1
|
Yuan S, Huang J, Wu T, Duan X, Zhao X, Ren X, Zhou T. New Ti/CNT/CNT-Ce-PbO 2 anode synergy peroxymonosulfate activation for efficiently electrocatalytic degradation of p-aminobenzoic acid. ENVIRONMENTAL RESEARCH 2025; 264:120383. [PMID: 39551372 DOI: 10.1016/j.envres.2024.120383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Increased levels of p-aminobenzoic acid in aquatic environments, primarily utilized as UV filter in sunscreens, poses a serious threat to human and ecosystem health, while there is a dearth of exhaustive researches pertaining to the efficient and cost-effective elimination of p-aminobenzoic acid. Herein, a Ti/SnO2-Sb/CNT-α-PbO2/CNT-Ce-β-PbO2, referred to Ti/CNT/CNT-Ce-PbO2 electrode was constructed by incorporating CNTs into the middle layer of PbO2 electrode, and simultaneously doping CNTs and Ce in the active layer. A series of tests signify that the target electrode is successfully fabricated, which exhibits higher particle density and smaller particle size, as well as exceptional degradation performance for p-aminobenzoic acid with a degradation rate of 99.7% within 30 min coupling with peroxymonosulfate activation. The optimal degradation performance was observed at a PMS dosage of 0.07 g, Na2SO4 concentration of 0.05 mol L-1, current density of 120 mA cm-2, and initial pH value of 6.94. Capture experiments, electron spin resonance test, liquid chromatography-mass spectrometry analysis, toxicity assessment and theoretical calculation were performed to clarify the main activate radicals, degradation pathways and intermediate toxicity. This study provides a new anode material, and conducted the first exploration of electrocatalysis integrating peroxymonosulfate activation for degradation p-aminobenzoic acid.
Collapse
Affiliation(s)
- Siyi Yuan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Jiacheng Huang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Tao Wu
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China.
| | - Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China.
| | - Tianyu Zhou
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China.
| |
Collapse
|
2
|
Ou Q, Xu Y, Wang X, van der Hoek JP, Yu G, Liu G. Dissolved Black Carbon Facilitates the Photodegradation of Microplastics via Molecular Weight-Dependent Generation of Reactive Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39133902 PMCID: PMC11360373 DOI: 10.1021/acs.est.4c03831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Photodegradation of microplastics (MPs) induced by sunlight plays a crucial role in determining their transport, fate, and impacts in aquatic environments. Dissolved black carbon (DBC), originating from pyrolyzed carbon, can potentially mediate the photodegradation of MPs owing to its potent photosensitization capacity. This study examined the impact of pyrolyzed wood derived DBC (5 mg C/L) on the photodegradation of polystyrene (PS) MPs in aquatic solutions under UV radiation. It revealed that the photodegradation of PS MPs primarily occurred at the benzene ring rather than the aliphatic segments due to the fast attack of hydroxyl radical (•OH) and singlet oxygen (1O2) on the benzene ring. The photosensitivity of DBC accelerated the degradation of PS MPs, primarily attributed to the increased production of •OH, 1O2, and triplet-excited state DBC (3DBC*). Notably, DBC-mediated photodegradation was related to its molecular weight (MW) and chemical properties. Low MW DBC (<3 kDa) containing more carbonyl groups generated more •OH and 1O2, accelerating the photodegradation of MPs. Nevertheless, higher aromatic phenols in high MW DBC (>30 kDa) scavenged •OH and generated more O2•-, inhibiting the photodegradation of MPs. Overall, this study offered valuable insights into UV-induced photodegradation of MPs and highlighted potential impacts of DBC on the transformation of MPs.
