1
|
Beggio G, Bonato T, Marangoni S, Bravin MN, Fantinato E, Nigris S, Pivato A, Piazza R. Uptake and translocation of brominated flame retardants in tomato plants (Solanum lycopersicum L.): Results from a standard soil-based biotest. CHEMOSPHERE 2024; 353:141594. [PMID: 38432467 DOI: 10.1016/j.chemosphere.2024.141594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The uptake and translocation of four polybrominated diphenyl ethers (PBDEs) and four novel brominated flame retardants (NBFRs) in tomato plants (Solanum lycopersicum L.) were investigated via the RHIZOtest, a standard soil-based biotest, optimized for organic compounds. Tomato plants were exposed to soil samples spiked with 0 (i.e. control), 5.00 or 50.00 ng g-1dw of each compound. Compared of those of the control, exposure to increasing spiking concentrations resulted in average reductions of 13% and 26% (w/w) in tomato plant biomass. Higher concentrations of NBFRs were analyzed both in roots, ranging from 0.23 to 8.01 ng g-1dw for PBDEs and from 1.25 to 18.51 ng g-1dw for NBFRs, and in shoots, ranging from 0.09 to 5.58 ng g-1dw and from 0.47 to 7.78 ng g-1dw for PBDEs and NBFRs, respectively. This corresponded to an average soil uptake of 5% for PBDEs and 9% for NBFRs at the lower soil-spiking level, and 3% for PBDEs and 6% for NBFRs at the higher soil spiking level. Consequently, among both initial spiking levels, the soil-root concentration factor (RCF) values were lower on average for PBDEs (0.13 ± 0.05 g dw soil g-1dw roots) than for NBFRs (0.33 ± 0.16 g dw soil g-1dw roots). Conversely, nondifferent values of the root-shoot transfer factor (TF) were calculated for both PBDEs (0.54 ± 0.13 g dw roots g-1dw shoots) and NBFRs (0.49 ± 0.24 g dw roots g-1dw shoots). The differences and similarities reported in the RCF and TF between and within the two groups of compounds can be explained by their properties. The calculated RCF and TF values of the PBDEs exhibited a decreasing trend as the number of bromine atoms increased. Additionally, a robust negative linear correlation was observed between RCF values and the respective logKow values for the PBDEs, at both soil-spiking levels. The root uptake of NBFRs exhibited a negative correlation with their hydrophobicity; however, this was not observed in the context of root-to-shoot transfer. The presence of a second aromatic ring appears to be the key factor influencing the observed variations in NBFRs, with biphenyl NBFRs (BTBPE and DBDPE) characterized by lower uptake and reduced translocation potential than monophenyl PBEB and HBB. Understanding the transfer of these compounds to crops, especially near plastic recycling waste sites, is crucial for understanding the risks of their potential inclusion in the human food chain.
Collapse
Affiliation(s)
- Giovanni Beggio
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, I-30172 Venice, Italy; Società Estense Servizi Ambientali S.E.S.A., Este, PD, Via Comuna, 5/B, 35042 Este, Padova, Italy
| | - Simone Marangoni
- Società Estense Servizi Ambientali S.E.S.A., Este, PD, Via Comuna, 5/B, 35042 Este, Padova, Italy
| | - Matthieu N Bravin
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et risque, Univ Montpellier, CIRAD, Avenue Agropolis, 34398, Montpellier, Cedex 5, France
| | - Edy Fantinato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, I-30172 Venice, Italy
| | - Sebastiano Nigris
- Department of Biology, University of Padova, Via U.Bassi 58/ B Italy; Botanical Garden Department of Biology, University of Padova, Via Orto Botanico, 15, 35123 Padova, Italy
| | - Alberto Pivato
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, I-30172 Venice, Italy
| |
Collapse
|
2
|
Shi S, Feng Q, Zhang J, Wang X, Zhao L, Fan Y, Hu P, Wei P, Bu Q, Cao Z. Global patterns of human exposure to flame retardants indoors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169393. [PMID: 38104845 DOI: 10.1016/j.scitotenv.2023.169393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.
Collapse
Affiliation(s)
- Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qian Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
3
|
Wang G, Guo P, Liu Y, Li C, Wang X, Wang H. Mechanistic characterization of anaerobic microbial degradation of BTBPE in coastal wetland soils: Implication by compound-specific stable isotope analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117622. [PMID: 36867899 DOI: 10.1016/j.jenvman.2023.117622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
As a novel brominate flame retardants, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) has been extensively used in various consumer products, and frequently detected in various environmental matrices. However, the microbial degradation of BTBPE remains unclear in the environment. This study comprehensively investigated the anaerobic microbial degradation of BTBPE and therein stable carbon isotope effect in the wetland soils. BTBPE degradation followed the pseudo-first-order kinetic, with degradation rate of 0.0085 ± 0.0008 day-1. Based on identification of degradation products, stepwise reductive debromination was the main transformation pathway of BTBPE, and tended to keep the stable of 2,4,6-tribromophenoxy group during the microbial degradation. The pronounced carbon isotope fractionation was observed for BTBPE microbial degradation, and carbon isotope enrichment factor (εC) was determined to be -4.81 ± 0.37‰, indicating cleavage of C-Br bond as the rate-limiting step. Compared to previously reported isotope effects, carbon apparent kinetic isotope effect (AKIEC = 1.072 ± 0.004) suggested that the nucleophilic substitution (SN2 reaction) was the potential reaction mechanism for reductive debromination of BTBPE in the anaerobic microbial degradation. These findings demonstrated that BTBPE could be degraded by the anaerobic microbes in wetland soils, and the compound-specific stable isotope analysis was a robust method to discover the underlying reaction mechanisms.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Pengxu Guo
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China
| | - Chuanyuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
4
|
Rimayi C, Madikizela LM. Utility of an alternative method (to USEPA Method 1613) for analysis of priority persistent organic pollutants in soil from mixed industrial-suburban areas of Durban, South Africa. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:749-762. [PMID: 35993344 DOI: 10.1002/ieam.4673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This study evaluates the adequacy of a USEPA Method 1613 alternative analytical method for analysis of persistent organic pollutants (POPs) in soil from the immediate vicinity of industrialized areas in the eThekwini municipal area in South Africa. The objective of this study is in line with the Stockholm Convention Article 11 on research, development, and monitoring. Furthermore, it became imperative to find an alternative analytical procedure to USEPA Method 1613 that could cater to studies conducted in Africa where recent reviews have indicated that most African countries lack the technical and instrumental capacity for performing analysis of dioxin-like compounds according to USEPA Method 1613, which entails the use of high-resolution chromatography and high-resolution mass spectrometry instrumentation. The study aimed to ascertain the utility of an alternative two-dimensional gas chromatography-time of flight mass spectrometry method for analysis of trace-level priority POPs in soil, along with a fast single quadrupole gas chromatography-mass spectrometry method. The analytical methods were applied to the analysis of POPs on soil samples from industrial areas with oil refineries and a pulp and paper manufacturing company, while other samples were collected near the electricity substations and a landfill site. Analytical results showed BDE 209 as the dominant contaminating polybrominated diphenyl ether (concentration ranges from 0.006 to 5.71 ng g-1 ). Polybrominated biphenyls (PBBs) 9, 10, and 49 were the dominant PBBs detected in 78% of the sites tested, although their concentrations were below the limit of quantification (LOQ). Polychlorinated dibenzo-p-dioxins and furans and dioxin-like polychlorinated biphenyls detected could not be quantified above their respective LOQs, indicating that the Durban area has low priority pollutant contamination levels compared to other regions around the world. The methods developed are a starting point that will inform considerations for routine evaluation and management of soil contamination, which plays a vital role in environmental management. Integr Environ Assess Manag 2023;19:749-762. © 2022 SETAC.
