełdowski J. Presence of mercury and methylmercury in Baltic Sea sediments, collected in ammunition dumpsites. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105158. [PMID: 33065518 DOI: 10.1016/j.marenvres.2020.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Methylmercury (MeHg) is the most toxic and dangerous form of mercury occurring in the environment. MeHg is highly bioaccumulative in organisms and undergoes biomagnification via the food chain. In the Baltic Sea munition dumpsites, methylmercury can be formed from mercury fulminate contained in primary explosives, as environmental conditions there favour methylation. MeHg in analysed sediments ranged from 19 to 2362 pg g-1d.w., the concentration of mercury (HgTOT) ranged from 4 to 294 ng g-1 d.w., and the values of MeHg/Hg ratio ranged from 0.1 to 2.0%. The obtained results confirmed that munition dumpsites are a source of mercury. The concentration of MeHg is elevated in a wider area than immediately next to dumped munitions. Presented results suggest that physical processes responsible for sediment and near-bottom water movement are diffusing MeHg signal, making munition dumpsites rather a diffuse source of MeHg than a number of point sources associated with particular munitions.
Collapse
Affiliation(s)
- Grzegorz Siedlewicz
- Institute of Oceanology of the Polish Academy of Sciences, Ul. Powstańców Warszawy 55, Sopot, 81-712, Poland
| | - Ewa Korejwo
- Institute of Oceanology of the Polish Academy of Sciences, Ul. Powstańców Warszawy 55, Sopot, 81-712, Poland
| | - Marta Szubska
- Institute of Oceanology of the Polish Academy of Sciences, Ul. Powstańców Warszawy 55, Sopot, 81-712, Poland
| | - Miłosz Grabowski
- Institute of Oceanology of the Polish Academy of Sciences, Ul. Powstańców Warszawy 55, Sopot, 81-712, Poland
| | - Urszula Kwasigroch
- Institute of Oceanography, University of Gdańsk, Ul. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Jacek Bełdowski
- Institute of Oceanology of the Polish Academy of Sciences, Ul. Powstańców Warszawy 55, Sopot, 81-712, Poland.
| |
Collapse
|
8
|
Gopikrishna VG, Kannan VM, Binish MB, Abdul Shukkur M, Krishnan KP, Mohan M. Mercury in the sediments of freshwater lakes in Ny-Ålesund, Arctic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:538. [PMID: 32699977 DOI: 10.1007/s10661-020-08511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Mercury and its speciation in aquatic ecosystems have been assessed globally. Even though previous studies were limited to Arctic freshwater lakes, they are highly significant in the context of the changing climate. The present study is based on sediment samples collected from three Arctic freshwater lakes over a period of 4 years (2015-2018). The samples were analysed for total mercury (THg), methyl mercury (MHg), and various mercury fractions. The observed mean THg and MHg concentrations were 22.23 ng/g and 0.41 ng/g respectively; these values were comparable with those for other Arctic freshwater lakes. The mercury content significantly varied among the years as well as among the lakes. Changes in snowdrift and meltwater inputs, which are the major sources of water for the lakes, may have influenced the sediment mercury content along with geographical location and increased productivity. The results of MHg indicated the susceptibility of lake sediments to methylation. The major fractions observed were the organo-chelated form of mercury, followed by the elemental and water-soluble forms. These results indicate the availability of mercury for methylation. Hence, it is necessary to conduct more studies on the influence of climate change, mercury release through permafrost melting, and atmospheric deposition.
Collapse
Affiliation(s)
- V G Gopikrishna
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - V M Kannan
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M B Binish
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M Abdul Shukkur
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Vasco da Gama, Goa, 403802, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
9
|
Mao L, Liu X, Wang B, Lin C, Xin M, Zhang BT, Wu T, He M, Ouyang W. Occurrence and risk assessment of total mercury and methylmercury in surface seawater and sediments from the Jiaozhou Bay, Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136539. [PMID: 31981874 DOI: 10.1016/j.scitotenv.2020.136539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
The Jiaozhou Bay is a semi-enclosed bay located in the middle of the Yellow Sea. Effluents from wastewater treatment plants have been carried into the bay, which has significantly increased the deposition of mercury. The spatial distributions of total mercury (THg) and methylmercury (MeHg) in dissolved state, in suspended matters of seawater and surface sediments at 26 locations inside the Jiaozhou Bay and five surrounding rivers in April 2018 were examined. The contents of THg and MeHg found along the eastern coast were higher than those found along the western coast, which indicated the impact of human activities (river input) on the Jiaozhou Bay. The partition coefficient (LogKd) was used to express the distribution relationships of THg and MeHg in suspended matters and dissolved state, and it was concluded that suspended matter was the main reservoir of mercury in Jiaozhou Bay seawater. The correlations between contents and physicochemical properties of seawater showed that THg and MeHg concentrations in seawater decreased with increasing salinity and pH. The effects of the mean grain diameter (MGD) and sediment organic matter (SOM) on the THg and MeHg in surface sediments were also discussed. Principal component analysis (PCA) was used to obtain the factors determining the methylation proportion in the surface sediments, indicating that the combination of human activities and natural processes affected the degree of methylation in the sediments. The spatial distribution of THg, MeHg and MeHg% was suggested to be disturbed by the interaction of natural processes and human activities (river input) by the correlation analysis of the corresponding pollutant concentrations among seawater and. Although the concentrations of THg and MeHg in seawater and sediments of the Jiaozhou Bay did not exceed the Chinese regulatory standards, the pollution levels of THg and MeHg were comparable to those in other bays in the world.