Collapse
Affiliation(s)
- Qin Ou
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, PR China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Delft, CN 2628, The Netherlands
| | - Yanghui Xu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, PR China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Delft, CN 2628, The Netherlands
| | - Xintu Wang
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, PR China
- College
of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541004, China
| | - Jan Peter van der Hoek
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Delft, CN 2628, The Netherlands
- Department
Research & Innovation Waternet, P.O. Box 94370 GJ Amsterdam 1090, The
Netherlands
| | - Guo Yu
- College
of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541004, China
| | - Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, PR China
- University
of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Sun J, Rene ER, Tao D, Lu Y, Jin Q, Lam JCH, Leung KMY, He Y. Degradation of organic UV filters in the water environment: A concise review on the mechanism, toxicity, and technologies. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132822. [PMID: 37898090 DOI: 10.1016/j.jhazmat.2023.132822] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Organic ultraviolet filters (OUVFs) have been used globally for the past 20 years. Given that OUVFs can be quickly released from sunscreens applied on human skins, they have been frequently detected in aquatic environments and organisms. Some byproducts of OUVFs might be more recalcitrant and toxic than their parent compounds. To further assess the toxicity and potential risk of OUVFs' byproducts, it is necessary to determine the fate of OUVFs and identify their transformation products. This review summarizes and analyzes pertinent literature and reports in the field of OUVFs research. These published research works majorly focus on the degradation mechanisms of OUVFs in aquatic environments, their intermediates/byproducts, and chlorination reaction. Photodegradation (direct photolysis, self-sensitive photolysis and indirect photolysis) and biodegradation are the main transformation pathways of OUVFs through natural degradation. To remove residual OUVFs' pollutants from aqueous environments, novel physicochemical and biological approaches have been developed in recent years. Advanced oxidation, ultrasound, and bio-based technologies have been proven to eliminate OUVFs from wastewaters. In addition, the disinfection mechanism and the byproducts (DBPs) of various OUVFs in swimming pools are discussed in this review. Besides, knowledge gaps and future research directions in this field of study are also mentioned.
Collapse
Affiliation(s)
- Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China.
| |
Collapse
|
4
|
Xiang W, Xu F, Wan D, Wang X, Luo F, Chen Y. Mechanistic investigation of direct photodegradation of chloroquine phosphate under simulated sunlight. CHEMOSPHERE 2023; 335:139093. [PMID: 37268224 DOI: 10.1016/j.chemosphere.2023.139093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Chloroquine phosphate (CQ) is an antiviral drug for Coronavirus Disease 2019 and an old drug for treatment of malaria, which has been detected in natural waters. Despite its prevalence, the environmental fate of CQ remains unclear. In this study, the direct photodegradation of CQ under simulated sunlight was investigated. The effect of various parameters such as pH, initial concentration and environmental matrix were examined. The photodegradation quantum yield of CQ (4.5 × 10-5-0.025) increased with the increasing pH value in the range of 6.0-10.0. The electron spin resonance (ESR) spectrometry and quenching experiments verified that the direct photodegradation of CQ was primarily associated with excited triplet states of CQ (3CQ*). The common ions had negligible effect and humic substances exhibited a negative effect on CQ photodegradation. The photoproducts were identified using high-resolution mass spectrometry and the photodegradation pathway of CQ was proposed. The direct photodegradation of CQ involved the cleavage of the C-Cl bond and substitution of the hydroxyl group, followed by further oxidation to yield carboxylic products. The photodegradation processes were further confirmed by the density functional theory (DFT) computation for the energy barrier of CQ dichlorination. The findings contribute to the assessment of the ecological risk associated with the overuse of Coronavirus drugs during global public health emergencies.
