1
|
Leão GR, Silva LPS, Damacena-Silva L, Rocha TL. Toxicity of environmental chemicals in gastropods' hemocytes: Trends and insights based on investigations using Biomphalaria spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177522. [PMID: 39561895 DOI: 10.1016/j.scitotenv.2024.177522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Affiliation(s)
- Gabrielly Rodrigues Leão
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luiz Phelipe Souza Silva
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luciana Damacena-Silva
- Research Laboratory on Parasite-Host Interaction, State University of Goiás, Anápolis, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Kandeil MA, Salem HK, Eissa SH, Hassan SS, El-Sawy AM. Reproductive performance of freshwater snail, Helisoma duryi under the effect of bulk and nano zinc oxide. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:683-701. [PMID: 38594790 DOI: 10.1002/jez.2816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Nanotechnology has been used to apply nanoparticle essential elements to enhance the ability of animals to absorb these elements and consequently improve their reproductive performance. High concentrations of nanoparticles (NPs) can directly harm a range of aquatic life forms, ultimately contributing to a decline in biodiversity. Helisoma duryi snails are a good model for studying the toxicological effects of bulk zinc oxide (ZnO-BPs) and nano zinc oxide (ZnO-NPs) on freshwater gastropods. This study aimed to compare the toxic effects of ZnO-BPs and ZnO-NPs on H. duryi snails and explore how waterborne and dietary exposure influenced the reproductive performance of this snail. ZnO-BPs and ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder (XRD). This study revealed that the size of ZnO-BPs and ZnO-NPs were 154 nm and 11-31 nm, respectively. The results showed that exposure of adult snails to sub-lethal concentrations of both ZnO forms (bulk and nano) for 24 h/week for 4 weeks markedly changed their reproductive performance in a concentration-dependent manner, where fecundity was negatively affected by high concentrations. It was concluded that dietary exposure to the lowest tested concentration of ZnO-NPs (1 ppm) has a positive effect as the number of eggs and egg masses/snails increased and the incubation period decreased. Also, poly-vitelline eggs (The formation of twins) were observed. ZnO-NPs at low concentrations positively affect the reproductive performance of snails, especially after dietary exposure. The results revealed that 1 ppm ZnO-NPs could be supplementary provided to snails to improve their fertility, reduce the developmental time course, increase hatchability percentage, and produce poly-vitelline eggs.
Collapse
Affiliation(s)
- Manar A Kandeil
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hoda K Salem
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Samia H Eissa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sama S Hassan
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | |
Collapse
|
3
|
Ibrahim AM, Abdel-Haleem AAS, Taha RG. Biomonitoring of manganese metal pollution in water and its impacts on biological activities of Biomphalaria alexandrina snail and larvicidal potencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105967-105976. [PMID: 37721672 PMCID: PMC10579169 DOI: 10.1007/s11356-023-29786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Metal pollution has many dangerous environmental and human health consequences due to the bioaccumulation in the tissues. The present study aims to measure the bioaccumulation factor of the manganese (Mn) heavy metal in Biomphalaria alexandrina snails' tissues and water samples. The current results showed the concentration of Mn heavy metal in water (87.5 mg/l) and its bioaccumulation factor in Helisoma duryi tissue was higher than that in tissues of Physa acuta and B. alexandrina snails. Results showed that 87.5 mg/l Mn concentration had miracidicidal and cercaricidal activities. Also, this concentration decreased the mean total number of the hemocytes after exposure for 24 h or 48 h, while increasing both the mean mortality and phagocytic indices of the hemocytes of exposed snails. It caused alterations in the cytomorphology of the hemocytes of exposed snails after 24 or 48 h, where the granulocytes had irregular cell membranes and formed pseudopodia. Besides, levels of testosterone (T) and estradiol (E) were increased after exposure to 87.5 mg/l Mn metal compared to the control group. Also, it increased MDA (malonaldehyde) and TAC (total antioxidant capacity) contents, while decreasing SOD (superoxide dismutase). Besides, it caused significant histopathological damages in both hermaphrodite and digestive glands, represented in the degeneration of the gonadal, digestive, secretory cells, and the connective tissues. Therefore, B. alexandrina might be used as a sensitive bioindicator of pollution with Mn heavy metal to avoid ethics rules; besides, they are readily available and large in number.
