1
|
Nabi R, Staab JK, Mattioni A, Kragskow JGC, Reta D, Skelton JM, Chilton NF. Accurate and Efficient Spin-Phonon Coupling and Spin Dynamics Calculations for Molecular Solids. J Am Chem Soc 2023; 145. [PMID: 37917936 PMCID: PMC10655086 DOI: 10.1021/jacs.3c06015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Molecular materials are poised to play a significant role in the development of future optoelectronic and quantum technologies. A crucial aspect of these areas is the role of spin-phonon coupling and how it facilitates energy transfer processes such as intersystem crossing, quantum decoherence, and magnetic relaxation. Thus, it is of significant interest to be able to accurately calculate the molecular spin-phonon coupling and spin dynamics in the condensed phase. Here, we demonstrate the maturity of ab initio methods for calculating spin-phonon coupling by performing a case study on a single-molecule magnet and showing quantitative agreement with the experiment, allowing us to explore the underlying origins of its spin dynamics. This feat is achieved by leveraging our recent developments in analytic spin-phonon coupling calculations in conjunction with a new method for including the infinite electrostatic potential in the calculations. Furthermore, we make the first ab initio determination of phonon lifetimes and line widths for a molecular magnet to prove that the commonplace Born-Markov assumption for the spin dynamics is valid, but such "exact" phonon line widths are not essential to obtain accurate magnetic relaxation rates. Calculations using this approach are facilitated by the open-source packages we have developed, enabling cost-effective and accurate spin-phonon coupling calculations on molecular solids.
Collapse
Affiliation(s)
- Rizwan Nabi
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Jakob K. Staab
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Andrea Mattioni
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Jon G. C. Kragskow
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Daniel Reta
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Faculty
of Chemistry, University of the Basque Country
UPV/EHU, 20018 Donostia, Spain
- Donostia
International Physics Center (DIPC), 20018 Donostia, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Spain
| | | | | |
Collapse
|
2
|
Wang D, Du L, Sun Z, Liu F, Zhang D, Wang D. Characterisation, slow-release, and antibacterial properties of carboxymethyl chitosan/inulin hydrogel film loaded with novel antilisterial durancin GL. Carbohydr Polym 2023; 318:121143. [PMID: 37479449 DOI: 10.1016/j.carbpol.2023.121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
This paper reports the development of a hydrogel film with antibacterial activity and controlled release characteristics. Carboxymethyl chitosan (CMCS) is grafted onto durancin GL and inulin via a mediated reaction between N-hydroxysuccinimide and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride. Rheology tests, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and lap shear tests confirmed the formation of a stable chemical cross-linking and excellent adhesion hydrogel with 4 % CMCS and 8 % inulin. The CMCS/inulin hydrogel film loaded with durancin GL appears transparent and uniform. FTIR spectroscopy results reveal the interaction mode among CMCS, inulin, durancin GL, and the hydrogel film structure. Cross-linking improved thermal stability and water-vapour barrier performance. The hydrophobicity of CMCS/inulin @Durancin GL increased under a durancin GL concentration of 0.036 g/30 mL, and the release of active substances is prolonged. In-vitro antibacterial capacity and salmon preservation experiments show that the addition of durancin GL enhanced the antibacterial activity of the hydrogel film. Therefore, CMCS/inulin@Durancin GL hydrogel films can be used as fresh-keeping packaging materials in practical applications.
Collapse
Affiliation(s)
- Debao Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
3
|
Lu F, Hao X, Dai J, Wang H, Yang G, Sun C, Chen B. Regional variation of polybrominated diphenyl ethers in East Asian finless porpoises in the East China Sea. MARINE POLLUTION BULLETIN 2023; 194:115257. [PMID: 37478784 DOI: 10.1016/j.marpolbul.2023.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Certain polybrominated diphenyl ethers (PBDEs) have been banned for years, however, they still possess the potential to harm marine cetaceans. In this study, 56 East Asian finless porpoises (EAFPs) collected from three locations of the East China Sea between 2009 and 2011, were analyzed to determine the presence of typical PBDE congeners. Among all the samples, BDE47 was the main congener, constituting ∼48.3 % of the ΣPBDEs. Significant variations (p < 0.01) in PBDE abundance were observed among different regions (Pingtan: 172.8 ng/g, Lvsi: 61.2 ng/g and Ningbo: 32.9 ng/g). In addition, there was a significant positive correlation between PBDE abundance and male body length. The general ΣPBDEs concentration of this population was lower compared to other populations and cetaceans. Although combined risk assessments indicated a low risk to porpoise health, long-term surveillance is essential as PBDEs are not completely banned.