Collapse
Affiliation(s)
- Weiming Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Fahao Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Dong Wan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Xing Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Fan Luo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
5
|
Hong M, Yao J, Rao F, Chen Z, Gao N, Zhang Z, Jiang W. Insight into the synergistic mechanism of sonolysis and sono-induced BiFeO 3 nanorods piezocatalysis in atenolol degradation: Ultrasonic parameters, ROS and degradation pathways. CHEMOSPHERE 2023:139084. [PMID: 37263504 DOI: 10.1016/j.chemosphere.2023.139084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Herein, BiFeO3 nanorods (BFO NRs) was synthesized as the piezoelectric catalyst. The synergistic mechanism of sonolysis and sono-induced BFO-piezocatalysis in atenolol degradation was revealed and the effect of ultrasonic parameters on it was investigated for the first time. The results indicated that 100 kHz was the optimal frequency for the sonolytic and sono-piezocatalytic degradation of atenolol in ultrasound/BFO nanorods (US/BFO NRs) system, with the highest synergistic coefficient of 3.43. The piezoelectric potential differences of BFO NRs by COMSOL Multiphysics simulations further distinguishing that the impact of cavitation shock wave and ultrasonic vibration from sonochemistry reaction (i.e., 2.48, -2.48 and 6.60 V versus 0.008, -0.008 and 0.02 V under tensile, compressive and shear stress at 100 kHz). The latter piezoelectric potentials were insufficient for reactive-oxygen-species (ROS) generation, while the former contributed to 53.93% •OH yield in US/BFO NRs system. Sono-piezocatalysis was found more sensitive to ultrasonic power density than sonolysis. The quenching experiments and ESR tests indicated that the ROS contribution in atenolol degradation followed the order of •OH > 1O2 > h+ > O2•- in US/BFO NRs system and 1O2 generation is exclusively dissolved-oxygen dependent. Four degradation pathways for atenolol in US/BFO NRs system were proposed via products identification and DFT calculation. Toxicity assessment by ECOSAR suggested the toxicity of the degradation products could be controlled.
Collapse
Affiliation(s)
- Mingjian Hong
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Fanhui Rao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zihan Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Wenchao Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
6
|
Xiao ZJ, Chen JW, Wang Y, Wang ZY. In silico package models for deriving values of solute parameters in linear solvation energy relationships. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:21-37. [PMID: 36625152 DOI: 10.1080/1062936x.2022.2162576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Environmental partitioning influences fate, exposure and ecological risks of chemicals. Linear solvation energy relationship (LSER) models may serve as efficient tools for estimating environmental partitioning parameter values that are commonly deficient for many chemicals. Nonetheless, scarcities of empirical solute parameter values of LSER models restricted the application. This study developed and evaluated in silico methods and models to derive the values, in which excess molar refraction, molar volume and logarithm of hexadecane/air partition coefficient were computed from density functional theory; dipolarity/polarizability parameter, solute H-bond acidity and basicity parameters were predicted by quantitative structure-activity relationship models developed with theoretical molecular descriptors. New LSER models on four physicochemical properties relevant with environmental partitioning (n-octanol/water partition coefficients, n-octanol/air partition coefficients, water solubilities, sub-cooled liquid vapour pressures) were constructed using the in silico solute parameter values, which exhibited comparable performance with conventional LSER models using the empirical solute parameter values. The package models for deriving the LSER solute parameter values, with advantages that they are free of instrumental determinations, may lay the foundation for high-throughput estimating environmental partition parameter values of diverse organic chemicals.
Collapse
Affiliation(s)
- Z J Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - J W Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Y Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Z Y Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
7
|
Cao R, Liu X, Duan J, Gao B, He X, Li Y. Opposite impact of DOM on ROS generation and photoaging of aromatic and aliphatic nano- and micro-plastic particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120304. [PMID: 36181927 DOI: 10.1016/j.envpol.2022.120304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) plays a significant role in the photochemical behavior of nano- and micro-plastic particles (NPs/MPs). We investigated the influence of DOM on the mechanism on the photoaging of NPs/MPs with different molecular structures under UV365 irradiation in water. DOM components used in this study are mainly humic acid and fulvic acid. The results showed that DOM promoted the weathering of aliphatic NPs/MPs (polypropylene (PP)), but inhibited or had only a minor effect on the photoaging of aromatic NPs/MPs (polystyrene (PS) NPs/MPs, carboxyl-modified PS NPs, amino-modified PS NPs, and polycarbonate MPs). NPs with a large surface area may adsorb sufficient DOM on the particle surfaces through π-π interactions, which competes with NPs for photon absorption sites, thus, can delay the photoaging of PS NPs. Aromatic MPs may release phenolic compounds that quench •OH, thereby weakening the photoaging process. For aliphatic MPs, the detection of peracid, aldehyde, and ketone groups on the polymer surface indicated that DOM promoted weathering of PP MPs, which was primarily because the generation of •OH due to DOM photolysis may attack the polymer by C-C bond cleavage and hydrogen extraction reactions. This study provides insight into the UV irradiation weathering process of NPs/MPs of various compositions and structures, which are globally distributed in water.
