1
|
Lin D, Lai C, Wang X, Wang Z, Kuang K, Wang Z, Du X, Liu L. Enhanced membrane fouling by microplastics during nanofiltration of secondary effluent considering secretion, interaction and deposition of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167110. [PMID: 37739085 DOI: 10.1016/j.scitotenv.2023.167110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Microplastic (MP) has been found to influence membrane fouling during microfiltration/ultrafiltration processes in direct and indirect ways by acting as fouling components and changing microbial activities, respectively. However, there is no relevant research about the contribution of MPs to nanofiltration membrane fouling. In this study, for the first time, the impacts of MPs on membrane fouling during the nanofiltration of secondary effluent (SE) were systematically investigated from the perspective of bacterial extracellular polymeric substances (EPS) secretion, their interaction with coexisting pollutants and also deposition. Membrane flux behaviors indicate that MPs simultaneously aggravated the short-term and long-term membrane fouling resistance of nanofiltration by 46 % and 27 %, respectively. ATR-FTIR, XPS and spectrophotometry spectra demonstrate that the deteriorated membrane fouling by MPs directly resulted from the increased accumulation of protein-like, polysaccharides-like and humic-like substances on membranes. EEM spectra further confirmed that MPs preferred to induce serious cake layers, which dominated membrane flux decline but hindered pore fouling. According to CLSM and SEM-EDS mappings, MPs in SE could stimulate microbial activities and then aggravate EPS secretion, after which their interaction with Ca2+ was also enhanced in bulk solution. The cross-linker nets could promote the deposition of other unlinked pollutants on membranes. Besides, MPs could weaken the rejection of certain dissolved organic matters (from 57 % to 52 % on the 50th day of filtration) by aggravating cake-enhanced concentration polarization (CECP), but improved the average removal of inorganic salts from 58 % to 63 % by improving their back diffusion through cake layers. Based on these analyses, the mechanisms of MP-enhanced membrane fouling during the nanofiltration of SE can be thoroughly revealed.
Collapse
Affiliation(s)
- Dachao Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Caijing Lai
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaokai Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ke Kuang
- GuangZhou Sewage Purification Company, Guangzhou 510627, PR China
| | - Ziyuan Wang
- GuangZhou Sewage Purification Company, Guangzhou 510627, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Lifan Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Lin D, Zhang H, Wang Z, Xu D, Li G, Ulbricht M, Liang H. New insights into the influence of pre-oxidation on membrane fouling during nanofiltration of brackish water considering inorganic-organic complexation and oxidant reduction byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167364. [PMID: 37769728 DOI: 10.1016/j.scitotenv.2023.167364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Even though pre-oxidation is usually considered as a promising method to alleviate membrane fouling, information on performance and inner mechanisms of pre-oxidation-influenced membrane fouling during nanofiltration of brackish water is still limited. This study is the first work in which oxidant reduction byproducts and interaction between different pollutants were particularly considered to address these problems. Herein, nanofiltration experiments with different pre-oxidized synthesis brackish water containing inorganic salts and organic pollutants were conducted. Membrane flux results showed that both NaClO and K2FeO4 aggravated membrane fouling, but 0.45 mg/mg TOC KMnO4 mitigated it when simulation results of NICA-Donnan model showed that the complexation between calcium ions and humic acid (HA) was weakened. However, membrane fouling was enhanced by higher dosage of KMnO4. Fourier transform infrared spectrometer using attenuated total reflection (ATR-FTIR) and X-ray diffraction (XRD) spectrum showed that the aggravated membrane fouling was mainly caused by the generation of amorphous manganese oxide, which was oxidant reduction byproduct and had strong capacity for adsorption of HA. Particle size distribution and zeta potential variation indicated that the accumulation of HA could enhance the crystallization process and then the electrostatic attraction between membrane and bulk crystallization was induced. According to SEM images and fitting results of Hermia's models, the already-formed bulk crystallization by 1.90 mg/mg TOC KMnO4 could deposit on membranes more easily, followed by the formation of a denser fouling layer. Overall, the present study provided new insights into the design of reliable pre-oxidation strategies for alleviating membrane fouling during nanofiltration of brackish water.