Collapse
Affiliation(s)
- Fangting Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiuqing Hao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jianhua Dai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Cheng Sun
- School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bingyao Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
4
|
Lei M, Tang Y, Zhu L, Tang H. Chemical reductive technologies for the debromination of polybrominated diphenyl ethers: A review. J Environ Sci (China) 2023; 127:42-59. [PMID: 36522073 DOI: 10.1016/j.jes.2022.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants, which had attracted amounts of attention due to their harmful characteristics of high toxicity, environmental persistence and potential bioaccumulation. Many chemical reductive debromination technologies have been developed for the debromination of PBDEs, including photolysis, photocatalysis, electrocatalysis, zero-valent metal reduction, chemically catalytic reduction and mechanochemical method. This review aims to provide information about the degradation thermodynamics and kinetics of PBDEs and summarize the degradation mechanisms in various systems. According to the comparative analysis, the rapid debromination to generate bromine-free products in an electron-transfer process, of which photocatalysis is a representative one, is found to be relatively difficult, because the degradation rate of PBDEs depended on the Br-rich phenyl ring with the lowest unoccupied molecular orbital (LUMO) localization. On the contrary, the complete debromination occurs easily in other systems with active hydrogen atoms as the main reactive species, such as chemically catalytic reduction systems. The review provides the knowledge on the chemical reductive technique of PBDEs, which would greatly help not only clarify the degradation mechanism but also design the more efficient system for the rapid and deep debromination of PBDEs in the future.
Collapse
Affiliation(s)
- Ming Lei
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
| | - Yao Tang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Heqing Tang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
5
|
Current Developments in the Effective Removal of Environmental Pollutants through Photocatalytic Degradation Using Nanomaterials. Catalysts 2022. [DOI: 10.3390/catal12050544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photocatalysis plays a prominent role in the protection of the environment from recalcitrant pollutants by reducing hazardous wastes. Among the different methods of choice, photocatalysis mediated through nanomaterials is the most widely used and economical method for removing pollutants from wastewater. Recently, worldwide researchers focused their research on eco-friendly and sustainable environmental aspects. Wastewater contamination is one of the major threats coming from industrial processes, compared to other environmental issues. Much research is concerned with the advanced development of technology for treating wastewater discharged from various industries. Water treatment using photocatalysis is prominent because of its degradation capacity to convert pollutants into non-toxic biodegradable products. Photocatalysts are cheap, and are now emerging slowly in the research field. This review paper elaborates in detail on the metal oxides used as a nano photocatalysts in the various type of pollutant degradation. The progress of research into metal oxide nanoparticles, and their application as photocatalysts in organic pollutant degradation, were highlighted. As a final consideration, the challenges and future perspectives of photocatalysts were analyzed. The application of nano-based materials can be a new horizon in the use of photocatalysts in the near future for organic pollutant degradation.
Collapse
|
6
|
Guo W, Guo B, Chen H, Liu C, Wu L. Facet-engineering palladium nanocrystals for remarkable photocatalytic dechlorination of polychlorinated biphenyls. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01752g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rationally constructing functionalized cocatalysts for removing chemically inert polychlorinated biphenyls is significant and challenging.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Binbin Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Huiling Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Cheng Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
7
|
Antioxidant and Organic Dye Removal Potential of Cu-Ni Bimetallic Nanoparticles Synthesized Using Gazania rigens Extract. WATER 2021. [DOI: 10.3390/w13192653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Copper-nickel bimetallic nanoparticles (Cu-Ni BNPs) were fabricated using an eco-friendly green method of synthesis. An extract of synthesized Gazania rigens was used for the synthesis of BNPs followed by characterization employing different techniques including UV/Vis spectrophotometer, FTIR, XRD, and SEM. Spectrophotometric studies (UV-Vis and FTIR) confirmed the formation of bimetallic nanoparticles. The SEM studies indicated that the particle size ranged from 50 to 100 nm. Analysis of the BNPs by the XRD technique confirmed the presence of both Cu and Ni crystal structure. The synthesized nanoparticles were then tested for their catalytic potential for photoreduction of methylene blue dye in an aqueous medium and DPPH radical scavenging in a methanol medium. The BNPs were found to be efficient in the reduction of methylene blue dye as well as the scavenging of DPPH free radicals such that the MB dye was completely degraded in just 17 min at the maximum absorption of 660 nm. Therefore, it is concluded that Cu-Ni BNPs can be successfully synthesized using Gazania rigens extract with suitable size and potent catalytic and radical scavenging activities.