Collapse
Affiliation(s)
- Runzi Cao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Xinna Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China; Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Jiajun Duan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
8
|
Yao J, Chen Z, Zhang H, Gao N, Zhang Z, Jiang W. New insight into the regulation mechanism of visible light in naproxen degradation via activation of peroxymonosulfate by MOF derived BiFeO 3. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128513. [PMID: 35219060 DOI: 10.1016/j.jhazmat.2022.128513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BiFeO3 (BFO) nanocage prepared by metal-organic-framework derivatization (MOF-d) was adopted as activator to first investigate the effect mechanism of visible-light on naproxen-degradation via peroxymonosulfate (PMS) activation. MOF-d BFO expressed more excellent PMS activation ability than hydrothermal-synthetic BFO, due to highly ordered mesopores. A 3.0 times higher pseudo-first-order degradation rate constant was achieved after visible-light introduced. The quenching experiments indicated that the contribution of ROS in naproxen degradation followed the order of SO4•->1O2 ≈ •OH in MOF-d BFO/PMS/dark system, while changed into h+>1O2 > >O2•-≈SO4•-> •OH after visible-light introduced. EPR tests first revealed that visible-light promoted 1O2 yield (non-radical pathway) but suppressed •OH and SO4•- generation (free-radical pathways). N2-purging experiments further proved that 1O2 primarily originates from the reaction between h+ and PMS, equivalently to that between O2 and e--h+ in MOF-d BFO/PMS/vis system. Under visible-light, PMS activation via Fe (III) might be hindered by e- filling on Fe 3d orbital and anion PMS preferred to approach h+ rather than e-, resulting in the decrease of •OH and SO4•- yields. Moreover, PMS faces competition from adsorbed-O2 and oxygen-vacancies for e- capture. The degradation-pathways for naproxen in dark and under visible light were both proposed in MOF-d BFO/PMS system.
Collapse
Affiliation(s)
- Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China.
| | - Zihan Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Huiying Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Wenchao Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| |
Collapse
|
9
|
Chen X, Yao J, Dong H, Hong M, Gao N, Zhang Z, Jiang W. Enhanced bezafibrate degradation and power generation via the simultaneous PMS activation in visible light photocatalytic fuel cell. WATER RESEARCH 2021; 207:117800. [PMID: 34741902 DOI: 10.1016/j.watres.2021.117800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
A collaborative system including peroxymonosulfate (PMS) activation in a photocatalytic fuel cell (PFC) with an BiOI/TiO2 nanotube arrays p-n type heterojunction as photoanode under visible light (PFC(BiOI/TNA)/PMS/vis system) was established. Xenon lamp was used as the light source of visible light. A 4.6 times higher pseudo-first-order bezafibrate (BZF) degradation rate constant was achieved in this system compared with the single PFC(BiOI/TNA)/vis system. The radical quenching experiments revealed that the contribution of reactive oxidative species (ROS) followed the order of 1O2 ≈ h+ >> •OH > SO4•- >>O2•-. The EPR tests demonstrated that PMS addition enlarged the formation of 1O2, •OH and SO4•-, but suppressed O2•- yield. Interestingly, 1O2 was further proved to dominantly originated from the priority reaction between positive photoinduced holes (h+) and negatively charged PMS. Besides, N2-purging tests and density functional theory calculation indicated that PMS probably reacted with residual photoinduced electron (e-) on the more negative conduction band (CB) of BiOI to form •OH and SO4•-, but competed with dissolved oxygen. Other e- transferred to the less negative CB of TNA through p-n junction will efficiently move to cathode through the external circuit. The greatly promoted power generation of PFC system was observed after PMS addition due to extra h+ consumption and efficient e- separation and transfer. Besides, three possible pathways for BZF degradation were proposed including hydroxylation, fibrate chain substituent and amino bond fracture. This study can provide new insights into the mechanisms of PMS assisted photocatalysis and accompanying energy recovery.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Hongsen Dong