Collapse
Affiliation(s)
- Amina Mohamed Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Ahmed Abdel-Salam Abdel-Haleem
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, P.C.11757, Egypt
| | - Rania Gamal Taha
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, P.C.11757, Egypt.
| |
Collapse
|
4
|
Habib MR, Mohamed AH, Nassar AHA, Sheir SK. Bisphenol A effects on the host Biomphalaria alexandrina and its parasite Schistosoma mansoni. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97824-97841. [PMID: 37597145 DOI: 10.1007/s11356-023-29167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
Bisphenol A (BPA) is one of the most potent endocrine-disrupting chemicals (EDCs) that adversely affect aquatic organisms. The present investigation explored the effects of exposure to BPA at 0.1 and 1 mgL-1 concentrations on the fecundity of Biomphalaria alexandrina, snail's infection with Schistosoma mansoni, and histology of the ovotestis and topographical structure of S. mansoni cercariae emerged from exposed snails. The 24 h LC50 and LC90 values of BPA against B. alexandrina were 8.31 and 10.88 mgL-1 BPA, respectively. The exposure of snails to 0.1 or 1 mgL-1 BPA did not affect the snail's survival. However, these concentrations caused an increase in the reproductive rate (Ro) of infected snails. A slight decrease in egg production was observed in snails exposed to 0.1 mgL-1 BPA after being infected (infected then exposed). However, a significant increase in egg production was noted in snails exposed to 1 mgL-1 BPA after infection with S. mansoni. Histopathological investigations indicated a clear alteration in the ovotestis tissue structure of exposed and infected-exposed groups compared to the control snails. Chronic exposure to BPA caused pathological alterations in the gametogenic cells. SEM preparations of S. mansoni cercariae emerged from infected-exposed snails showed obvious body malformations. From a public health perspective, BPA pollution may negatively impact schistosomiasis transmission, as indicated by the disturbance in cercarial production and morphology. However, it has adverse effects on the reproduction and architecture of reproductive organs of exposed snails, indicating that B. alexandrina snails are sensitive to sublethal BPA exposure.
Collapse
Affiliation(s)
- Mohamed R Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | | | - Sherin K Sheir
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
5
|
Kong W, Xu Q, Lyu H, Kong J, Wang X, Shen B, Bi Y. Sediment and residual feed from aquaculture water bodies threaten aquatic environmental ecosystem: Interactions among algae, heavy metals, and nutrients. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116735. [PMID: 36402021 DOI: 10.1016/j.jenvman.2022.116735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/18/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The effect of sediment and residual fish feed on aquaculture water bodies has gained increasing attention to alleviate the eutrophication and heavy metals enrichment induced by aquaculture. Thus, this study intended to reveal the possible interactions among nutrients, heavy metals, and Chlorella vulgaris (C. vulgaris) in aquaculture water bodies containing fish feed and sediment. The analyses showed that consistent with the composition of heavy metals in fish feed, manganese (Mn) and zinc (Zn) accounted for the highest proportions (68-78%) of heavy metals in sediment. Meanwhile, sediment in the centre of aquaculture water bodies (S2) contained more heavy metals than those in the perimeter (S1), but the released concentrations and rates (Rrelease) of heavy metals from S1 were higher than those from S2. Moreover, the biomass, growth rate, specific growth rate, and nitrogen and carbon fixation rate of C. vulgaris increased with adding fish feed, whereas superoxide dismutase (SOD) and malondialdehyde (MDA) decreased. In addition, with C. vulgaris, influenced by the release process from sediment and the uptake by C. vulgaris, the concentration and Rrelease of Mn, Pb, Cu, Mn, Cr and Cd from sediments coexisting with fish feed in water first increased and then decreased in general. The C. vulgaris biomass was significantly negatively related to Mn, Pb, Cu, Ni, Cr, and Cd and PO43-P (P < 0.05), which was caused by the uptake of C. vulgaris and indicated that C. vulgaris biomass is easily affected by these factors. Accordingly, the input of residual fish feed and sediment should be controlled.