Collapse
Affiliation(s)
- Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
3
|
Wang J, Cheng X, Li P, Fan Q, Wu D, Liang H. Activation of peroxymonosulfate with biochar-supported CuO (CuO@BC) for natural organic matter removal and membrane fouling control. CHEMOSPHERE 2023; 341:140044. [PMID: 37660795 DOI: 10.1016/j.chemosphere.2023.140044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
To achieve excellent activation efficiency of peroxymonosulfate (PMS), this work prepared a biochar-supported CuO (CuO@BC) catalyst, and the CuO@BC/PMS system was proposed to remove the organic matter in natural surface water and reduce the fouling of ultrafiltration membrane. The successful synthesis of CuO@BC was demonstrated through characterization of its microscopic morphology and chemical composition by various techniques. The prepared heterogeneous catalyst showed a strong catalytic effect on PMS, which significantly removed natural organic matter through the production of active substances (•OH, SO4•-, O2•- and 1O2) from water. With respective degradation rates of 39.4% and 59.4%, the concentrations of DOC and UV254 dropped to 1.702 mg/L and 0.026 cm-1, respectively. Additionally, the CuO@BC/PMS oxidation displayed potent oxidation capabilities for contaminants and fluorescent organics with various molecular weights. The system effectively decreased the amount of organic matter that caused reversible and irreversible fouling of polyethersulfone membranes in natural water by 85.8% and 56.3%, respectively. The main fouling mechanisms changed as well, with standard and complete blocking dominating the entire filtration process. The results demonstrated the capacity of the CuO@BC/PMS system to remove contaminants in natural water and mitigate membrane fouling.
Collapse
Affiliation(s)
- Jingxuan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Qingshui Fan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
4
|
Song W, Gao Z, Tan F, Cheng X, Yang T, Wu D, Yang J, Liang H. Calcium sulfite oxidation activated by ferrous iron integrated with membrane filtration for removal of typical algal contaminants. CHEMOSPHERE 2023; 333:138956. [PMID: 37209855 DOI: 10.1016/j.chemosphere.2023.138956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Oxidation treatment of algae-laden water may cause cells rupture and emission of intracellular organics, thus restricting its further popularization. As a moderate oxidant, calcium sulfite could be slowly released in the liquid phase, thus exhibiting a potential to maintain the cells integrity. To this end, calcium sulfite oxidation activated by ferrous iron was proposed integrated with ultrafiltration (UF) for removal of Microcystis aeruginosa, Chlorella vulgaris and Scenedesmus quadricauda. The organic pollutants were significantly eliminated, and the repulsion between algal cells was obviously weakened. Through fluorescent components extraction and molecular weights distribution analyses, the degradation of fluorescent substances and the generation of micromolecular organics were verified. Moreover, the algal cells were dramatically agglomerated and formed larger flocs under the premise of maintaining high cell integrity. The terminal normalized flux was ascended from 0.048 to 0.072 to 0.711-0.956, and the fouling resistances were extraordinarily decreased. Due to the distinctive spiny structure and minimal electrostatic repulsion, Scenedesmus quadricauda was easier to form flocs, and its fouling was more readily mitigated. The fouling mechanism was remarkably altered through postponing the formation of cake filtration. The membrane interface characteristics including microstructures and functional groups firmly proved the fouling control efficiency. The reactive oxygen species (i.e., SO4•- and 1O2) generated through the principal reactions and Fe-Ca composite flocs played dominant roles in alleviating membrane fouling. Overall, the proposed pretreatment exhibits a brilliant application potential for enhancing UF in algal removal.