Collapse
|
8
|
Jiang J, Du L, Ding Y. Dehalogenation of Aryl Bromides by CuO/ZrO
2
in The Presence of Alcohols as Hydrogen Donors. ChemistrySelect 2021. [DOI: 10.1002/slct.202004592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Jiang
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| | - Liyong Du
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| | - Yuqiang Ding
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| |
Collapse
|
9
|
Yao B, Luo Z, Zhi D, Hou D, Luo L, Du S, Zhou Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123674. [PMID: 33264876 DOI: 10.1016/j.jhazmat.2020.123674] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
The widespread of polybrominated diphenyl ethers (PBDEs) in the environment has caused rising concerns, and it is an urgent endeavor to find a proper way for PBDEs remediation. Various techniques such as adsorption, hydrothermal and thermal treatment, photolysis, photocatalytic degradation, reductive debromination, advanced oxidation processes (AOPs) and biological degradation have been developed for PBDEs decontamination. A comprehensive review of different PBDEs remediation techniques is urgently needed. This work focused on the environmental source and occurrence of PBDEs, their removal and degradation methods from water and soil, and prospects for PBDEs remediation techniques. According to the up-to-date literature obtained from Web of Science, it could be concluded that (i) photocatalysis and photocatalytic degradation is the most widely reported method for PBDEs remediation, (ii) BDE-47 and BDE-209 are the most investigated PBDE congeners, (iii) considering the recalcitrance nature of PBDEs and more toxic intermediates could be generated because of incomplete degradation, the combination of different techniques is the most potential solution for PBDEs removal, (iv) further researches about the development of novel and effective PBDEs remediation techniques are still needed. This review provides the latest knowledge on PBDEs remediation techniques, as well as future research needs according to the up-to-date literature.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zirui Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dongmei Hou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shizhi Du
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Lian P, Qin A, Liao L, Zhang K. Progress on the nanoscale spherical TiO
2
photocatalysts: Mechanisms, synthesis and degradation applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Peng Lian
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials Science and Engineering Guilin University of Technology Guilin P. R. China
| | - Aimiao Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials Science and Engineering Guilin University of Technology Guilin P. R. China
| | - Lei Liao
- College of Environmental Science and Engineering Guilin University of Technology Guilin P. R. China
| | - Kaiyou Zhang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials Science and Engineering Guilin University of Technology Guilin P. R. China
| |
Collapse
|
11
|
Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63582-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Sun B, Li Q, Zheng M, Su G, Lin S, Wu M, Li C, Wang Q, Tao Y, Dai L, Qin Y, Meng B. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114908. [PMID: 32540566 DOI: 10.1016/j.envpol.2020.114908] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.