Collapse
Affiliation(s)
- Wenwen Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Qijie Xu
- Guangzhou Research Institute of Environmental Protection, Guangzhou, 510620, PR China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Jia Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Xin Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, PR China.
| |
Collapse
|
6
|
Baz ES, Hussein AAA, Vreeker EMT, Soliman MFM, Tadros MM, El-Shenawy NS, Koene JM. Consequences of artificial light at night on behavior, reproduction, and development of Lymnaea stagnalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119507. [PMID: 35609841 DOI: 10.1016/j.envpol.2022.119507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Light is an important zeitgeber that regulates many behavioral and physiological processes in animals. These processes may become disturbed due to the changes in natural patterns of light and dark via the introduction of artificial light at night (ALAN). The present study was designed to determine the effect of possible consequences of ALAN on reproduction, hatching success, developmental success, growth rate, feeding rate, mortality rate, and locomotor activity of the simultaneous hermaphrodite pond snail Lymnaea stagnalis. Snails were exposed to different light intensities at night that simulate actual ALAN measurements from the snail's night environment. The data revealed that exposure to ALAN at a low level significantly affected the cumulative number of laid eggs. At the same time, snails exposed to ALAN laid smaller eggs than those laid under normal light-dark cycles. Additionally, high light-intensity of ALAN delayed development and hatching of eggs of L. stagnalis while it showed no effect on hatching percentage. Furthermore, ALAN increased both the feeding and growth rates but did not lead to mortality. The results also show that snails exposed to dark conditions at night travel longer distances and do so faster than those exposed to ALAN. In light of these findings, it is clear that ALAN may have an influence on snails and their abundance in an environment, possibly disturbing ecological stability.
Collapse
Affiliation(s)
- El-Sayed Baz
- Zoology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Ahmed A A Hussein
- Zoology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt; Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, Amsterdam, the Netherlands; Department of Malacology, Theodor Bilharz Research Institute (TBRI), 30 Imbaba, 12411, Giza, Egypt.
| | - Edith M T Vreeker
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, Amsterdam, the Netherlands
| | - Maha F M Soliman
- Zoology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Menerva M Tadros
- Department of Malacology, Theodor Bilharz Research Institute (TBRI), 30 Imbaba, 12411, Giza, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Caixeta MB, Araújo PS, Pereira AC, Tallarico LDF, Rocha TL. Biomphalaria embryotoxicity test (BET): 60 years of research crossing boundaries for developing standard protocols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155211. [PMID: 35421466 DOI: 10.1016/j.scitotenv.2022.155211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Snail's embryotoxicity test is a suitable approach for toxicity assay of traditional and emerging pollutants, environmental risk assessment, as well as screening and development of new molluscicides. Among the snail species, Biomphalaria spp. has been indicated as a promising model system for developing standardized test protocols for assessing the chemical toxicity using early developmental stages. Thus, the current study aimed to review the data available in the scientific literature concerning the experimental approach, type of chemicals and the response of multiple biomarkers (survival, hatching rate, development delays, morphological and behavior changes) in snail embryos applied in toxicity tests. Revised data showed that the use of Biomphalaria embryos to assess chemical toxicity began in 1962. Snail's embryotoxicity test was applied mainly for analyzing the toxicity and development of new molluscicides, while its use in ecotoxicological studies is emerging. Biomphalaria glabrata was the main species analyzed. Embryos exposed to chemicals showed bioaccumulation, mortality, hatching inhibition, development delays, and morphological malformations, which were classified into four categories (hydropic, shell, cephalic and unspecified malformations). Besides, research gaps and recommendations for future research are indicated. Overall, the results showed that the Biomphalaria embryotoxicity test (BET) is a suitable tool for toxicity and health risk assessment.