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Mingjian Hong
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Naiyun Gao
- State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Zhi Zhang
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wenchao Jiang
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
10
|
Photochemical Properties and Stability of BODIPY Dyes. Int J Mol Sci 2021; 22:ijms22136735. [PMID: 34201648 PMCID: PMC8267640 DOI: 10.3390/ijms22136735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
The present study is devoted to the combined experimental and theoretical description
of the photophysical properties and photodegradation of the new boron-dipyrromethene (BODIPY)
derivatives obtained recently for biomedical applications, such as bacteria photoinactivation
(Piskorz et al., Dyes and Pigments 2020, 178, 108322). Absorption and emission spectra for a wide
group of solvents of different properties for the analyzed BODIPY derivatives were investigated
in order to verify their suitability for photopharmacological applications. Additionally, the photostability
of the analyzed systems were thoroughly determined. The exposition to the UV light was
found first to cause the decrease in the most intensive absorption band and the appearance of the
hypsochromically shifted band of similar intensity. On the basis of the chromatographic and computational
study, this effect was assigned to the detachment of the iodine atoms from the BODIPY core.
After longer exposition to UV light, photodegradation occurred, leading to the disappearance of the
intensive absorption bands and the emergence of small intensity signals in the strongly blue-shifted
range of the spectrum. Since the most intensive bands in original dyes are ascribed to the molecular
core bearing the BF2 moiety, this result can be attributed to the significant cleavage of the BF2 ring. In
order to fully characterize the obtained molecules, the comprehensive computational chemistry study
was performed. The influence of the intermolecular interactions for their absorption in solution was
analyzed. The theoretical data entirely support the experimental outcomes.
Collapse
|
11
|
Zhou Y, Zhao J, Zhang YN, Qu J, Li C, Qin W, Zhao Y, Chen J, Peijnenburg WJGM. Trace amounts of fenofibrate acid sensitize the photodegradation of bezafibrate in effluents: Mechanisms, degradation pathways, and toxicity evaluation. CHEMOSPHERE 2019; 235:900-907. [PMID: 31299703 DOI: 10.1016/j.chemosphere.2019.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Effluent organic matter (EfOM), which is composed of background natural organic matter (NOM), soluble microbial degradation products, and trace amounts of organic pollutants, can play an important role in the photodegradation of emerging pollutants in the effluent. In this study, the impact of organic pollutants, using fenofibrate acid (FNFA) as a representative, on the photodegradation of emerging contaminants, using bezafibrate (BZF) as a representative, in effluents was investigated. It is found that BZF undergo fast degradation in the presence of FNFA although BZF is recalcitrant to degradation under simulated sunlight irradiation. The promotional effect of FNFA is due to the generation of singlet oxygen (1O2) and hydrated electrons (e-aq). Based on the structures of the identified intermediates, 1O2 initiated oxidation and e-aq initiated reduction reactions were the main photodegradation pathways of BZF in the effluents. The toxicity of the main photodegradation intermediates for BZF and FNFA was higher than that of the parent compounds, and the acute toxicity increased during simulated sunlight irradiation. The results demonstrated that trace amounts of organic compounds in EfOM can play an important role in sensitizing the photodegradation of some emerging pollutants in the effluent.