Collapse
Affiliation(s)
- Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shijing Lin
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuming Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Qin
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Chen K, Wang X, Xia P, Xie J, Wang J, Li X, Tang Y, Li L. Efficient removal of 2,2',4,4'-tetrabromodiphenyl ether with a Z-scheme Cu 2O-(rGO-TiO 2) photocatalyst under sunlight irradiation. CHEMOSPHERE 2020; 254:126806. [PMID: 32339793 DOI: 10.1016/j.chemosphere.2020.126806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Z-scheme Cu2O-(rGO-TiO2) photocatalyst was successfully synthesized via a simple three-step approach for 2,2',4,4'-tretrabromodiphenyl ether (BDE47) reductive removal under simulated solar irradiation. Unlike the traditional heterojunction, the addition of reduced graphene oxide (rGO) enhanced the redox ability of Cu2O-TiO2 by increasing charge transfer. When modifying Cu2O films by adding 1% rGO and coating with 70% TiO2, the resulting Cu2O-(rGO-TiO2) exhibited the best photocatalytic activity for BDE47 removal. The charge transfers of Cu2O-(rGO-TiO2) were proven to follow a Z-scheme pathway through the electron paramagnetic resonance analysis. The degradation pathways of BDE47 were elucidated by identifying intermediate products via gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC). Photo-electrons (e-) generated from the conduction band of Cu2O and hydrogen protons (H0) reduced from H+ in water were the main contributing elements for the removal of BDE47, which response to the ortho and para debromination. Ortho-Br of BDE47 was attacked by e- and BDE28 was the dominant debromination product on the first stage. Then e- and H0 attacked ortho-Br and para-Br of BDE28 to form BDE15 and BDE8, respectively. The concentration of BDE8 was higher than that of BDE15, suggesting that H0 played the most important role on the second debromination stage. An effective Cu2O-(rGO-TiO2)-based Z-scheme system for BDE47 debromination was proposed in this study, which may contribute to the development of novel green technologies.
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Xi Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China.
| | - Pengfei Xia
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jinxin Xie
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Jing Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Xukai Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Yiming Tang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Laisheng Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Wang R, Zhu Z, Tan S, Guo J, Xu Z. Mechanochemical degradation of brominated flame retardants in waste printed circuit boards by Ball Milling. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121509. [PMID: 31708288 DOI: 10.1016/j.jhazmat.2019.121509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Degradation of brominated flame retardants (BFRs) in waste printed circuit boards (WPCBs) occurred due to mechanical force during the crushing process. In this study, a planetary ball-milling simulation experiment was designed to explore the mechanochemical debromination process of BFRs in WPCBs. The results showed that CaO had a better debromination performance than MgO and the mixture of Fe + SiO2, and high revolution speed and low mass ratio of WPCBs to CaO promoted the degradation of BFRs. After milling for 1 h, the particle size distribution was stable while the debromination efficiency increased with the increase of milling time. Ball milling promoted the migration of bromine from the inside to the new surface of WPCBs powder, and submicron particles adhered to the micron size aggregates. The polybrominated diphenyl ethers (PBDEs) detection showed that the concentrations of most PBDE congeners decreased with the increase of milling time, and a possible degradation pathway was proposed according to the experimental results. All the results provided new data for the mechanism of degradation of BFRs in WPCBs during the mechanical crushing process.
Collapse
Affiliation(s)
- Rui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhixin Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shufei Tan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jie Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
15
|
Wei L, Zhou B, Xiao K, Yang B, Yu G, Li J, Zhu C, Zhang J, Duan H. Highly efficient degradation of 2,2',4,4'-tetrabromodiphenyl ether through combining surfactant-assisted Zn 0 reduction with subsequent Fenton oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121551. [PMID: 31708290 DOI: 10.1016/j.jhazmat.2019.121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
2,2',4,4'-tetrabromodiphenyl ether (BDE47) was difficult to be rapidly degraded by common reductive debromination or oxidative decomposition. In this study, the debromination via surfactant-assisted zero valent zinc (Zn0) reduction and subsequent Fenton oxidation was combined to completely degrade BDE47. Firstly, Zn0 integrated with surfactants including cetyltrimethylammonium chloride (CTAC), polyethylene glycol dodecyl ether (Brij35), or 1-dodecanesulfonic acid sodium salt (SDS) were evaluated for their reactivity to debrominate BDE47. CTAC-assisted Zn0 system presented the highest removal efficiency of 98.6% for BDE47 (C0 = 5 mg/L) under the optimized conditions including 0.3 g/L of Zn0 particles and 0.05 g/L of CTAC at 25 °C and pH 4.0 during 1-h reaction. Subsequently, the debromination products as low-brominated BDEs were attacked by hydroxyl radicals (•OH) from Fenton reagent, which were decomposed into short-chain carboxylic acids and even mineralized within 2-h oxidation. In addition, HPLC, GC-MS, LC-MS/MS, and IC were employed to detect intermediates during this reaction/oxidation process and the pathways of debromination and oxidation were proposed according to carbon and bromine balance. The above combination achieved the complete degradation of BDE47 via a relative low-cost method to rapidly remove PBDEs, which provide a new approach for the effective treatment of halogenated organic pollutants.