Collapse
Affiliation(s)
- Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Aryelle Canedo Pereira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
8
|
Abstract
Background: Bio-indicator systems are vital in terms of monitoring of pollutants around the world. The impact of environmental change can be monitored by employing the responsive behaviour of snails. Heavy metal and organic pollutants affects snail reproduction, mortality, and normal metabolic activities. Various changes like a discontinuity in food intake, growth rate, twitching, and quenching of tentacles, are the biomarkers of the snails for biomonitoring. Different snails can bio-monitor eco-toxicological urban pollution, oil pollutant, terrestrial pollution, pesticide pollutants, mercury contamination, ammonia, chlorinated paraffin in soil, ethanol in water, ocean acidification pollutions. These animals can also make bio-sense about diverse environment spheres, which include the biosphere, lithosphere, anthroposphere, cryosphere, and hydrosphere.Methods: We examined the scientific literature and related articles listed in Pub-med, Google Scholar reporting on biomonitoring potential and biomarkers expression of various snail species and consequently explore the value of snails in the respective field by discussing various outcomes of a number of studies on the pollution biomonitoring and biosensing capabilities.Results: Several terrestrial, freshwater and sea snail species are characterized by the high sense of biomonitoring and biosensing potential. Various biomarkers such as expression of heat shock proteins and metallothioneins in the body are found to be the essential in-vivo biomarkers for pollution biomonitoring.Conclusion: It is observed that snails offer an environment friendly approach for the environmental bio monitoring by expressing their numerous physiological, biochemical, genetical and histological biomarkers in their body. Thus, it proved to be a critical bio monitoring tool and early warning indicators.
Collapse
Affiliation(s)
- Varun Dhiman
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamsala, India
| | - Deepak Pant
- School of Chemical Sciences, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
9
|
Herman P, Fehér M, Molnár Á, Harangi S, Sajtos Z, Stündl L, Fábián I, Baranyai E. Iron and Manganese Retention of Juvenile Zebrafish (Danio rerio) Exposed to Contaminated Dietary Zooplankton (Daphnia pulex)-a Model Experiment. Biol Trace Elem Res 2021; 199:732-743. [PMID: 32447578 PMCID: PMC7746567 DOI: 10.1007/s12011-020-02190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/10/2020] [Indexed: 11/13/2022]
Abstract
In present study the effect of iron (Fe) and manganese (Mn) contamination was assessed by modeling a freshwater food web of water, zooplankton (Daphnia pulex), and zebrafish (Danio rerio) under laboratory conditions. Metals were added to the rearing media of D. pulex, and enriched zooplankton was fed to zebrafish in a feeding trial. The elemental analysis of rearing water, zooplankton, and fish revealed significant difference in the treatments compared to the control. In D. pulex the Mn level increased almost in parallel with the dose of supplementation, as well as the Fe level differed statistically. A negative influence of the supplementation on the fish growth was observed: specific growth rate (SGR%) and weight gain (WG) decreased in Fe and Mn containing treatments. The redundancy analysis (RDA) of concentration data showed strong correlation between the rearing water and D. pulex, as well as the prey organism of Fe- and Mn-enriched D. pulex and the predator organism of D. rerio. The bioconcentration factors (BCF) calculated for water to zooplankton further proved the relationship between the Fe and Mn dosage applied in the treatments and measured in D. pulex. Trophic transfer factor (TTF) results also indicate that significant retention of the metals occurred in D. rerio individuals, however, in a much lower extent than in the water to zooplankton stage. Our study suggests that Fe and Mn significantly accumulate in the lower part of the trophic chain and retention is effective through the digestive track of zebrafish, yet no biomagnification occurs. Graphical abstract.
Collapse
Affiliation(s)
- Petra Herman
- Department of Inorganic and Analytical Chemistry, Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, H-4010, Hungary
| | - Milán Fehér
- Faculty of the Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, H-4032, Hungary
| | - Áron Molnár
- Faculty of the Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, H-4032, Hungary
| | - Sándor Harangi
- Department of Inorganic and Analytical Chemistry, Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, H-4010, Hungary
| | - Zsófi Sajtos
- Department of Inorganic and Analytical Chemistry, Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, H-4010, Hungary
| | - László Stündl
- Faculty of the Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, H-4032, Hungary
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, H-4010, Hungary
| | - Edina Baranyai
- Department of Inorganic and Analytical Chemistry, Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, H-4010, Hungary.