Collapse
Affiliation(s)
- Wenxin Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Zhimin Gao
- Design & Research Institute, The First Company of China Eighth Engineering Bureau Ltd, Jinan, 250100, PR China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jingxin Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
5
|
Chen L, Li R, Zhang Y, Xu Y, Chen J, Wang L, Zhu H, Zhang M, Zhang H. In Situ Visualization of Membrane Fouling Evolution during Ultrafiltration Using Label-Free Hyperspectral Light Sheet Fluorescence Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4533-4542. [PMID: 36869003 DOI: 10.1021/acs.est.2c08731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Profound understanding of fouling behaviors and underlying mechanisms is fundamentally important for fouling control in membrane-based environmental applications. Therefore, it entails novel noninvasive analytical approaches for in situ characterizing the formation and development of membrane fouling processes. This work presents a characterization approach based on hyperspectral light sheet fluorescence microscopy (HSPEC-LSFM), which is capable of discriminating various foulants and providing their 2-dimensional/3-dimensional spatial distributions on/in membranes in a label-free manner. A fast, highly sensitive and noninvasive imaging platform was established by developing a HSPEC-LSFM system and further extending it to incorporate a laboratory-scale pressure-driven membrane filtration system. Hyperspectral data sets with a spectral resolution of ∼1.1 nm and spatial resolution of ∼3 μm as well as the temporal resolution of ∼8 s/plane were obtained, and the fouling formation and development process of foulants onto membrane surfaces, within the pores and on the pore walls were clearly observed during the ultrafiltration of protein and humic substances solutions. Pore blocking/constriction at short times while cake growth/concentration polarization at longer times was found to have coupled effects for the flux decline in these filtration tests, and yet the contribution of each effect as well as the transition of the governing mechanisms was found distinct. These results demonstrate in situ label-free characterization of membrane fouling evolution with the recognition of foulant species during filtration and provide new insights into membrane fouling. This work offers a powerful tool to investigate dynamic processes for a wide range of membrane-based explorations.
Collapse
Affiliation(s)
- Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Renjian Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yizhi Xu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiajun Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Lili Wang
- Beijing Memtech Environmental Technology Ltd. Co, Beijing, 100102, China
| | - Haiou Zhu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
6
|
Moderate KMnO4/Fe(II) pre-oxidation for membrane fouling mitigation in algae-laden water treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Nitrogen-doped carbon nanotube modified ultrafiltration membrane activating peroxymonosulfate for catalytic transformation of phosphonate and mitigation of membrane fouling. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Zhu X, Liu J, Li L, Zhen G, Lu X, Zhang J, Liu H, Zhou Z, Wu Z, Zhang X. Prospects for humic acids treatment and recovery in wastewater: A review. CHEMOSPHERE 2023; 312:137193. [PMID: 36370766 DOI: 10.1016/j.chemosphere.2022.137193] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Clean water shortages require the reuse of wastewater. The presence of organic substances such as humic acids in wastewater makes the water treatment process more difficult. Humic acids can significantly affect the removal of heavy metals and other such toxins. Humic acids is formed by the decomposition and transformation of animal and plant remains by microorganisms, and naturally exists in soil and water. It is necessary to degrade and remove humic acids from wastewater. As it seriously human health, effective technologies for removing humic acids from wastewater have attracted great interest over the past decades. This study compared existing techniques for removing humic acids from wastewater, as well as their limitations. Physicochemical treatments including filtration and oxidation are basic and key approaches to removing humic acids. Biological treatments including enzyme and fungi-mediated humic acids degradation are economically feasible but require some scalability. In conclusion, the integrated treatment processes are more significant options for the effective removal of humic acids from wastewater. In addition, humic acids have rich utilization values. It can improve the soil, increase crop yields, and promote the removal of pollutants.