Collapse
Affiliation(s)
- Liyan Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Biao Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ke Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Gang Yu
- School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Caizhen Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Junmin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Huabo Duan
- Smart City Research Institute, College of Civil Engineering, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
16
|
Dai P, Hou D, Guo S, Zhu L, Lei M, Tang H. Ion chromatographic determination of total bromine in electronic devices in conjunction with a catalytic reduction debromination pretreatment. Anal Chim Acta 2019; 1082:49-55. [PMID: 31472712 DOI: 10.1016/j.aca.2019.07.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 11/25/2022]
Abstract
A new determination method for total bromine in electronic devices was developed by using ultrasound assisted extraction, copper-catalyzed reductive debromination and ion chromatography (UAE-RD-IC). It was found that all the added brominated flame retardants (polybrominateddiphenyl ethers, polybrominated biphenyls, tetrabromobisphenol A, and hexabromocyclododecane) could be completely debrominated by using copper-based catalysts and reducing agent N2H4•H2O. The complete debromination of brominated flame retardants released all of their bromine in the form of bromide ions, which could be determined by ion chromatography. After the extraction parameters were optimized by achieving the maximum IC signal in the certified reference material GBW(E) 082725, the UAE-RD-IC method was established for the determination of total bromine in solid samples. By analyzing the certified reference material, the Br content was obtained as 695.3 ± 16.0 mg kg-1, being well consistent with its standard value (694.54 ± 30.63 mg kg-1). The relative standard deviation (RSD) of five parallel determinations was 1.7%, indicating the good repeatability of the developed method. The proposed method was further applied to analyze the samples of cables and computer mouse shells. For all these practical samples, the Br contents obtained by the UAE-RD-IC method were in good agreement with that obtained by the standard oxygen bomb combustion-IC method. It was noted that the new method has a detection limit of Br of about 20 mg kg-1, being much lower than that (75 mg kg-1) of the traditional oxygen bomb combustion-IC method for total bromine detection. Therefore, the proposed method was qualified as a practical method to measure total bromine content in actual electronic devices with good analytical performances of accuracy, precision and sensitivity.
Collapse
Affiliation(s)
- Pei Dai
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Dajiao Hou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Shun Guo
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Ming Lei
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Heqing Tang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
17
|
Wang R, Tang T, Wei Y, Dang D, Huang K, Chen X, Yin H, Tao X, Lin Z, Dang Z, Lu G. Photocatalytic debromination of polybrominated diphenyl ethers (PBDEs) on metal doped TiO 2 nanocomposites: Mechanisms and pathways. ENVIRONMENT INTERNATIONAL 2019; 127:5-12. [PMID: 30889398 DOI: 10.1016/j.envint.2019.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Nanoparticles of four noble metal doped titanium dioxide (i.e., Pd/TiO2, Ag/TiO2, Pt/TiO2 and Cu/TiO2) were synthesized and investigated for their effectiveness to degrade polybrominated diphenyl ethers (PBDEs) under UV light. All the investigated noble metal additives can greatly enhance the performance of TiO2 to degrade 2,2',4',4'-tetrabromodiphenyl ether (BDE-47). However, the debromination pathways of BDE-47 in Ag/TiO2 and Cu/TiO2 systems are just contrary to those in Pd/TiO2 and Pt/TiO2 systems, and there was an induction period in the former systems but not in the latter systems. The hydrogenation experiment suggests a direct H-atom transfer mechanism in Pd/TiO2 and Pt/TiO2 systems, while in Ag/TiO2 and Cu/TiO2 systems, electron transfer is still the dominant mechanism. Electronic method was applied to explain why BDE-47 exhibit different debromination pathways based on different degradation mechanism. In addition, oxygen was proved to be able to capture both electrons and H atoms, and thus can greatly inhibit the degradation of PBDEs in all investigated systems. Finally, the merit and demerit of each metal doped TiO2 were discussed in detail, including the reactivity, stability and the generation of byproducts. We proposed our study greatly enhance our understanding on the mechanisms of PBDE degradation in various metal doped TiO2 systems.