Collapse
Affiliation(s)
- Cornelius Rimayi
- Department of Water and Sanitation, Resource Quality Information Systems (RQIS), Roodeplaat, South Africa
| | - Lawrence M Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
5
|
Yang Y, Yang L, Chen H, Tan H, Yang J, Sun F, Sun J, Gong X, Tao L, Huang Y. Low-level alternative halogenated flame retardants (AHFRs) in indoor dust from Adelaide, South Australia decades since national legislative control on polybrominated diphenyl ethers (PBDEs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154123. [PMID: 35219667 DOI: 10.1016/j.scitotenv.2022.154123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Since commercial polybrominated diphenyl ethers (PBDEs) have been globally banned or restricted in 2000s, alternative halogenated flame retardants (AHFRs) appear increasingly dominant over PBDEs in many countries/regions. In this study, low levels of AHFRs were unexpectedly observed in the indoor dust from Adelaide, South Australia. Anti-dechlorane plus (anti-DP) was the most frequently detected AHFR with a median concentration of 1.28 ng/g, while other AFHRs were less detected (detection frequency < 50%). The levels of ΣPBDEs (496 ng/g, median) and ΣAHFRs (160 ng/g) and the ratio of ΣAHFRs/ΣPBDEs (0.32) were much lower than those investigated in Australian indoor dust previously. The findings were different to the trend for PBDEs and AHFRs from other countries over the past two decades. No significant correlation was determined between DP and PBDE congeners, indicating their different sources in dust. The human exposure assessment suggested that dust ingestion was the predominant pathway of PBDEs and AHFRs exposure for toddlers, while dermal absorption may be the dominant pathway for adults. The estimated daily intake (EDI) suggested low health risks via dust ingestion and dermal contact for general populations in Adelaide. This study contributes to the knowledge on region-specific FR contamination in indoor environments and related human exposure risk.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China
| | - Liu Yang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing 100012, China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266000, China
| | - Xue Gong
- School of Agriculture, Food & Wine, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Lin Tao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
|
7
|
Aghris S, Alaoui OT, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi M. Extraction and determination of flubendiamide insecticide in food samples: A review. Curr Res Food Sci 2022; 5:401-413. [PMID: 35243353 PMCID: PMC8861570 DOI: 10.1016/j.crfs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
Flubendiamide (FBD) is the first commercially available phthalic acid diamide that targets ryanodine receptors (RyRs) in insects, which play a major role in lepidoptera control. However, excessive use of FBD can influence the quality of treated products leading to toxic effects on human health. The availability of rapid and convenient methods for evaluating FBD amount in the environment is necessary. Therefore, analytical methods were developed for the determination of residues of FBD and its metabolite desiodo in different food matrices like tomato, cabbage, pigeon pea, apple, chilli and rice. The current review carries forward methods for FBD residues analysis in foods by using several chromatographic techniques including sample preparation steps. The comparison between the different methods employed for quantitative and qualitative analysis of food quality and safety is also discussed. Liquid chromatography (LC) is the predominant analytical method for assessing the quality of foods treated with FBD. Studies related to LC coupled multichannel detector (Ultraviolet (UV), Mass spectrometry (MS)) are also applied to detect pesticide residues. Extraction and clean up steps are essential to obtain reliable results. Moreover, this review reports the allowed limits of residues for the safety of consuming products treated with FBD.
Collapse
Affiliation(s)
- S. Aghris
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - O. Tahiri Alaoui
- Moulay Ismail University, Laboratory of Physical Chemistry, Materials and Environment, Sciences and Technologies Faculty, Errachidia, Morocco
| | - F. Laghrib
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of sciences, Fes, Morocco
| | - A. Farahi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M. Bakasse
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S. Saqrane
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - S. Lahrich
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M.A. El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| |
Collapse
|
8
|
Jin Q, Tao D, Lu Y, Sun J, Lam CH, Su G, He Y. New insight on occurrence of liquid crystal monomers: A class of emerging e-waste pollutants in municipal landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127146. [PMID: 34536849 DOI: 10.1016/j.jhazmat.2021.127146] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Liquid crystal monomers (LCMs) have been proposed as a class of emerging organic pollutants, which were recently detected in indoor dust and sediment samples collected near electronic devices recycling facilities. However, there is a knowledge gap for analytical method, occurrence, and distribution of LCMs in aqueous sample. Herein, a robust method was developed to determine 38 target LCMs in landfill leachate. A combined ultrasonic enhanced liquid-liquid extraction, saponification and silica/florisil packed column purification method achieved recoveries of 76.9~127.1%, 84.5~114.6% and 81.3~104.6% at spiking levels of 2 ng, 10 ng and 50 ng in leachate, respectively. The developed method was validated through determination of target LCMs in leachate samples collected from municipal landfills in Hong Kong (HK) and Shenzhen (SZ), China. There were 23 and 20 LCMs detected in the HK (ΣLCMs=1120 ng/L) and SZ (ΣLCMs=409 ng/L) sample, respectively, with 6 LCMs newly detected in the environment. This study provided the first evidence suggesting that landfill leachate might be a potential sink of LCMs emitted from e-waste. Future study is urged to investigate the potential migration of LCMs from landfill leachate as a point source, and their occurrence, distribution, fate, and ecotoxicological risk in aquatic environments on regional and global scales.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Chun Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Research status and regulatory challenges of persistent organic pollutants in Sierra Leone. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Liu L, Zhen X, Wang X, Zhang D, Sun L, Tang J. Spatio-temporal variations and input patterns on the legacy and novel brominated flame retardants (BFRs) in coastal rivers of North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117093. [PMID: 33857880 DOI: 10.1016/j.envpol.2021.117093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Decabromodiphenyl ether (BDE209) has been subject to restrictions since 2018 in developed countries but is still manufacturing in China. Decabromodiphenyl ethane (DBDPE) is widely used as a replacement for BDE209. To better understand the behaviors and fates of these legacy and novel brominated flame retardants (BFRs), water samples were collected from the estuaries of 36 rivers that drain into the Bohai Sea (BS) and North Yellow Sea (NYS) in 2017 and 2018. The results showed that BDE209 was still the predominant compound with a median concentration of 2470 pg L-1, whereas DBDPE had a median concentration of 129 pg L-1. Spatially, relatively high concentrations were observed in the rivers near Laizhou Bay (LB), which is the manufacturing hub of BFRs. BDE209 concentrations were significantly higher in dry season than in wet season, which indicates a dominant process of dilution by precipitation during the wet season. DBDPE concentration showed no significant seasonal difference. This implies that wet deposition was the major additional source of DBDPE during the wet season, and the concentration increased further during the autumn as a result of a time-lag effect. The BFR concentrations in urban rivers were lower than those reported by a study undertaken in August 2013. An increase in the BFR concentrations in rural rivers since 2013 suggested increases in the use and non-point source emissions of BFRs in some remote aquatic environments. The estimated annual inputs of BDE209 and DBDPE into the BS were ∼95.9 kg yr-1 and ∼26.8 kg yr-1, respectively, whereas those into the NYS were ∼24.1 kg yr-1 and ∼8.38 kg yr-1. The results revealed an ecological risk of BDE209 in winter especially in the Xiaoqing River, thus suggesting the impact of BDE209 on the aquatic environment and human health.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), CAS, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomei Zhen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), CAS, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Daochang Zhang
- Yantai Municipal Bureau of Hydrology, Yantai, 264000, China
| | - Linting Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), CAS, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), CAS, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
11
|
White KB, Kalina J, Scheringer M, Přibylová P, Kukučka P, Kohoutek J, Prokeš R, Klánová J. Temporal Trends of Persistent Organic Pollutants across Africa after a Decade of MONET Passive Air Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9413-9424. [PMID: 33095578 DOI: 10.1021/acs.est.0c03575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants (POPs) was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After a decade of passive air monitoring (2008-2019), MONET is the first network to produce sufficient data for the analysis of long-term temporal trends of POPs in the African atmosphere. This study reports concentrations of 20 POPs (aldrin, chlordane, chlordecone, DDT, dieldrin, endrin, endosulfan, HBCDD, HCB, HCHs, heptachlor, hexabromobiphenyl, mirex, PBDEs, PCBs, PCDDs, PCDFs, PeCB, PFOA, and PFOS) monitored in 9 countries (Congo, Ghana, Ethiopia, Kenya, Mali, Mauritius, Morocco, Nigeria, and Sudan). As of January 1, 2019, concentrations were in the following ranges (pg/m3): 0.5-37.7 (∑6PCB), 0.006-0.724 (∑17PCDD/F), 0.05-5.5 (∑9PBDE), 0.6-11.3 (BDE 209), 0.1-1.8 (∑3HBCDD), 1.8-138 (∑6DDT), 0.1-24.3 (∑3endosulfan), 0.6-14.6 (∑4HCH), 9.1-26.4 (HCB), 13.8-18.2 (PeCB). Temporal trends indicate that concentrations of many POPs (PCBs, DDT, HCHs, endosulfan) have declined significantly over the past 10 years, though the rate was slow at some sites. Concentrations of other POPs such as PCDD/Fs and PBDEs have not changed significantly over the past decade and are in fact increasing at some sites, attributed to the prevalence of open burning of waste (particularly e-waste) across Africa. Modeled airflow back-trajectories suggest that the elevated concentrations at some sites are primarily due to sustained local emissions, while the low concentrations measured at Mt. Kenya represent the continental background level and are primarily influenced by long-range transport.