| |
Collapse
|
10
|
ALBERTO-SILVA ANNACARLA, CUNHA RODOLFOA, COSTA VALDIRADA, SANTOS EVERTONGUSTAVONDOS, VASCONCELLOS MAURÍCIOCDE, MELLO-SILVA CLÉLIACHRISTINA, SANTOS CLÁUDIAP. Behavioral response of Biomphalaria glabrataexposed to a sublethal concentration of Euphorbia miliivar. hislopii latex. ACTA ACUST UNITED AC 2020; 92:e20190298. [DOI: 10.1590/0001-3765202020190298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
|
11
|
de Vasconcelos Lima M, de Andrade Pereira MI, Cabral Filho PE, Nascimento de Siqueira W, Milca Fagundes Silva HA, de França EJ, Saegesser Santos B, Mendonça de Albuquerque Melo AM, Fontes A. Studies on Toxicity of Suspensions of CdTe Quantum Dots to Biomphalaria glabrata Mollusks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2128-2136. [PMID: 31233232 DOI: 10.1002/etc.4525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Quantum dots have generated great interest because of their optical properties, both to life sciences and electronics applications. However, possible risks to the environment associated with these nanoparticles are still under investigation. The present study aimed to evaluate the toxicity of suspensions of cadmium telluride (CdTe) quantum dots to Biomphalaria glabrata mollusks, a very sensitive aquatic environmental bioindicator for physical and chemical agents. Toxicity was examined by using embryos and adult mollusks as well as hemocytes. The distribution of cadmium in the organs of adults was also assessed. Effects of the stabilizing agent of the quantum dots were also evaluated. Animals were exposed to suspensions of quantum dots for 24 h, at concentrations varying from 1.2 to 20 nM for embryos and from 50 to 400 nM for adult mollusks. Results showed that suspensions of quantum dots induced malformations and mortality in embryos and mortality in adults, depending on the concentration applied. In the cytotoxicity study, hemocyte apoptosis was observed in adults exposed to the highest concentration of quantum dots applied as well as to the stabilizing agent. Cell binucleation and micronucleus frequencies were not significative. Bioaccumulation evaluation revealed that quantum dots targeted the digestive gland (hepatopancreas). Taken together, outcomes suggested that specific nano-effects related directly not only to composition but also to the aggregation of quantum dots may be mediating the observed toxicity. Thus B. glabrata was determined to be a very sensitive species for interpreting possible nano-effects in aquatic environments. Environ Toxicol Chem 2019;38:2128-2136. © 2019 SETAC.
Collapse
Affiliation(s)
| | | | | | - Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, UFPE, Recife, Pernambuco, Brazil
- Serviço de Monitoração Ambiental, CRCN-NE, Recife, Pernambuco, Brazil
| | | | | | | | | | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, UFPE, Recife, Pernambuco, Brazil
| |
Collapse
|
12
|
Acker MJ, Habib MR, Beach GA, Doyle JM, Miller MW, Croll RP. An immunohistochemical analysis of peptidergic neurons apparently associated with reproduction and growth in Biomphalaria alexandrina. Gen Comp Endocrinol 2019; 280:1-8. [PMID: 30923005 PMCID: PMC6635034 DOI: 10.1016/j.ygcen.2019.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 11/20/2022]
Abstract
Peptide hormones and neurotransmitters involved in reproduction and growth have been studied extensively in certain gastropod molluscs, such as Lymnaea stagnalis and Aplysia californica. The present study employs antisera that have been used to study peptidergic neurons in those species to probe the central nervous system of another gastropod, Biomphalaria alexandrina, an intermediate host of the parasitic trematode that causes schistosomiasis in humans. Whole mount preparations of central ganglia were stained immunohistochemically, and several populations of neurons appeared to be homologous to those forming the neuroendocrine axis that has been previously described in L. stagnalis. These cells include the caudodorsal cells and the light green and canopy cells, which produce hormones that regulate ovulation and growth, respectively. Other populations of cells containing APGWamide, FMRFamide and/or related peptides are consistent with ones that innervate the penis in L. stagnalis and other gastropods. Identification of neurons that might be responsible for the control of reproduction and growth in Biomphalaria provides an important initial step toward the development of novel methods of disease control and pest management directed toward reducing snail populations.