Collapse
Affiliation(s)
- Rui Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yanchun Wei
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Kaibo Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xingwei Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Xueqin Tao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
18
|
Guo S, Zhu L, Majima T, Lei M, Tang H. Reductive Debromination of Polybrominated Diphenyl Ethers: Dependence on Br Number of the Br-Rich Phenyl Ring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4433-4439. [PMID: 30912444 DOI: 10.1021/acs.est.8b07050] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reductive debromination has been widely studied for the degradation of polybrominated diphenyl ethers (PBDEs), although the reaction mechanisms are not so clear. In the present study, the photocatalytic degradation and debromination of ten PBDEs were carried out with CuO/TiO2 nanocomposites as the photocatalyst under an anaerobic condition. The pseudo-first-order rate constants were obtained for the photocatalytic debromination of PBDEs, and their relative rate constants ( kR) were evaluated against kR= 1 for BDE209. Unlike the generally accepted summary that kR is dependent on the total Br number ( N) of PBDEs, kR is found to depend on the Br number on a phenyl ring with more Br atoms than the other one. In other words, a phenyl ring substituted by more Br is more reactive for the reductive debromination. The calculated LUMO energies ( ELUMO) of all PBDEs are well correlated to the more reactive phenyl ring with more Br, compared with the N of two phenyl rings. The result was explained by LUMO localization on the Br-rich phenyl ring, suggesting that the reductive debromination occurs on the phenyl ring.
Collapse
Affiliation(s)
- Shun Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , PR China
| | - Lihua Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , PR China
| | - Tetsuro Majima
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , PR China
| | - Ming Lei
- College of Resources and Environmental Science , South-Central University for Nationalities , Wuhan 430074 , PR China
| | - Heqing Tang
- College of Resources and Environmental Science , South-Central University for Nationalities , Wuhan 430074 , PR China
| |
Collapse
|
19
|
Wang X, Hu Z, Chen K, Dong H, Li S, Li X, Li L. Efficient photocatalytic debromination of 2,2',4,4'-tetrabromodiphenyl ether by Ag-loaded CdS particles under visible light. CHEMOSPHERE 2019; 220:723-730. [PMID: 30611070 DOI: 10.1016/j.chemosphere.2018.12.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Highly active and visible light-driven Ag-loaded CdS photocatalysts were prepared via a hydrothermal synthesis and photodeposition method. The removal and debromination of 2,2',4,4'-tetrabromodiphenyl ether was achieved efficiently using this Ag-loaded CdS under visible light, with a removal efficiency of 100% and a debromination ratio of 44.3% being achieved within 30 min. Both the reaction solvent and the water content were found to have a strong influence on the removal efficiency and the debromination ratio. In addition, the stepwise debromination preference was ortho ≫ para, thereby indicating that the main debromination pathway was electron reduction. The stability and efficiency of these Ag-loaded CdS photocatalysts for the removal of BDE47 were satisfactory, and so our results confirmed the development of a promising visible light-driven catalyst for the removal of polybrominated diphenyl ethers.
Collapse
Affiliation(s)
- Xi Wang
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China.
| | - Zhe Hu
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Kexin Chen
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Haitai Dong
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Shangyi Li
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Xukai Li
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Laisheng Li
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Liao Z, Zhu J, Jawad A, Muzi J, Chen Z, Chen Z. Degradation of Phenol Using Peroxymonosulfate Activated by a High Efficiency and Stable CoMgAl-LDH Catalyst. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E968. [PMID: 30909534 PMCID: PMC6471579 DOI: 10.3390/ma12060968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 12/03/2022]
Abstract
In this study, we report on an active and stable CoMgAl layered double hydrotalcite (LDH) catalyst for phenol degradation by heterogeneous activation of peroxymonosulfate (PMS). The CoMgAl-LDH catalyst was synthesized by hydrothermal method. The PMS/CoMgAl-LDH system overcomes the drawbacks of traditional Fenton processes. Various effects, e.g., scavengers, chloride ion, catalyst dosage, PMS concentration, temperature, and pH, were also inspected to evaluate the system. The results indicated that the PMS/CoMgAl-LDH system had extremely high efficiency for phenol degradation; 0.1 mM phenol could be completely degraded by 0.3 g/L catalyst and 3 mM PMS within 60 min at 30 °C. The CoMgAl-LDH catalyst appeared to possess outstanding reusability and stability. After four rounds of recycling, nearly 100% of the phenol was removed within 80 min by the PMS/CoMgAl-LDH system, with only 0.05 mg/L Co2+ leaching. A sulfate radical was the main oxidation species in the PMS/Co-LDH system. The degradation rate of phenol was influenced by temperature, and the activation energy was 65.19 kJ/mol. These advantages proved the PMS/CoMgAl-LDH system is an effective strategy for the treatment of organic contaminants.