Collapse
Affiliation(s)
- Kevin B White
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Kalina
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Martin Scheringer
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Petra Přibylová
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
12
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Polybrominated diphenyl ethers in the environmental systems: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1229-1247. [PMID: 34150307 PMCID: PMC8172818 DOI: 10.1007/s40201-021-00656-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/31/2021] [Indexed: 05/26/2023]
Abstract
PBDEs are human-influenced chemicals utilized massively as flame retardants. They are environmentally persistent, not easily degraded, bioaccumulate in the biological tissue of organisms, and bio-magnify across the food web. They can travel over a long distance, with air and water being their possible transport media. They can be transferred to non-target organisms by inhalation, oral ingestion, breastfeeding, or dermal contact. These pollutants adsorb easily to solid matrices due to their lipophilicity and hydrophobicity; thus, sediments from rivers, lakes, estuaries, and ocean are becoming their major reservoirs aquatic environments. They have low acute toxicity, but the effects of interfering with the thyroid hormone metabolism in the endocrine system are long term. Many congeners of PBDEs are considered to pose a danger to humans and the aquatic environment. They have shown the possibility of causing many undesirable effects, together with neurologic, immunological, and reproductive disruptions and possible carcinogenicity in humans. PBDEs have been detected in small amounts in biological samples, including hair, human semen, blood, urine, and breastmilk, and environmental samples such as sediment, soil, sewage sludge, air, biota, fish, mussels, surface water, and wastewater. The congeners prevailing in environmental samples, with soil being the essential matrix, are BDE 47, 99, and 100. BDE 28, 47, 99, 100, 153, 154, and 183 are more frequently detected in human tissues, whereas in sediment and soil, BDE 100 and 183 predominate. Generally, BDE 153 and 154 appear very often across different matrices. However, BDE 209 seems not frequently determined, owing to its tendency to quickly breakdown into smaller congeners. This paper carried out an overview of PBDEs in the environmental, human, and biota niches with their characteristics, physicochemical properties, and fate in the environment, human exposure, and health effects.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700 South Africa
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700 South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700 South Africa
| |
Collapse
|
13
|
Xu G, Zhao X, Zhao S, Chen C, Rogers MJ, Ramaswamy R, He J. Insights into the Occurrence, Fate, and Impacts of Halogenated Flame Retardants in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4205-4226. [PMID: 33705105 DOI: 10.1021/acs.est.0c05681] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) have been extensively used in various consumer products and many are classified as persistent organic pollutants due to their resistance to degradation, bioaccumulation potential and toxicity. HFRs have been widely detected in the municipal wastewater and wastewater treatment solids in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental HFRs contamination. This review seeks to provide a current overview on the occurrence, fate, and impacts of HFRs in WWTPs around the globe. We first summarize studies recording the occurrence of representative HFRs in wastewater and wastewater treatment solids, revealing temporal and geographical trends in HFRs distribution. Then, the efficiency and mechanism of HFRs removal by biosorption, which is known to be the primary process for HFRs removal from wastewater, during biological wastewater treatment processes, are discussed. Transformation of HFRs via abiotic and biotic processes in laboratory tests and full-scale WWTPs is reviewed with particular emphasis on the transformation pathways and functional microorganisms responsible for HFRs biotransformation. Finally, the potential impacts of HFRs on reactor performance (i.e., nitrogen removal and methanogenesis) and microbiome in bioreactors are discussed. This review aims to advance our understanding of the fate and impacts of HFRs in WWTPs and shed light on important questions warranting further investigation.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
14
|
Mbusnum KG, Malleret L, Deschamps P, Khabouchi I, Asia L, Lebarillier S, Menot G, Onguene R, Doumenq P. Persistent organic pollutants in sediments of the Wouri Estuary Mangrove, Cameroon: Levels, patterns and ecotoxicological significance. MARINE POLLUTION BULLETIN 2020; 160:111542. [PMID: 33181915 DOI: 10.1016/j.marpolbul.2020.111542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The anthropogenic impact in the Wouri Estuary Mangrove located in the rapidly developing urban area of Douala, Cameroon, Africa, was studied. A set of 45 Persistent Organic Pollutant were analysed in surficial mangrove sediments at 21 stations. Chlorinated Pesticides (CLPs), Polychlorinated Biphenyls (PCBs) and Polycyclic Aromatic Hydrocarbons (PAHs) have concentrations ranging from 2.2 - 27.4, and 83 - 544 ng/g, respectively. The most abundant CLPs were endosulfan, alachlor, heptachlor, lindane (γ-HCH) and DDT, which metabolites pattern revealed recent use. Selected PAHs diagnostic ratios show pyrolytic input predominantly. The sum of 7 carcinogenic PAHs (ΣC-PAHs) represented 30 to 50% of Total PAHs (TPAHs). According to effect-based sediment quality guidelines, the studied POPs levels imply low to moderate predictive biological toxicity. This study contributes to depict how far water resources are shifting within what is now termed the Anthropocene due to increasing local pressures in developing countries or African countries.