Collapse
Affiliation(s)
- Yangjian Zhou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jianchen Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Weichao Qin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yahui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
12
|
Gan T, Wang Z, Chen M, Fu W, Wang H, Sun J. Preparation of yolk–shell structured Ag@Cu particles and their application in high performance electrochemical sensing of p-aminobenzoic acid. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, the Ag@Cu particles with yolk–shell nanostructure was prepared by facile solvothermal method, which was modified on glassy carbon electrode (GCE) to fabricate electrochemical sensor for the convenient and fast determination of p-aminobenzoic acid (PABA). The surface morphology and electrochemical properties of the as-prepared Ag@Cu nanocomposite modified electrode were characterized by scanning electron microscopy, transmission electron microscopy, chronocoulometry, and electrochemical impedance spectroscopy. Further, the electrochemical sensing of PABA was performed on the Ag@Cu/GCE using cyclic voltammetry and differential pulse voltammetry techniques, showing high catalytic activity. Under the optimal conditions, the sensor exhibited a wide linear range, high sensitivity, and low detection limit of 0.315 μmol/L for PABA. The developed sensor was also successfully applied for PABA detection in anesthetic and cosmetics with satisfactory results.
Collapse
Affiliation(s)
- Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, P. R. China
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, P. R. China
| | - Zhikai Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Mengru Chen
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Wanqiu Fu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Haibo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Junyong Sun
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, P. R. China
| |
Collapse
|
13
|
Darvish Ganji M, Tavassoli Larijani H, Alamol-Hoda R, Mehdizadeh M. First-principles and Molecular Dynamics simulation studies of functionalization of Au 32 golden fullerene with amino acids. Sci Rep 2018; 8:11400. [PMID: 30061669 PMCID: PMC6065410 DOI: 10.1038/s41598-018-29887-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 07/18/2018] [Indexed: 11/09/2022] Open
Abstract
With the growing potential applications of nanoparticles in biomedicine especially the increasing concerns of nanotoxicity of gold nanoparticles, the interaction between protein and nanoparticles is proving to be of fundamental interest for bio-functionalization of materials. The interaction of glycine (Gly) amino acid with Au32 fullerene was first investigated with B3LYP-D3/TZVP model. Several forms of glycine were selected to better understand the trends in binding nature of glycine interacting with the nanocage. We have evaluated various stable configurations of the Gly/Au32 complexes and the calculated adsorption energies and AIM analysis indicate that non-Gly, z-Gly and also tripeptide glycine can form stable bindings with Au32 at aqueous solution via their amino nitrogen (N) and/or carbonyl/carboxyl oxygen (O) active sites. Furthermore, cysteine, tyrosine, histidine and phenylalanine amino acids bound also strongly to the Au32 nanocage. Electronic structures and quantum molecular descriptors calculations also demonstrate the significant changes in the electronic properties of the nanocage due to the attachment of selected amino acids. DFT based MD simulation for the most stable complex demonstrate that Gly/Au32 complex is quite stable at ambient condition. Our first-principles findings offer fundamental insights into the functionalization of Au32 nanocage and envisage its applicability as novel carrier of the drugs.
Collapse
Affiliation(s)
- M Darvish Ganji
- Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran.
| | - H Tavassoli Larijani
- Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology, Babol, Iran
| | - R Alamol-Hoda
- Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - M Mehdizadeh
- Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| |
Collapse
|
14
|
Light-sensitive drugs in topical formulations: stability indicating methods and photostabilization strategies. Future Med Chem 2017; 9:1795-1808. [PMID: 28925725 DOI: 10.4155/fmc-2017-0105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Photostability tests applied on commercial specialties for topical use have demonstrated a greater vulnerability of several drugs, due to greater exposure to light than other pharmaceutical forms. Photodegradation of a drug can considerably modify its pharmacokinetic behavior by varying the therapeutic index. The evaluation of the degradation profile of a drug, according to the ICH rules, is of primary importance in developing an appropriate topical formulation. Advanced strategies have been proposed to increase the protection from the light of the photolabile drugs. Supramolecular systems have been investigated to improve both pharmacokinetic profile and photostability. In this review, the more recent stability-monitoring methods for the analysis of drugs in topical formulations are collected and the main approaches for the drug photostabilization are discussed.
Collapse
|