Collapse
Affiliation(s)
- Zhuwei Liao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jingyi Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ali Jawad
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiajing Muzi
- GAD Environmental Co., Ltd., Shenzhen 518067, China.
| | - Zhuqi Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Materials of Materials and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhulei Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
21
|
Huerta-Aguilar CA, Palos-Barba V, Thangarasu P, Koodali RT. Visible light driven photo-degradation of Congo red by TiO 2ZnO/Ag: DFT approach on synergetic effect on band gap energy. CHEMOSPHERE 2018; 213:481-497. [PMID: 30245225 DOI: 10.1016/j.chemosphere.2018.09.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/09/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we report the combination of two metal oxides (TiO2ZnO) that allows mixed density of states to reduce band gap energy, facilitating the photo-oxidation of Congo red dye under visible light. For the oxidation, a possible mechanism is proposed after analyzing the intermediates by GC-MS, and it is consistent with Density Functional Theory (DFT). The nanohybrids were characterized comprehensibly by several analytical techniques such as X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). For the addition of ZnO to TiO2, a dominance of anatase phase was found rather than other phases (rutile or brookite). A broad band (∼550 nm) is observed in UV-Visible spectra for TiO2ZnO/Ag NPs nm because of Surface Plasmon properties of Ag NPs. The band gap energy was calculated for TiO2ZnO/Ag system, and then it has been further studied by DFT in order to show why the convergence of two semiconductors allows a mixed density of states, facilitating the reduction of the energy gap between occupied and unoccupied bands; ultimately, it improves the performance of catalysts under visible light. Significantly, the interaction of crystal planes (0 0 Ī) of TiO2 anatase and (0 0 1) of ZnO crucially plays as an important role for the reduction of energy band-gap. Additionally, TiO2ZnOAg NPs were used recognize Saccharomyces cerevisiae cells by con-focal fluorescence microscope, showing that it develops bright bio-images for the cells; while for TiO2 or ZnO or TiO2ZnO NPs, no fluorescent response was seen within the cells.
Collapse
Affiliation(s)
- Carlos Alberto Huerta-Aguilar
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510, México D. F., Mexico
| | - Viviana Palos-Barba
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510, México D. F., Mexico
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510, México D. F., Mexico.
| | | |
Collapse
|
22
|
Wang Y, Wei Y, Song W, Chen C, Zhao J. Photocatalytic Hydrodehalogenation for the Removal of Halogenated Aromatic Contaminants. ChemCatChem 2018. [DOI: 10.1002/cctc.201801222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yan Wei
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences Institute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
23
|
Lei M, Guo S, Wang Z, Zhu L, Tang H. Ultrarapid and Deep Debromination of Tetrabromodiphenyl Ether over Noble-Metal-Free Cu/TiO 2 Nanocomposites under Mild Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11743-11751. [PMID: 30207447 DOI: 10.1021/acs.est.8b03202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fast and deep debromination of polybrominated diphenyl ethers (PBDEs) under mild conditions is a challenge in the field of pollution control. A strategy was developed to achieve it by exploiting Cu/TiO2 composites as a noble-metal-free catalyst. Toward the debromination of 2,2',4,4'-tetrabromodiphenyl ether (BDE47) as a typical PBDE, the use of Cu/TiO2 as a catalyst and hydrazine hydrate (N2H4·H2O) as a reducing agent yielded a degradation removal of 100% and a debromination efficiency of 87.7% in 3 s. A complete debromination of BDE47 at 1500 mg L-1 was possible by successively adding N2H4·H2O. A debromination pathway involving active H atom species was proposed for the catalytic transfer hydrogenation (CTH) of PBDEs according to the identified degradation intermediates. A mechanism was further clarified by density functional theory calculations: electrons are delivered from N2H4·H2O to the metallic Cu atom via a coordination of N in N2H4·H2O with Cu atoms. The electron-trapped Cu atom interacts with adsorbed BDE47 to form a transition complex, and then the debromination of this complex occurs on the surface of Cu nanoparticles due to the hydrogen donation of N2H4·H2O through the CTH process. The new method provides a highly efficient method to remove brominated pollutants.