Collapse
Affiliation(s)
- Kevin G Mbusnum
- Aix Marseille Université, CNRS, LCE, France; LMI DYCOFAC (IRD, Université de Yaoundé 1, IRGM), IRD, Yaoundé, Cameroon
| | | | - Pierre Deschamps
- Aix Marseille Université, CNRS, IRD, Collège de France, CEREGE, France; LMI DYCOFAC (IRD, Université de Yaoundé 1, IRGM), IRD, Yaoundé, Cameroon
| | | | | | | | - Guillemette Menot
- Université de Lyon, Ens de Lyon, CNRS, LGL-TPE, France; LMI DYCOFAC (IRD, Université de Yaoundé 1, IRGM), IRD, Yaoundé, Cameroon
| | | | | |
Collapse
|
15
|
Ssebugere P, Sillanpää M, Matovu H, Wang Z, Schramm KW, Omwoma S, Wanasolo W, Ngeno EC, Odongo S. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139913. [PMID: 32540660 DOI: 10.1016/j.scitotenv.2020.139913] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/03/2020] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are known organic pollutants with adverse health effects on humans and the ecosystem. This paper synthesises literature about the status of the pollutants and their precursors, identifies knowledge gaps and discusses future perspectives on the study of PFASs in Africa. Limited data on PFASs prevalence in Africa is available because there is limited capacity to monitor PFASs in African laboratories. The levels of PFASs in Africa are higher in samples from urban and industrialized areas compared to rural areas. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the dominant PFASs in human samples from Africa. Levels of PFOS and PFOA in these samples are lower than or comparable to those from industrialized countries. PFOA and PFOS levels in drinking water in Africa are, in some cases, higher than the EPA drinking water guidelines suggesting potential risk to humans. The levels of PFASs in birds' eggs from South Africa are higher, while those in other environmental media from Africa are lower or comparable to those from industrialized countries. Diet influences the pollutant levels in fish, while size and sex affect their accumulation in crocodiles. No bioaccumulation of PFASs in aquatic systems in Africa could be confirmed due to small sample sizes. Reported sources of PFASs in Africa include municipal landfills, inefficient wastewater treatment plants, consumer products containing PFASs, industrial wastewater and urban runoff. Relevant stakeholders need to take serious action to identify and deal with the salient sources of PFASs on the African continent.
Collapse
Affiliation(s)
- Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Henry Matovu
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Department of Chemistry, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Karl-Werner Schramm
- Helmholtz Zentrum Müenchen, German National Research Centre for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Solomon Omwoma
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya
| | - William Wanasolo
- Department of Chemistry, Kyambogo University, P.O. Box 1, Kyambogo, Uganda
| | | | - Silver Odongo
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
16
|
Horrocks AR. The Potential for Bio-Sustainable Organobromine-Containing Flame Retardant Formulations for Textile Applications-A Review. Polymers (Basel) 2020; 12:polym12092160. [PMID: 32971820 PMCID: PMC7570172 DOI: 10.3390/polym12092160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
This review considers the challenge of developing sustainable organobromine flame retardants (BrFRs) and alternative synergists to the predominantly used antimony III oxide. Current BrFR efficiencies are reviewed for textile coatings and back-coatings with a focus on furnishing and similar fabrics covering underlying flammable fillings, such as flexible polyurethane foam. The difficulty of replacing them with non-halogen-containing systems is also reviewed with major disadvantages including their extreme specificity with regard to a given textile type and poor durability.The possibility of replacing currently used BrFRs for textiles structures that mimic naturally occurring organobromine-containing species is discussed, noting that of the nearly 2000 such species identified in both marine and terrestrial environments, a significant number are functionalised polybrominated diphenyl ethers, which form part of a series of little understood biosynthetic biodegradation cycles.The continued use of antimony III oxide as synergist and possible replacement by alternatives, such as the commercially available zinc stannates and the recently identified zinc tungstate, are discussed. Both are effective as synergists and smoke suppressants, but unlike Sb203, they have efficiencies dependent on BrFR chemistry and polymer matrix or textile structure. Furthermore, their effectiveness in textile coatings has yet to be more fully assessed.In conclusion, it is proposed that the future of sustainable BrFRs should be based on naturally occurring polybrominated structures developed in conjunction with non-toxic, smoke-suppressing synergists such as the zinc stannates or zinc tungstate, which have been carefully tailored for given polymeric and textile substrates.
Collapse
Affiliation(s)
- A Richard Horrocks
- Institute for Materials Research and Innovation, University of Bolton, Deane Road, Bolton, Greater Manchester BL3 6HQ, UK
| |
Collapse
|
17
|
Purchase D, Abbasi G, Bisschop L, Chatterjee D, Ekberg C, Ermolin M, Fedotov P, Garelick H, Isimekhai K, Kandile NG, Lundström M, Matharu A, Miller BW, Pineda A, Popoola OE, Retegan T, Ruedel H, Serpe A, Sheva Y, Surati KR, Walsh F, Wilson BP, Wong MH. Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC Technical Report). PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The waste stream of obsolete electronic equipment grows exponentially, creating a worldwide pollution and resource problem. Electrical and electronic waste (e-waste) comprises a heterogeneous mix of glass, plastics (including flame retardants and other additives), metals (including rare Earth elements), and metalloids. The e-waste issue is complex and multi-faceted. In examining the different aspects of e-waste, informal recycling in developing countries has been identified as a primary concern, due to widespread illegal shipments; weak environmental, as well as health and safety, regulations; lack of technology; and inadequate waste treatment structure. For example, Nigeria, Ghana, India, Pakistan, and China have all been identified as hotspots for the disposal of e-waste. This article presents a critical examination on the chemical nature of e-waste and the resulting environmental impacts on, for example, microbial biodiversity, flora, and fauna in e-waste recycling sites around the world. It highlights the different types of risk assessment approaches required when evaluating the ecological impact of e-waste. Additionally, it presents examples of chemistry playing a role in potential solutions. The information presented here will be informative to relevant stakeholders seeking to devise integrated management strategies to tackle this global environmental concern.
Collapse
Affiliation(s)
- Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology , Middlesex University , The Burroughs , London NW4 4BT , UK
| | | | - Lieselot Bisschop
- Erasmus Initiative on Dynamics of Inclusive Prosperity & Erasmus School of Law , Erasmus University Rotterdam , P.O. Box 1738 – 3000 DR , Rotterdam , Netherlands
| | - Debashish Chatterjee
- Faculty of Analytical Chemistry , University of Kalyani , Kalyani , Nadia , 741235 , India
| | - Christian Ekberg
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling , Chalmers University of Technology , SE-41296 , Göteborg , Sweden
| | - Mikhail Ermolin
- National University of Science and Technology “MISiS” , 4 Leninsky Prospect , Moscow , 119049 , Russia
| | - Petr Fedotov
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry , Russian Academy of Sciences , 19 Kosygin Street , Moscow , 119991 , Russia
| | - Hemda Garelick
- Department of Natural Sciences, Faculty of Science and Technology , Middlesex University , The Burroughs , London NW4 4BT , UK
| | - Khadijah Isimekhai
- Ateda Ventures Limited , P.P. Box 13394 , Benin City , Edo State , Nigeria
| | - Nadia G. Kandile
- Department of Chemistry, Faculty of Women , Ain Shams University , Heliopolis , 11757 , Cairo , Egypt
| | - Mari Lundström
- Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering , Aalto University , P.O. Box 16200 , AALTO , Finland
| | - Avtar Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry , University of York , York , YO10 5DD , UK
| | | | - Antonio Pineda
- Departamento de Química Orgánica , Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IVa, Km 396 , Córdoba , E-14014 , Spain
| | - Oluseun E. Popoola
- Department of Chemical Science , Yaba College of Technology , Lagos , Nigeria
| | - Teodora Retegan
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling , Chalmers University of Technology , SE-41296 , Göteborg , Sweden
| | - Heinz Ruedel
- Department Environmental Specimen Bank and Elemental Analysis , Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME) , Schmallenberg , 57392 , Germany
| | - Angela Serpe
- Department of Civil and Environmental Engineering and Architecture (DICAAR) and INSTM Unit , University of Cagliari and Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR) , Via Marengo 2 , Cagliari , 09123 , Italy
| | | | - Kiran R. Surati
- Department of Chemistry , Sardar Patel University , Vallabh Vidyanagar , Anand , Gujarat , 388120 , India
| | - Fiona Walsh
- Maynooth University , Maynooth , Co Kildare , Ireland
| | - Benjamin P. Wilson
- Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering , Aalto University , P.O. Box 16200 , AALTO , Finland
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control , Southern University of Science and Technology, Shenzhen, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong , Tai Po , Hong Kong , China
| |
Collapse
|
18
|
Kousaiti A, Hahladakis JN, Savvilotidou V, Pivnenko K, Tyrovola K, Xekoukoulotakis N, Astrup TF, Gidarakos E. Assessment of tetrabromobisphenol-A (TBBPA) content in plastic waste recovered from WEEE. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121641. [PMID: 31740297 DOI: 10.1016/j.jhazmat.2019.121641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Due to the variability of additives and polymer types used in electrical and electronic equipment (EEE), and in accordance with the European Directive 2012/19/EU, an implementation of sound management practices is necessary. This work focuses on assessing the content of tetrabromobisphenol-A (TBBPA) in acrylonitrile-butadiene-styrene (ABS), polypropylene (PP), polycarbonate (PC) and their polymer blends (i.e. PC/ABS). A total of 36 plastic housing samples originating from microwave ovens, electric irons, vacuum cleaners and DVD/CD players were subjected to microwave-assisted-extraction (MAE) and/or ultrasound-assisted-extraction (UAE). Maximum mean concentration values of TBBPA measured in DVD/CD players and vacuum cleaners ranged between 754-1146 μg/kg, and varied per polymer type, as follows: 510-2515 μg/kg in ABS and 55-3109 μg/kg in PP. The results indicated that MAE was more sufficient than UAE in the extraction of TBBPA from ABS. To optimize the UAE procedure, various solvents were tested. Higher amounts of TBBPA were obtained from ABS and PP using a binary mixture of a polar-non-polar solvent, isopropanol:n-hexane (1:1), whereas the sole use of isopropanol exhibited incomplete extraction.