Collapse
Affiliation(s)
- Madison J Acker
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Griffin A Beach
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jillian M Doyle
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Mark W Miller
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Roger P Croll
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
13
|
Abu El Einin HM, Ali RE, Gad El-Karim RM, Youssef AA, Abdel-Hamid H, Habib MR. Biomphalaria alexandrina: a model organism for assessing the endocrine disrupting effect of 17β-estradiol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23328-23336. [PMID: 31197669 DOI: 10.1007/s11356-019-05586-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
A wide range of endocrine disruptor compounds are routinely discharged to the ecosystem. Water contaminated with these compounds has a potential effect on the reproductive physiology of aquatic organisms as well as humans. In the present study, we tested the effect of the steroid estrogen, 17β-estradiol, on Biomphalaria alexandrina, a snail species that is widely distributed in Egypt and that acts as an intermediate host for the human blood fluke, Schistosoma mansoni. The effects of exposure to 0.3 mg/L and 1 mg/L 17β-estradiol on fecundity (MX) and reproductive rate (R0) of B. alexandrina were recorded. In addition, levels of steroid sex hormones and antioxidants in the hemolymph and ovotestis (OT) of exposed snails were measured. Histopathological changes in the OT of B. alexandrina were also investigated. Exposure to 0.3 mg/L and 1 mg/L 17β-estradiol caused a significant increase in the number of egg masses per snail after 3 weeks and 1 week of exposure for the two tested concentrations compared with unexposed controls. An increase in the levels of progesterone hormone was recorded in the hemolymph of exposed snails in comparison with unexposed controls. Additionally, levels of the antioxidant enzyme glutathione (GSH) were increased in the hemolymph and OT tissues of snails after 2 and 4 weeks of exposure. Histopathological sections in the OT revealed an increase in the oocyte and a decrease in the sperm densities after 2 weeks and this effect was restored to normal conditions after 4 weeks of exposure to both tested concentrations. The current results indicate that B. alexandrina is sensitive to 17β-estradiol and can therefore be used as bioindicator and model organism for the assessment of water pollution with endocrine disruptor compounds.
Collapse
Affiliation(s)
- Hanaa M Abu El Einin
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Rasha E Ali
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Rasha M Gad El-Karim
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Alaa A Youssef
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Hoda Abdel-Hamid
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
| |
Collapse
|
14
|
Zhang Z, Yan K, Zhang L, Wang Q, Guo R, Yan Z, Chen J. A novel cadmium-containing wastewater treatment method: Bio-immobilization by microalgae cell and their mechanism. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:420-427. [PMID: 31035092 DOI: 10.1016/j.jhazmat.2019.04.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 05/24/2023]
Abstract
Heavy metal cadmium (Cd) has drawn tremendous comcern due to its rigorous environmental and health hazards. Herein, we have presented an efficient and economical strategy for the removal and recycling of hazardous Cd ions using microalgae cells as the bioreactors. Remarkably, the green bio-platform for the bioproduction of CdSe nanoparticles (NPs) was developed depending on their orderly regulated and sustainable cellular environment. The biofabricated CdSe NPs manifested favorable photoluminescence properties, and presented well monodispersed spherical morphology and certain crystallinity structure with mean size of smaller than 7 nm. Especially, the fluorescence "turn off" sensing system based on the CdSe NPs was established to detect Hg2+. The nanosensor enables the quantitative analyses of Hg2+ with a linear range of 0-2.0 μM and a detection limit of 0.021 μM. Furthermore, it was preliminarily speculated that the reducing biomolecules in the algae cells could be involved in the formation of CdSe NPs. This work not only provides new insights into the removal and recycling of hazardous Cd ions, but also brings a promising route for biosynthesis of CdSe NPs.
Collapse
Affiliation(s)
- Zhengwei Zhang
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Kun Yan
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling Zhang
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Qian Wang
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruixin Guo
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Yan
- School of Science, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianqiu Chen
- School of Science, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Augusto RDC, Duval D, Grunau C. Effects of the Environment on Developmental Plasticity and Infection Success of Schistosoma Parasites - An Epigenetic Perspective. Front Microbiol 2019; 10:1475. [PMID: 31354641 PMCID: PMC6632547 DOI: 10.3389/fmicb.2019.01475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
Evidence of how environmental cues affect the phenotypes of, and compatibility between Schistosoma mansoni and their hosts come from studies in environmental parasitology and research on host diet and chemotherapeutic treatment. Schistosomes deal with a multitude of signals from the water environment as well as cues that come from their hosts, particularly in response to molecules that serve to recognize and destroy them, i.e., those molecules that arise from their hosts' immune systems. These interactions shape, not only the parasite's morphology, metabolism and behavior in the short-term, but also their infection success and development into different stage-specific phenotypes later in their life cycle, through the modification of the parasite's inheritance system. Developmental phenotypic plasticity of S. mansoni is based on epigenetic mechanisms which are also sensitive to environmental cues, but are poorly understood. Here, we argue that specific cues from the environment could lead to changes in parasite development and infectivity, and consequently, environmental signals that come from environmental control measures could be used to influence S. mansoni dynamics and transmission. This approach poses a challenge since epigenetic modification can lead to unexpected and undesired outcomes. However, we suggest that a better understanding of how environmental cues are interpreted by epigenome during schistosome development and host interactions could potentially be applied to control parasite's virulence. We review evidence about the role of environmental cues on the phenotype of S. mansoni and the compatibility between this parasite and its intermediate and definitive hosts.