Collapse
Affiliation(s)
- Lulu Mao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ming Xin
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bo-Tao Zhang
- College of Water Sciences, Beijing University, Beijing 100875, China
| | - Tingting Wu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Input of terrestrial organic matter linked to deglaciation increased mercury transport to the Svalbard fjords. Sci Rep 2020; 10:3446. [PMID: 32103054 PMCID: PMC7044282 DOI: 10.1038/s41598-020-60261-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022] Open
Abstract
Deglaciation has accelerated the transport of minerals as well as modern and ancient organic matter from land to fjord sediments in Spitsbergen, Svalbard, in the European Arctic Ocean. Consequently, such sediments may contain significant levels of total mercury (THg) bound to terrestrial organic matter. The present study compared THg contents in surface sediments from three fjord settings in Spitsbergen: Hornsund in the southern Spitsbergen, which has high annual volume of loss glacier and receives sediment from multiple tidewater glaciers, Dicksonfjorden in the central Spitsbergen, which receives sediment from glacifluvial rivers, and Wijdefjorden in the northern Spitsbergen, which receive sediments from a mixture of tidewater glaciers and glacifluvial rivers. Our results showed that the THg (52 ± 15 ng g-1) bound to organic matter (OM) was the highest in the Hornsund surface sediments, where the glacier loss (0.44 km3 yr-1) and organic carbon accumulation rates (9.3 ~ 49.4 g m-2 yr-1) were elevated compared to other fjords. Furthermore, the δ13C (-27 ~ -24‰) and δ34S values (-10 ~ 15‰) of OM indicated that most of OM were originated from terrestrial sources. Thus, the temperature-driven glacial melting could release more OM originating from the meltwater or terrestrial materials, which are available for THg binding in the European Arctic fjord ecosystems.
Collapse
|
11
|
Dong A, Zhai S, Louchouarn P, Izon G, Zhang H, Jiang X. The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4667-4679. [PMID: 30565118 DOI: 10.1007/s11356-018-3880-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
China is a massive mercury emitter, responsible for a quarter of the world's mercury emissions, which transit the atmosphere and accumulate throughout its watercourses. The Changjiang (Yangtze) River is the third largest river in the world, integrating mercury emissions over its 1.8 × 106 km2 catchment and channelling them to the East China Sea where they can be buried. Despite its potential global significance, the importance of the East China Sea as a terminal mercury sink remains poorly known. To address this knowledge gap, total mercury and methylmercury concentrations were determined from 51 surface sediment samples revealing their spatial distribution, whilst demonstrating the overall pollution status of the East China Sea. Sedimentary mercury distributions beneath the East China Sea are spatially heterogeneous, with high mercury concentrations (> 25 ng g-1) corresponding to areas of fine-grained sediment accumulation. In contrast, some sites of fine-grained sediment deposition have significantly lower values of methylmercury (< 15 ng g-1), such as the Changjiang estuary and some isolated offshore areas. Fine-grained particles and organic matter availability appear to exert the dominant control over sedimentary mercury distribution in the East China Sea, whereas in situ methylation serves as an additional control governing methylmercury accumulation. Estimated annual sedimentary fluxes of mercury in the East China Sea are 51 × 106 g, which accounts for 9% of China's annual mercury emissions.
Collapse
Affiliation(s)
- Aiguo Dong
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Shikui Zhai
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Patrick Louchouarn
- Department of Marine Sciences, Texas A&M University, Galveston, TX, 77554, USA
| | - Gareth Izon
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Huaijing Zhang
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiuli Jiang
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
12
|
Mechirackal Balan B, Shini S, Krishnan KP, Mohan M. Mercury tolerance and biosorption in bacteria isolated from Ny-Ålesund, Svalbard, Arctic. J Basic Microbiol 2018; 58:286-295. [DOI: 10.1002/jobm.201700496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/23/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | - Sruthy Shini
- School of Environmental Sciences; Mahatma Gandhi University; Kottayam Kerala India
| | | | - Mahesh Mohan
- School of Environmental Sciences; Mahatma Gandhi University; Kottayam Kerala India
| |
Collapse
|
13
|
Halbach K, Mikkelsen Ø, Berg T, Steinnes E. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. CHEMOSPHERE 2017; 188:567-574. [PMID: 28915375 DOI: 10.1016/j.chemosphere.2017.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Svalbard is an important study area for investigating the long-range transport of mercury (Hg) and other trace elements to the Arctic. Few studies have focused on their concentrations in Arctic soils. With ongoing climate change leading to thawing permafrost ground the soil compartment is of increasing importance in the Arctic. In this study, elemental composition and soil organic matter (SOM) content of surface and mineral soils in Svalbard are presented. The aim is to provide new data on soils in the Arctic and to gain more knowledge about the role of the soil in the biogeochemical cycle of mercury (Hg). Concentrations are reported for Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S and Zn. Samples were taken in Adventdalen and in the area near Ny-Ålesund. We obtained a mean Hg concentration of 0.111 ± 0.036 μg/g in surface soils (range 0.041-0.254 μg/g). Hg levels in mineral soils (mean: 0.025 ± 0.013 μg/g; range: 0.004-0.060 μg/g) were substantially lower than in the corresponding surface soils. Hg strongly accumulates in the surface soil layer (upper 3 cm) and is associated with SOM (surface soil: 59 ± 14%). Hg concentrations in the surface soil were slightly lower than those in the humus layer in mainland Norway and were comparable to levels in soils elsewhere in the Arctic. An inverse association of Hg was found with elements attributed to the mineral soil, indicating that Hg is predominantly derived from atmospheric deposition.