Collapse
Affiliation(s)
- Athanasia Kousaiti
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece
| | - John N Hahladakis
- College of Arts and Sciences, Center for Sustainable Development, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Vasiliki Savvilotidou
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece
| | - Kostyantyn Pivnenko
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Konstantina Tyrovola
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece
| | - Nikolaos Xekoukoulotakis
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece
| | - Thomas F Astrup
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Evangelos Gidarakos
- School of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100, Greece.
| |
Collapse
|
19
|
Suwannakot P, Lisi F, Ahmed E, Liang K, Babarao R, Gooding JJ, Donald WA. Metal–Organic Framework-Enhanced Solid-Phase Microextraction Mass Spectrometry for the Direct and Rapid Detection of Perfluorooctanoic Acid in Environmental Water Samples. Anal Chem 2020; 92:6900-6908. [DOI: 10.1021/acs.analchem.9b05524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Panthipa Suwannakot
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Fabio Lisi
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Ezaz Ahmed
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Ravichandar Babarao
- School of Applied Chemistry and Environmental Science, RMIT University, Melbourne, Victoria, Australia and Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3169, Australia
| | - J. Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052, Australia
| | - William A. Donald
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
20
|
Quinn LP, Roos C, Pieters R, Polder A, Bouwman H. Brominated flame retardants in wild bird eggs from the industrialised heartland of South Africa. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2019.1671895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- LP Quinn
- National Metrology Institute of South Africa, Lynnwood, South Africa
| | - C Roos
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - R Pieters
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - A Polder
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Norway
| | - H Bouwman
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
21
|
DOPO-Functionalized Molybdenum Disulfide and its Impact on the Thermal Properties of Polyethylene and Poly(Lactic Acid) Composites. NANOMATERIALS 2019; 9:nano9111637. [PMID: 31752223 PMCID: PMC6915400 DOI: 10.3390/nano9111637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022]
Abstract
The fabrication of conventional or biodegradable polymers with improved thermal and fire-resistant properties is an important task for their successful application in various branches of the industry. In this work, few-layered molybdenum disulfide was functionalized with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and introduced into polyethylene and poly(lactic acid) matrixes. The obtained polyethylene composite samples displayed improved thermal stability, significant reduction in CO emissions, improved fire-resistant properties, and over 100% increases in thermal conductivity. Poly(lactic acid) composites displayed less impressive results, but have managed to improve some values, such as CO emissions, peak heat release rate, and total heat release in comparison to pristine polymer.
Collapse
|
22
|
Brits M, Brandsma SH, Rohwer ER, De Vos J, Weiss JM, de Boer J. Brominated and organophosphorus flame retardants in South African indoor dust and cat hair. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:120-129. [PMID: 31302398 DOI: 10.1016/j.envpol.2019.06.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 05/22/2023]
Abstract
Flame retardants (FRs), such as brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs), are diverse groups of compounds used in various products related to the indoor environment. In this study concentrations of eight polybrominated diphenyl ethers (PBDEs), two alternative BFRs and ten OPFRs were determined in indoor dust (n = 20) and pet cat hair (n = 11) from South Africa. The OPFRs were the major FRs, contributing to more than 97% of the total FR concentration. The median Ʃ10OPFRs concentrations were 44,800 ng/g in freshly collected dust (F-dust), 19,800 ng/g in the dust collected from vacuum cleaner bags (V-dust), and 865 ng/g in cat hair (C-hair). Tris(1-chloro-2-propyl) phosphate (TCIPP) was the dominant OPFR in the dust samples with median concentrations of 7,010 ng/g in F-dust and 3,590 ng/g in V-dust. Tris(2-butoxyethyl) phosphate (TBOEP) was the dominant OPFR in C-hair, with a median concentration of 387 ng/g. The concentrations of Ʃ8PBDEs were higher in F-dust than in V-dust. BDE209 was the dominant BFR in all three matrices. Bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5- tetrabromobenzoate (EH-TBB) showed notable contributions to the BFR profile in cat hair. A worst-case dust exposure estimation was performed for all analytes. The estimated TCIPP daily intake through dust ingestion was up to 1,240 ng/kg bw for toddlers. The results indicate that OPFRs are ubiquitous in South African indoor environment. Indoor dust is a major source of human exposure to environmental contaminants. This can for example occur through hand-to-mouth contact of toddlers, and is an important route of exposure to currently used FRs accumulated on dust particles. The presence of FRs, in particular high concentrations of OPFRs, suggests that children and indoor pet cats may have greater exposure to FRs than adults.
Collapse
Affiliation(s)
- Martin Brits
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands; Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa; National Metrology Institute of South Africa (NMISA), CSIR Campus, Meiring Naude Road, Pretoria, 0040, South Africa.
| | - Sicco H Brandsma
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Egmont R Rohwer
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Jayne De Vos
- National Metrology Institute of South Africa (NMISA), CSIR Campus, Meiring Naude Road, Pretoria, 0040, South Africa
| | - Jana M Weiss
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| | - Jacob de Boer
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Dhungana B, Peng H, Kutarna S, Umbuzeiro G, Shrestha S, Liu J, Jones PD, Subedi B, Giesy JP, Cobb GP. Abundances and concentrations of brominated azo dyes detected in indoor dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:784-793. [PMID: 31200204 DOI: 10.1016/j.envpol.2019.05.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 05/26/2023]
Abstract
Dust samples were collected from four indoor environments, including childcare facilities, houses, hair salons, and a research facility from the USA and were analyzed for brominated compounds using full scan liquid chromatography high-resolution mass spectrometry. A total of 240 brominated compounds were detected in these dust samples, and elemental formulas were predicted for 120 more abundant ions. In addition to commonly detected brominated flame retardants (BFRs), nitrogen-containing brominated azo dyes (BADs) were among the most frequently detected and abundant. Specifically, greater abundances of BADs were detected in indoor dusts from daycares and salons compared to houses and the research facility. Using authentic standards, a quantitative method was established for two BADs (DB373: Disperse Blue 373 and DV93: Disperse Violet 93) and 2-bromo-4,6-dinitroaniline, a commonly used precursor in azo dye production, in indoor dust. Generally, greater concentrations of DB373 (≤3850 ng/g) and DV93 (≤1190 ng/g) were observed in indoor dust from daycares highlighting children as a susceptible population to potential health risk from exposure to BADs. These data are important because, to date, targeted analysis of brominated compounds in indoor environments has focused mainly on BFRs and appears to underestimate the total amount of brominated compounds.