Collapse
Affiliation(s)
- Xuefeng Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Jiadong Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Liang Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xuedong Zhang
- Department of Environmental Engineering, Faculty of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
9
|
Zou H, Chen S, Zhang M, Lin H, Teng J, Zhang H, Shen L, Hong H. Molecular-level insights into the mitigation of magnesium-natural organic matter induced ultrafiltration membrane fouling by high-dose calcium based on DFT calculation. CHEMOSPHERE 2022; 309:136734. [PMID: 36209866 DOI: 10.1016/j.chemosphere.2022.136734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
While magnesium cation (Mg2+) universally coexists with natural organic matter (NOM) in the water environment, influence of Mg2+ on NOM fouling in membrane filtration process is still unclear. This work was therefore performed to investigate effects of Mg2+ on NOM (sodium alginate (SA) as a model substance) fouling and role of Ca2+ in mitigating fouling from Mg2+ in the ultrafiltration (UF) water treatment process. Filtration tests showed two interesting fouling phenomena: (1) membrane fouling caused by combination of Mg2+ and SA maintained at a high value with the increased Mg2+ concentration; (2) the high fouling property of Mg2+ can be significantly improved by the prominent addition of calcium cation (Ca2+). It was found that changes of foulant morphology played essential roles through thermodynamic mechanisms represented by the Flory-Huggins lattice theory. Density functional theory (DFT) calculation showed that the combination of SA and Mg2+ tends to coordinate two terminal carboxyl groups in SA, beneficial to stretching alginate chains and forming a stable gel network at low doses. In addition, intramolecular coordination is difficult to occur between SA and Mg2+ due to the high hydration repulsion radius of Mg2+. Therefore, a dense and thick gel network remained even under high Mg2+concentration. Furthermore, due to the higher binding affinity of Ca2+ over Mg2+, high doses of Ca2+ trigger a transition of the stable SA-Mg2+ gel network to other configurations where flocculation and aggregation occur, thereby reducing the specific filtration resistance. The proposed thermodynamic mechanism satisfactorily explained the above interesting fouling behaviors, facilitating to development of new solutions to control membrane fouling.
Collapse
Affiliation(s)
- Hui Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shilei Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
10
|
Yun L, Gao Z, Cheng X, Li P, Wang L, Guo N, Luo C, Zhu X, Liu B, Wu D, Liang H. Effect of peroxydisulfate oxidation catalyzed with ordered mesoporous carbons on controlling ultrafiltration membrane fouling by algal organic matter. CHEMOSPHERE 2022; 303:135037. [PMID: 35609658 DOI: 10.1016/j.chemosphere.2022.135037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
As typical ordered mesoporous carbons (OMCs) materials, CMK-3 and CMK-8 were proposed for catalyzing peroxydisulfate (PDS), and the OMCs/PDS process was combined with membrane filtration to remove algal extracellular organic matter and mitigate membrane fouling. The CMK-3/PDS process achieved substantial reduction of dissolved organic carbon and UV254, followed by CMK-8/PDS. The degradation behavior of fluorescent organics demonstrated the superior performance of OMCs/PDS, while the decomposition of high molecular weight (MW) compounds and generation of lower MW organics were observed. Generally, CMK-3 possessed higher catalytic activity on PDS compared with CMK-8 and powdered activated carbon. The CMK-3/PDS process distinctly decreased the fouling resistances for polyether sulfone and polyvinylidene fluoride membranes, with the reversible resistance reduced by 59.5-83.2% and irreversible resistance declined by 71.7-73.0%. In the meanwhile, CMK-3/PDS prolonged the volumes to the transition period, and postponed the cake layer's generation. The characterization of the membrane morphologies and chemical compositions also showed effective alleviation of fouling. The generated SO4-, OH, O2- and 1O2 as major active oxidation species provided radical as well as non-radical reaction ways for pollutants removal. Overall, our study provides some new ideas for membrane-based combined water purification processes.