Collapse
Affiliation(s)
- Katharina Halbach
- Helmholtz-Centre for Environmental Research (UFZ), Department of Analytical Chemistry, 04318 Leipzig, Germany.
| | - Øyvind Mikkelsen
- Norwegian University of Science and Technology, Department of Chemistry, 7491 Trondheim, Norway
| | - Torunn Berg
- Norwegian University of Science and Technology, Department of Chemistry, 7491 Trondheim, Norway
| | - Eiliv Steinnes
- Norwegian University of Science and Technology, Department of Chemistry, 7491 Trondheim, Norway
| |
Collapse
|
14
|
Vermilyea AW, Nagorski SA, Lamborg CH, Hood EW, Scott D, Swarr GJ. Continuous proxy measurements reveal large mercury fluxes from glacial and forested watersheds in Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:145-155. [PMID: 28475908 DOI: 10.1016/j.scitotenv.2017.03.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r2=0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r2=0.82). Both of these parameters (FDOM and turbidity) showed stronger correlations than concentration-discharge relationships for UTHg (r2=0.55 for glacial stream, r2=0.38 for wetland/forest stream), thus allowing for a more precise determination of temporal variability in UTHg concentrations and fluxes. The association of mercury with particles and dissolved organic matter (DOM) appears to depend on the watershed characteristics, such as physical weathering and biogeochemical processes regulating mercury transport. Thus employing watershed-specific proxies for UTHg (such as FDOM and turbidity) can be effective for quantifying mercury export from watersheds with variable landcover. The UTHg concentration in the forest/wetland stream was consistently higher than in the glacial stream, in which most of the mercury was associated with particles; however, due to the high specific discharge from the glacial stream during the melt season, the watershed area normalized flux of mercury from the glacial stream was 3-6 times greater than the wetland/forest stream for the three sampling campaigns. The annual specific flux for the glacial watershed was 19.9gUTHgkm-2y-1, which is higher than any non-mining impacted stream measured to date. This finding indicates that glacial watersheds of southeast Alaska may be important conduits of total mercury to the Gulf of Alaska.
Collapse
Affiliation(s)
- Andrew W Vermilyea
- Castleton University, Natural Sciences Department, Castleton, VT, United States.
| | - Sonia A Nagorski
- University of Alaska Southeast, Department of Natural Sciences, Juneau, AK, United States
| | - Carl H Lamborg
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Eran W Hood
- University of Alaska Southeast, Department of Natural Sciences, Juneau, AK, United States
| | - Durelle Scott
- Virginia Tech, Biological Systems Engineering, Blacksburg, VT, United States
| | - Gretchen J Swarr
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
15
|
Bełdowski J, Miotk M, Pempkowiak J. Methylation index as means of quantification of the compliance of sedimentary mercury to be methylated. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:498. [PMID: 26160740 PMCID: PMC4498312 DOI: 10.1007/s10661-015-4716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/29/2015] [Indexed: 05/15/2023]
Abstract
Methylmercury (MeHg) is the most bioavailable and toxic mercury species in the marine environment. MeHg concentration levels, methylation rates leading to MeHg formation, and methylation index (MI) are all used to assess the compliance of mercury to be methylated in the marine sedimentary environment. This paper reports on the works conducted on the MI upgrade. This paper proposes a new formula for calculating MI. Apart from labile mercury(II) and organic matter, it includes redox potential and abundance of sulfur-reducing bacteria (SRB), both essential factors for MeHg generation. The obtained MI is validated against actual sedimentary MeHg concentrations proving the potential usefulness of MI as a factor characterizing status of sedimentary environment regarding possible occurrence of MeHg. Moreover, values of the methylation index in particular regions show that MI values correspond well to environmental conditions in those areas. The values calculated correlate well with MeHg concentrations; however, the correlation coefficients vary between different regions. This has been attributed to the lack of empirical coefficients. Thus, MI could be used as a characteristic of the sedimentary environment indicating the potential presence of MeHg. It could also be used in methylation rate modeling, provided that empirical constants are applied to improve model performance.
Collapse
Affiliation(s)
- Jacek Bełdowski
- Institute of Oceanology PAN, ul. Powstańców Warszawy 55, 81-712, Sopot, Poland,
| | | | | |
Collapse
|