Collapse
Affiliation(s)
- Birendra Dhungana
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Steven Kutarna
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Gisela Umbuzeiro
- School of Technology, FT-UNICAMP, Sate University of Campinas, Limeira, Brazil
| | - Sujan Shrestha
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Jing Liu
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bikram Subedi
- Department of Chemistry, Murray State University, Murray, KY, United States
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX, United States.
| |
Collapse
|
24
|
Omar TFT, Aris AZ, Yusoff FM, Mustafa S. Occurrence and level of emerging organic contaminant in fish and mollusk from Klang River estuary, Malaysia and assessment on human health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:763-773. [PMID: 30851586 DOI: 10.1016/j.envpol.2019.02.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
The occurrence, level, and distribution of multiclass emerging organic contaminants (EOCs) in fish and mollusks from the Klang River estuary were examined. The targeted EOCs for this assessment were phenolic endocrine disrupting compounds (bisphenol A, 4-OP, and 4-NP), organophosphorous pesticides (quinalphos, chlorpyrifos, and diazinon), estrogenic hormones (E2, E1, and EE2), and pharmaceutically active chemicals (primidone, sulfamethoxazole, dexamethasone, diclofenac, amoxicillin, progesterone, and testosterone). Results from this study showed that the prevalent contamination of the Klang River estuary by EOCs with diclofenac, bisphenol A, progesterone, and amoxicillin were predominantly detected in fish and mollusks. Among the EOCs, diclofenac and progesterone had the highest concentrations in fish and mollusk samples, respectively. The concentrations of diclofenac and progesterone in fish and mollusk samples range from 1.42 ng/g to 10.76 ng/g and from 0.73 ng/g to 9.57 ng/g, respectively. Bisphenol A should also be highlighted because of its significant presence in both fish and mollusks. The concentration of bisphenol A in both matrices range from 0.92 ng/g to 5.79 ng/g. The calculated hazard quotient (HQ) for diclofenac, bisphenol A, and progesterone without consideration to their degradation byproduct were less than one, thus suggesting that the consumption of fish and mollusks from the Klang River estuary will unlikely pose any health risk to consumers on the basis of the current assessment. Nonetheless, this preliminary result is an important finding for pollution studies in Malaysian tropical coastal ecosystems, particularly for organic micropollutant EOCs, and can serve as a baseline database for future reference.
Collapse
Affiliation(s)
- T F T Omar
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Fatimah Md Yusoff
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
25
|
Mohammed S, Lamoree M, Ansa-Asare OD, de Boer J. Review of the analysis of insecticide residues and their levels in different matrices in Ghana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:361-372. [PMID: 30616153 DOI: 10.1016/j.ecoenv.2018.12.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
This review reports on how Ghanaian scientists analyse insecticide residues in various matrices in their laboratories as well as the levels of insecticides found in Ghana. It covers different sample preparation methods such as solid-liquid and liquid-liquid extraction. The main technique used for this analysis was gas chromatography (GC) with various detectors such as electron capture, flame photometric, nitrogen phosphorus, and mass spectrometric detection. Liquid chromatography (LC) with mass spectrometric detection was sometimes used to determine the levels of very polar insecticide residues. From the articles reviewed 74% of the insecticides detected were organochlorines with DDTs, lindanes, and endosulfans as most abundant ones. Levels of the insecticides of interest analysed, varied from below the detection limits to clearly above the safety limits. The lowest detected concentration of insecticide residues reported in fruits and vegetables was δ-lindane in pawpaw (0.06 mg/kg) while the highest was fenvalerate (25.6 mg/kg). Insecticide residues reported in sediment were predominantly organochlorines with concentrations ranging from 9.68 ng/kg to 10.98 µg/kg. Endosulfan and its metabolites were the main insecticides found in water bodies with concentrations ranging from 0.036 µg/L to 62.3 µg/L. DDT and its metabolites were the dominant insecticides found in human fluids.
Collapse
Affiliation(s)
- Saada Mohammed
- Vrije Universiteit, Dep. Environment & Health, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; CSIR Water Research Institute, P.O. Box 38, Achimota, Ghana.
| | - Marja Lamoree
- Vrije Universiteit, Dep. Environment & Health, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | | | - Jacob de Boer
- Vrije Universiteit, Dep. Environment & Health, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| |
Collapse
|
26
|
Dixon HM, Armstrong G, Barton M, Bergmann AJ, Bondy M, Halbleib ML, Hamilton W, Haynes E, Herbstman J, Hoffman P, Jepson P, Kile ML, Kincl L, Laurienti PJ, North P, Paulik LB, Petrosino J, Points GL, Poutasse CM, Rohlman D, Scott RP, Smith B, Tidwell LG, Walker C, Waters KM, Anderson KA. Discovery of common chemical exposures across three continents using silicone wristbands. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181836. [PMID: 30891293 PMCID: PMC6408398 DOI: 10.1098/rsos.181836] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/14/2019] [Indexed: 05/21/2023]
Abstract
To assess differences and trends in personal chemical exposure, volunteers from 14 communities in Africa (Senegal, South Africa), North America (United States (U.S.)) and South America (Peru) wore 262 silicone wristbands. We analysed wristband extracts for 1530 unique chemicals, resulting in 400 860 chemical data points. The number of chemical detections ranged from 4 to 43 per wristband, with 191 different chemicals detected, and 1339 chemicals were not detected in any wristband. No two wristbands had identical chemical detections. We detected 13 potential endocrine disrupting chemicals in over 50% of all wristbands and found 36 chemicals in common between chemicals detected in three geographical wristband groups (Africa, North America and South America). U.S. children (less than or equal to 11 years) had the highest percentage of flame retardant detections compared with all other participants. Wristbands worn in Texas post-Hurricane Harvey had the highest mean number of chemical detections (28) compared with other study locations (10-25). Consumer product-related chemicals and phthalates were a high percentage of chemical detections across all study locations (36-53% and 18-42%, respectively). Chemical exposures varied among individuals; however, many individuals were exposed to similar chemical mixtures. Our exploratory investigation uncovered personal chemical exposure trends that can help prioritize certain mixtures and chemical classes for future studies.
Collapse
Affiliation(s)
- Holly M. Dixon
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Georgina Armstrong
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Michael Barton
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Alan J. Bergmann
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Melissa Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mary L. Halbleib
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Winifred Hamilton
- Department of Medicine, Environmental Health Section, Baylor College of Medicine, Houston, TX, USA
| | - Erin Haynes
- College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Julie Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Peter Hoffman
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Paul Jepson
- Integrated Plant Protection Center, Oregon State University, Corvallis, OR, USA
| | - Molly L. Kile
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Laurel Kincl
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paula North
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L. Blair Paulik
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Joe Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Gary L. Points
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Carolyn M. Poutasse
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Diana Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Richard P. Scott
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Brian Smith
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Lane G. Tidwell
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Cheryl Walker
- Department of Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kim A. Anderson
- Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
27
|
Reche C, Viana M, Querol X, Corcellas C, Barceló D, Eljarrat E. Particle-phase concentrations and sources of legacy and novel flame retardants in outdoor and indoor environments across Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1541-1552. [PMID: 30308922 DOI: 10.1016/j.scitotenv.2018.08.408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Levels of particle-phase legacy polybrominated diphenyl ethers (PBDEs), and novel brominated and chlorinated flame retardants, such as decabromodiphenyl ethane (DBDPE) and Dechlorane Plus (DP), were measured in ambient outdoor air, indoor workplace air and indoor dust, in different locations across Spain. PBDE concentrations were generally higher in outdoor ambient air samples than in indoor air, ranging between 1.18 and 28.6 pg m-3, while DP was the main flame retardant (FR) in indoor air (2.90-42.6 pg m-3). A different behavior of legacy versus novel FRs was observed in all the environments and matrices considered, which seemed to indicate a progressive replacement of the former. Although the emission sources could not be fully identified, certain evidences suggested that high outdoor PBDE concentrations could be associated with old goods in landfills and recycling centers, while high indoor DP concentrations were linked to the presence of new electronic devices. A direct impact of land use on outdoor atmospheric DP concentrations was observed, with DP concentrations correlating with high density of buildings within a city. In addition, DP concentrations outdoors correlated with inorganic species with FR properties (e.g., Cr, Cu). Significant differences in the fraction of anti-DP to the total DP (Fanti ratio) were observed between indoor air (PM2.5) and dust (PM10), which could be related with: a) a dependence on particle size, suggesting a higher relative abundance of the anti-isomer in PM10 than in PM2.5, while similar concentrations were recorded for the syn-isomer; b) a higher deposition rate of the anti-isomer compared to the syn-isomer; and/or c) a more accentuated preferential degradation of the anti-isomer linked to artificial light or other agents coexisting in the air. The detectable presence of all the FR families analyzed in indoor air and dust points to the importance of monitoring these compounds in order to minimize human exposure.