Collapse
|
16
|
Abdel-Wareth MTA, El-Hagrassi AM, Abdel-Aziz MS, Nasr SM, Ghareeb MA. Biological activities of endozoic fungi isolated from Biomphalaria alexandrina snails maintained in different environmental conditions. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/00207233.2019.1620535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Marwa T. A. Abdel-Wareth
- Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ali M. El-Hagrassi
- Phytochemistry and Plant Systematic Department, Pharmaceutical Industries Division, National Research Centre, Giza, Egypt
| | - Mohamed S. Abdel-Aziz
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Giza, Egypt
| | - Sami M. Nasr
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mosad A. Ghareeb
- Medicinal Chemistry, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
17
|
Alonso Á, Valle-Torres G. Feeding Behavior of an Aquatic Snail as a Simple Endpoint to Assess the Exposure to Cadmium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:82-88. [PMID: 29209857 DOI: 10.1007/s00128-017-2230-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
One of the aims of ecotoxicology is the assessment of the effects of chemicals on the ecosystems. Bioassays assessing lethality are frequently used in ecotoxicology, however they usually employ supra-environmental toxic concentrations. Toxicity tests employing behavioral endpoints may present a balance between simplicity (i.e., laboratory bioassays) and complexity (i.e., relevant ecological effects). The aim of this study was to develop a feeding behavioral bioassay with the aquatic snail, Potamopyrgus antipodarum, which included a 2 days exposure to cadmium, followed by a 9 days post-exposure observational period. Several behavioral feeding endpoints were monitored, including percentage of actively feeding animals, percentage of animals in food quadrants and a mobility index. The percentage of actively feeding animals was reduced by the four cadmium treatments (0.009, 0.026, 0.091 and 0.230 mg Cd/L) with the stronger effect in the highest concentration. The two highest cadmium concentrations significantly reduced the percentage of animals in food quadrants and the mobility index. Therefore, the percentage of actively feeding animals was the most sensitive endpoint to cadmium toxicity as the four cadmium concentrations caused a significant decrease in this endpoint. It is concluded that feeding behavior is a useful endpoint to detect the exposure of aquatic snails to cadmium.
Collapse
Affiliation(s)
- Álvaro Alonso
- Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Facultad de Ciencias, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - Guillermo Valle-Torres
- Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Facultad de Ciencias, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
18
|
Strungaru SA, Nicoara M, Teodosiu C, Micu D, Plavan G. Toxic metals biomonitoring based on prey-predator interactions and environmental forensics techniques: A study at the Romanian-Ukraine cross border of the Black Sea. MARINE POLLUTION BULLETIN 2017; 124:321-330. [PMID: 28751028 DOI: 10.1016/j.marpolbul.2017.07.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Marine cross-border areas are ideal for monitoring pollutants so as to increase ecosystems protection. This study was conducted at the Romanian-Ukraine border of the Black Sea to reveal evidence of contamination with toxic metals based on biomonitoring of: cadmium, lead, total chromium, nickel and copper at different water depths and prey-predator interactions, combined with environmental forensics techniques of biological sampling and separation in witnesses size groups. The species used were Mytilus galloprovincialis L. and Rapana venosa V. collected at 17.5m, 28m and 35m depth. An atomic absorption spectrometer with a high-resolution continuum source and graphite furnace was used for toxic metals quantification in various samples: sediments, soft tissue, stomach content, muscular leg, hepatopancreas. The best sample type, based on the pathology of metal location and bioaccumulation, is the hepatopancreas from R. venosa that proved a significant decrease of cadmium and lead at lower depths.