Collapse
Affiliation(s)
- Ming Lei
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Shun Guo
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Zhiying Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Heqing Tang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| |
Collapse
|
24
|
Li Q, Su G, Zheng M, Wang M, Liu Y, Luo F, Gu Y, Jin R. Thermal Oxidation Degradation of 2,2',4,4'-Tetrabromodiphenyl Ether over Li αTiO x Micro/Nanostructures with Dozens of Oxidative Product Analyses and Reaction Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10059-10071. [PMID: 28780865 DOI: 10.1021/acs.est.7b01959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flowerlike LiαTiOx micro/nanostructures were successfully synthesized to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) at 250-350 °C. The pseudo-first-order kinetics rate constant of the reaction at 300 °C was in the range of 0.034-0.055 min-1. The activation energy was as low as 39.9-48.1 kJ/mol. The excellent performance attained over LiαTiOx was attributed to Li dopant having the electron-donating effect, which enhanced the oxygen species mobility. The oxidative reaction was believed to be the dominant degradation pathway following the Mars-van Krevelen mechanism, being accompanied by the weak hydrodebromination occurrence generating the trace mono- to tri-BDEs. More than 70 types of oxidation products containing diphenyl ether backbone, single-benzene rings, and ring-opened products were detected by GC-MS with derivatization, ESI-FT-ICR-MS, and ion chromatography. An increase in the number of ring-cracked oxidative products under prolonged reaction was observed by ESI-FT-ICR-MS analysis according to the van Krevelen diagram. In the oxidative reaction, a series of oxidative products, such as OH-tri-BDEs and OH-tetra-BDEs, first formed via the nucleophilic O2- attack and subsequently transformed into dibromophenol, tribromophenol, and benzenedicarboxylic and benzoic acids, etc. They could be further attacked by electrophilic O2- and O- and completely cracked to small molecules such as formic, acetic, propionic, and butyric acids.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Civil and Environmental Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639789, Singapore
| | - Yalu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Li L, Hu J, Shi X, Ruan W, Luo J, Wei X. Theoretical Studies on Structures, Properties and Dominant Debromination Pathways for Selected Polybrominated Diphenyl Ethers. Int J Mol Sci 2016; 17:ijms17060927. [PMID: 27322242 PMCID: PMC4926460 DOI: 10.3390/ijms17060927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/03/2022] Open
Abstract
The B3LYP/6-311+G(d)-SDD method, which considers the relativistic effect of bromine, was adopted for the calculations of the selected polybrominated diphenyl ethers (PBDEs) in the present study, in which the B3LYP/6-311+G(d) method was also applied. The calculated values and experimental data for structural parameters of the selected PBDEs were compared to find the suitable theoretical methods for their structural optimization. The results show that the B3LYP/6-311+G(d) method can give the better results (with the root mean square errors (RMSEs) of 0.0268 for the C–Br bond and 0.0161 for the C–O bond) than the B3LYP/6-311+G(d)-SDD method. Then, the B3LYP/6-311+G(d) method was applied to predict the structures for the other selected PBDEs (both neutral and anionic species). The lowest unoccupied molecular orbital (LUMO) and the electron affinity are of a close relationship. The electron affinities (vertical electron affinity and adiabatic electron affinity) were discussed to study their electron capture abilities. To better estimate the conversion of configuration for PBDEs, the configuration transition states for BDE-5, BDE-22 and BDE-47 were calculated at the B3LYP/ 6-311+G(d) level in both gas phase and solution. The possible debromination pathway for BDE-22 were also studied, which have bromine substituents on two phenyl rings and the bromine on meta-position prefers to depart from the phenyl ring. The reaction profile of the electron-induced reductive debromination for BDE-22 were also shown in order to study its degradation mechanism.
Collapse
Affiliation(s)
- Lingyun Li
- Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China.
| | - Jiwei Hu
- Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China.
| | - Xuedan Shi
- Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China.
| | - Wenqian Ruan
- Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China.
| | - Jin Luo
- Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China.
| | - Xionghui Wei
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|