Collapse
Affiliation(s)
- C Reche
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Spain.
| | - M Viana
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Spain
| | - C Corcellas
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Spain
| | - D Barceló
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Spain; Catalan Institute for Water Research (ICRA), Spain
| | - E Eljarrat
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Spain
| |
Collapse
|
28
|
Preparation and characterization of dummy-template molecularly imprinted polymers as potential sorbents for the recognition of selected polybrominated diphenyl ethers. Anal Chim Acta 2018; 1030:77-95. [DOI: 10.1016/j.aca.2018.05.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/23/2018] [Accepted: 05/06/2018] [Indexed: 01/04/2023]
|
29
|
Čulin J. Brominated flame retardants: Recommendation for different listing under the Hong Kong Convention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:919-926. [PMID: 29729509 DOI: 10.1016/j.scitotenv.2018.04.342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
When the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships, 2009 enters into effect, ships to be sent for recycling will be required to carry an Inventory of Hazardous Materials (IHM) on board, which identifies the hazardous materials contained in the ship's structure or equipment. In its current form, IHM covers two classes of brominated flame retardants (BFRs), namely polybrominated biphenyls and polybrominated diphenyl ethers. Emerging evidence from recent literature suggests that members of all classes of BFRs are present in all environmental compartments and that exposure to them is associated with a wide range of harmful effects in humans and animals, effects that include endocrine disruption. Despite a growing body of research, the necessary data to perform health and environmental risk assessment are still lacking. This paper reviews environmental and human health impacts and discusses some issues of BFR environmental management. It is suggested that based on a precautionary approach, the inclusion of all classes of BFRs in IHM is warranted.
Collapse
Affiliation(s)
- Jelena Čulin
- University of Zadar, Maritime Department, M. Pavlinovića 1, 23000 Zadar, Croatia.
| |
Collapse
|
30
|
Chai H, Zhang Z, Zhou Y, Zhu L, Lv H, Wang N. Roles of intrinsic Mn 3+ sites and lattice oxygen in mechanochemical debromination and mineralization of decabromodiphenyl ether with manganese dioxide. CHEMOSPHERE 2018; 207:41-49. [PMID: 29772423 DOI: 10.1016/j.chemosphere.2018.04.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/05/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Commercial β-MnO2 with a chemical formula of approximate Mn0.774+Mn0.233+O1.88 was used for mechanochemical (MC) oxidative degradation of decabromodiphenyl ether (BDE209). The ball milling process initiated the degradation of BDE209 on β-MnO2, yielding a nearly complete degradation and debromination of BDE209 within 2 h. The use of β-MnO2 exhibited much higher MC debromination efficiency than that by using birnessite (δ-MnO2, 40.2%), Bi2O3 (45.6%), CaO (65.3%), and persulfate (81.9%). It was demonstrated that the oxidative degradation of BDE209 was promoted by the redox half reactions of both Mn4+→ Mn3+ and Mn3+→ Mn2+, but naturally existed Mn3+ centers on the surface of β-MnO2 functioned as dominant reactive species at the initial stage of the MC degradation (often before the degradation efficiency of BDE209 achieved 50%). Moreover, the surface lattice oxygen of MnO2, rather than O2, played a key role in the debromination and mineralization of BDE209. The Mn3+ sites on β-MnO2 not only easily accepted the electron of BDE209, but also promoted the mobility of lattice oxygen from the bulk to the surface for mineralizing BDE209. These results firstly highlighted the importance of Mn3+ availability and oxygen mobility on the reactivity of manganese oxide for the MC oxidative degradation of organic pollutants.
Collapse
Affiliation(s)
- Huijuan Chai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Zhimin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Yuqi Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Lihua Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Hanqing Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Nan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China; Shenzhen Institute of Huazhong University of Science and Technology, 518000, Shenzhen, China.
| |
Collapse
|
31
|
Comparative Study on Flame Retardancy, Thermal, and Mechanical Properties of Glass Fiber Reinforced Polyester Composites with Ammonium Polyphosphate, Expandable Graphite, and Aluminum Tri-hydroxide. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3397-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
McGrath TJ, Morrison PD, Ball AS, Clarke BO. Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: An assessment of human exposure. ENVIRONMENT INTERNATIONAL 2018; 113:191-201. [PMID: 29428609 DOI: 10.1016/j.envint.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 01/30/2018] [Indexed: 05/19/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFR) have been used in a range of polymers to inhibit the spread of fires but also have a propensity to migrate out of consumer materials and contaminate indoor dust. In this study, a total of 57 dust samples were collected from 12 homes, eight offices and eight vehicles in Melbourne, Australia and analysed for eight PBDEs (-28, -47, -99, -100, -153, -154, -183 and -209) and seven NBFRs (PBT, PBEB, HBB, EH-TBB, BEH-TEBP, BTBPE and DBDPE) to determine human exposure risks from dust ingestion. Samples were analysed using selective pressurized liquid extraction (S-PLE) and gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Legacy and replacement flame retardants were detected in all samples with overall ∑PBDE concentrations ranging from 120 to 1700,000 ng/g (median 2100 ng/g) and ∑NBFRs ranging from 1.1 to 10,000 ng/g (median 1800 ng/g). BDE-209 and DBDPE were the dominant compounds in dust samples, followed by congeners associated with commercial Penta-BDE formulations (-47, -99, -100, -153 and -154) and then EH-TBB of the FireMaster 550 and BZ-54 products. ∑Penta-BDE concentrations were elevated in office samples compared with homes and vehicles, while EH-TBB and BDE-209 measured higher concentrations in vehicles compared with their respective levels in homes and offices. Risk assessment estimates revealed the majority of exposure to occur in the home for both adults and toddlers in the City of Melbourne. Generally, body weight adjusted exposure to PBDEs and NBFRs was predicted to be 1 to 2 orders of magnitude higher for toddlers than adults. Estimated rates of BDE-47, -99, -153 and -209 ingestion were each 2 orders of magnitude or more below the USEPA's prescribed oral reference dose values (RfDs) for typical exposure scenarios. However, exposure rates for BDE-47 and -99 reached as high as 52 and 95% of RfDs, respectively, for adults and 4.4 and 7.4%, respectively, for toddlers in high exposure scenarios. This study provides the first wide-ranging survey of NBFRs in indoor dust from homes, offices and vehicles in Australia and offers further evidence of human exposure to legacy and novel brominated flame retardants via dust ingestion.