Collapse
Affiliation(s)
- Stefan-Adrian Strungaru
- "Alexandru Ioan Cuza" University of Iasi, Department of Research, Faculty of Biology, 700505, Iasi, Romania
| | - Mircea Nicoara
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, 700505, Iasi, Romania
| | - Carmen Teodosiu
- "Gheorghe Asachi" Technical University of Iasi, Department of Environmental Engineering and Management, 73, "Prof. Dr. D. Mangeron" Street, 700050, Iasi, Romania.
| | - Dragos Micu
- National Institute for Marine Research and Development "Grigore Antipa", 900581, Constanta, Romania
| | - Gabriel Plavan
- "Alexandru Ioan Cuza" University of Iasi, Department of Biology, Faculty of Biology, 700505, Iasi, Romania
| |
Collapse
|
19
|
Kováčik J, Babula P, Hedbavny J. Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. CHEMOSPHERE 2017; 180:86-92. [PMID: 28391156 DOI: 10.1016/j.chemosphere.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/12/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
Antioxidative and microscopic responses in non-vascular (moss Taxiphyllum barbieri) and vascular (Ceratophyllum demersum) aquatic plants exposed to short-term (24 h) cadmium (Cd) excess (10 and 100 μM) were compared. Ceratophyllum considerably accumulated Cd but less pronounced symptoms of oxidative stress were detected by confocal microscopy (at the level of general ROS, hydrogen peroxide, hydroxyl radical/peroxynitrite and superoxide) that could be related to enhanced activities of antioxidative enzymes (SOD, CAT, APX). Amounts of ascorbic acid and non-protein thiols were higher in Ceratophyllum than in Taxiphyllum and increased with increasing Cd dose, which may help to better regulate circulation of free metal ions in Ceratophyllum mainly. Besides, it was observed that citric acid increased in Ceratophyllum while malic acid in Taxiphyllum in response to Cd which may also contribute to Cd chelation. Our data indicate that Ceratophyllum is a suitable species for Cd bioaccumulation while Taxiphyllum is more sensitive to Cd excess and thus suitable as indicator species. It was also proven that sensitive microscopic techniques allow the visualization of Cd-induced changes in aquatic plants even after short-term exposure when no morphological signs of damage are visible.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Josef Hedbavny
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| |
Collapse
|
20
|
Khidkhan K, Imsilp K, Poapolathep A, Poapolathep S, Tanhan P. Potential human health risk from consumption of metallic elements-contaminated benthic mollusks from Don Hoi Lot sandbar, Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:1239-1247. [PMID: 28153398 DOI: 10.1016/j.scitotenv.2017.01.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
Environmental pollutants have raised more concerns for human health risk, especially via consumption of contaminated food. Terrestrial as well as aquatic animals are capable of bioaccumulation a variety of toxic substances including metallic elements. With increasing anthropogenic activities along the coastal areas, living organisms have more chances to be exposed to released contaminants. In this study, seven metallic elements (Cd, Cu, Fe, Mn, Ni, Pb and Zn) were determined in sediments and water from Don Hoi Lot sandbar, Samutsongkharm province, Thailand. Potential human health risks via the consumption of two benthic bivalves Solen corneus (Larmarck, 1818) and Meretrix meretrix (Linnaeus, 1758) were also estimated using the target hazard quotients (THQs). The variations of metallic element concentrations were apparent between wet and dry season. Fe was the predominate metallic element in the sediment and the remaining were Mn>Pb>Zn>Ni>Cu>Cd. Whereas metallic element concentrations in water were Pb>Ni>Fe>Zn>Cu>Mn>Cd. PCA analysis confirmed that the contaminations of these metallic elements were from Mae Klong river surface water. Most Pb THQ values in both S. corneus and M. meretrix were >1 indicating that human health risk is of concern. However, the sum of THQs of an individual metallic element should also be considered since multiple metallic elements exposure is so common.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Kanjana Imsilp
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Phanwimol Tanhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Thailand.
| |
Collapse
|