Collapse
Affiliation(s)
- Thomas J McGrath
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Paul D Morrison
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Bradley O Clarke
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
33
|
Yadav IC, Devi NL, Li J, Zhang G. Environmental concentration and atmospheric deposition of halogenated flame retardants in soil from Nepal: Source apportionment and soil-air partitioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:642-654. [PMID: 29107904 DOI: 10.1016/j.envpol.2017.10.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
While various investigations have been driven on polybrominated diphenyl ethers (PBDEs) and other flame retardants (FRs) in different framework around the world, information about contamination and fate of PBDEs and other FRs in developing countries especially in the Indian subcontinent is uncommon. Nepal being located in the Indian subcontinent, very little is known about contamination level of semi-volatile organic pollutants discharged into the environment. This motivated us to investigate the environmental fate of halogenated flame retardant (HFRs) in Nepalese condition. In this study, we investigated the concentration, fate, and sources of 9 PBDEs, 2 dechlorane plus isomers (DPs), and 6 novel brominated flame retardants (NBFRs). Moreover, air-soil exchange and soil-air partitioning were also evaluated to characterize the pattern of air-soil exchange and environmental fate. In general, the concentrations of NBFRs in soil were more prevalent than PBDEs and DPs, and accounted 95% of ∑HFRs. By and large, the concentrations of NBFRs and DPs were measured high in Kathmandu, while PBDEs level exceeded in Pokhara. Principal component analysis (PCA) study suggested contributions from commercial penta-, octa-, and deca-BDEs products and de-bromination of highly brominated PBDEs as the significant source of PBDEs. Likewise, low fanti ratio suggested DPs in soil might have originated from long-range atmospheric transport from remote areas, while high levels of decabromodiphenyl ethane (DBDPE) in soil were linked with the use of wide varieties of consumer products. The estimated fugacity fraction (ff) for individual HFR was quite lower (<0.05) than equilibrium value, suggesting that deposition and net transport from air to the soil is overwhelming. Soil-air partitioning study revealed neither octanol-air partition coefficient (KOA) nor black carbon partition coefficient (KBC-A) is an appropriate surrogate for soil organic matter (SOM), subsequently, absorption by SOM has no or little role in the partitioning of HFRs.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwai-Cho, Fuchu-Shi, Tokyo 1838509, Japan.
| | | | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
34
|
Orta-García ST, Ochoa-Martínez ÁC, Varela-Silva JA, Pérez-Maldonado IN. Polybrominated diphenyl ethers (PBDEs) levels in blood samples from children living in the metropolitan area of Guadalajara, Jalisco, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:90-101. [PMID: 29376401 DOI: 10.1080/09603123.2018.1429578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aim of this study was to perform a polybrominated diphenyl ethers (PBDEs) exposure assessment using blood samples collected from children living in the metropolitan area of Guadalajara, Jalisco, Mexico (GDL). Five congeners of PBDEs were analyzed using a gas chromatography/mass spectrometry technique. The blood concentrations of total PBDEs ranged from 5.50 to 169 ng/g lipid (42.0 ± 18.0 ng/g lipid; mean ± standard deviation). Regarding BDE congeners, the main congener (highest blood levels) was BDE99 (14.5 ± 5.50 ng/g lipid), followed by BDE100 (9.80 ± 3.40 ng/g lipid) and BDE154 (9.80 ± 5.90 ng/g lipid), and finally BDE153 (5.80 ± 2.30 ng/g lipid) and BDE47 (2.20 ± 1.20 ng/g lipid). In conclusion, blood PBDEs concentrations of concern were detected in this study, as blood levels were similar to the ones found in North America (the highest worldwide).
Collapse
Affiliation(s)
- Sandra T Orta-García
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí . San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí . San Luis Potosí , México
| | - Ángeles C Ochoa-Martínez
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí . San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí . San Luis Potosí , México
| | - José A Varela-Silva
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí . San Luis Potosí , México
- c Facultad de Enfermería , Universidad Autónoma de Zacatecas , Zacatecas , México
| | - Iván N Pérez-Maldonado
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí . San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí . San Luis Potosí , México
- d Unidad Académica Multidisciplinaria Zona Media , Universidad Autónoma de San Luis Potosí . Rioverde San Luis Potosí , México
| |
Collapse
|
35
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29205, United States
| | | |
Collapse
|
36
|
Zhao Q, Zhou H, Wu W, Wei X, Jiang S, Zhou T, Liu D, Lu Q. Sensitive electrochemical detection of tetrabromobisphenol A based on poly(diallyldimethylammonium chloride) modified graphitic carbon nitride-ionic liquid doped carbon paste electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
McGrath TJ, Ball AS, Clarke BO. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:741-757. [PMID: 28732337 DOI: 10.1016/j.envpol.2017.07.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used in a broad array of polymeric materials such as plastics, foams, resins and adhesives to inhibit the spread of fires since the 1970s. The widespread environmental contamination and well documented toxic effects of PBDEs have led to bans and voluntary withdrawals in many jurisdictions. Replacement novel brominated flame retardants (NBFRs) have, however, exhibited many of the same toxic characteristics as PBDEs and appear to share similar environmental fate. This paper presents a critical review of the scientific literature regarding PBDE and NBFR contamination of surface soils internationally, with the secondary objective of identifying probable pollution sources. An evaluation of NBFR distribution in soil was also conducted to assess the suitability of the newer compounds as replacements for PBDEs, with respect to their land contamination potential. Principle production of PBDEs and NBFRs and their consequent use in secondary polymer manufacture appear to be processes with strong potential to contaminate surrounding soils. Evidence suggests that PBDEs and NBFRs are also released from flame retarded products during disposal via landfill, dumping, incineration and recycling. While the land application of sewage sludge represents another major pathway of soil contamination it is not considered in this review as it is extensively covered elsewhere. Both PBDEs and NBFRs were commonly detected at background locations including Antarctica and northern polar regions. PBDE congener profiles in soil were broadly representative of the major constituents in Penta-, Octa- and Deca-BDE commercial mixtures and related to predicted market place demand. BDE-209 dominated soil profiles, followed by BDE-99 and BDE-47. Although further research is required to gain baseline data on NBFRs in soil, the current state of scientific literature suggests that NBFRs pose a similar risk to land contamination as PBDEs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Vic. 3001, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Vic. 3001, Australia
| | - Bradley O Clarke
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Vic. 3001, Australia.
| |
Collapse
|
38
|
Daso AP, Rohwer ER, Koot DJ, Okonkwo JO. Preliminary screening of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA) flame retardants in landfill leachate. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:418. [PMID: 28752240 DOI: 10.1007/s10661-017-6131-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The occurrence of selected brominated flame retardants, including nine polybrominated diphenyl ether (PBDE) congeners, hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA) in leachate samples from eight landfill sites in South Africa, were investigated. In addition, the possible influences of dissolved organic carbon on their levels were also evaluated. Filtered leachate samples were subjected to solid-phase extraction to isolate the various target compounds. PBDEs with six bromine substituents and above, as well as α-HBCDD, β-HBCDD and TBBPA, were generally found below the detection limit. However, the mean value of the total lower PBDE congeners ranged between 0.04 and 0.48 μg L-1, and the concentrations of γ-HBCDD ranged from not detectable (ND) to 0.05 μg L-1. No significant correlation was observed between the target compounds and dissolved organic carbon, although weak to moderate correlations were mostly observed for the lower PBDEs.
Collapse
Affiliation(s)
- Adegbenro P Daso
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Arcadia, Pretoria, South Africa.
| | - Egmont R Rohwer
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Dwayne J Koot
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Jonathan O Okonkwo
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Arcadia, Pretoria, South Africa
| |
Collapse
|
39
|
Case Study of Raw Materials Substitution: Natural Fillers Substitution in Plastic Composites. RAW MATERIALS SUBSTITUTION SUSTAINABILITY 2017. [DOI: 10.1007/978-3-319-60831-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|