Collapse
Affiliation(s)
- Lei Yun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Zhimin Gao
- Design & Research Institute, The First Company of China Eighth Engineering Bureau Ltd, Jinan, 250100, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Ning Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
11
|
Cheng X, Liu Y, Zheng L, Tan F, Luo C, Xu B, Xu J, Zhu X, Wu D, Liang H. CuO@carbon nanofiber as an efficient peroxymonosulfate catalyst for mitigation of organic matter fouling in the ultrafiltration process. J Colloid Interface Sci 2022; 626:1028-1039. [PMID: 35839673 DOI: 10.1016/j.jcis.2022.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Persulfate oxidation has been increasingly integrated with membrane separation for water purification, whereas the oxidizing ability of persulfate is relatively limited, and appropriate activation methods are urgently required. In this work, a novel catalyst of carbon nanofiber (CNF) supported CuO (CuO@CNF) was synthesized for peroxymonosulfate (PMS) activation. The micro-morphology showed that CuO nanoparticles were well dispersed on the CNF support, which solved the agglomeration problem of nanoparticles and improved the catalytic ability. Furtherly, PMS oxidation activated by CuO@CNF was proposed as a pre-processing means for improving ultrafiltration (UF) water purification efficiency and mitigating membrane fouling. The prepared CuO@CNF was more efficient than individual CNF and CuO in activating PMS for the reduction of various typical natural organic matter, improving permeation flux, and mitigating membrane fouling. The fouling control efficiencies were also verified by characterizing the membrane surface functional groups. The CuO@CNF catalyst could signally promote the oxidative capacity by generating a series of reactive oxygen species, thus enhancing the removal of organics with varying species and molecular weight ranges in surface water. With respect to the fouling condition, the specific permeation flux after filtration was improved from 0.25 to 0.61, with the removal rate of reversible fouling resistance reached 89.6%. The fouling mechanism was apparently altered, with both standard and complete blocking dominated throughout the filtration process. The findings are beneficial for the development of new strategies to improve membrane-based water purification efficiency.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Yinuo Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Zheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Bing Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
12
|
Chen L, Zhang Y, Li R, Xu Y, Zhu H, Zhang M, Zhang H. In situ visualization of combined membrane fouling behaviors using multi-color light sheet fluorescence imaging: A study with BSA and dextran mixture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Yang W, Guo Q, Duan D, Wang T, Liu J, Du X, Liu Y, Xia S. Characteristics of flat-sheet ceramic ultrafiltration membranes for lake water treatment: A pilot study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Chen GQ, Wu YH, Chen Z, Luo LW, Wang YH, Tong X, Bai Y, Wang HB, Xu YQ, Zhang ZW, Ikuno N, Hu HY. Enhanced extracellular polymeric substances production and aggravated membrane fouling potential caused by different disinfection treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Wang S, Li Y, Xiao K, Huang X. Fluorescence excitation-emission matrix as a novel indicator of assimilable organic carbon in wastewater: Implication from a coal chemical wastewater study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150144. [PMID: 34517310 DOI: 10.1016/j.scitotenv.2021.150144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Assimilable organic carbon (AOC) is recognized as an important parameter to evaluate the biostability of water. Studies have been carried out to investigate the easier and faster AOC detection methods in recent years. In our study, the relationship between AOC and excitation-emission matrix (EEM) was investigated through analysis of wastewater from a coal chemical industrial corporation, including biochemical effluent, ultrafiltration effluent, and reverse osmosis concentrate. Considering the influence of water sample properties on AOC distribution, these water samples were fractionated according to their hydrophilicity and acid/base properties. Neutrals and hydrophobic acids were major components of total organic carbon and AOC concentration of these fractions was measured. EEM spectra of water samples were divided into five regions according to fluorescence peaks. Distribution of fluorescence region integration (FRI) of water samples was also calculated, as well as other fluorescence parameters. Statistical analysis showed that the concentration of AOC presented high positive correlation with the FRI in region H2, with R2 = 0.696. Monte Carlo simulation also proved that the proportion of significant R2 (p < 0.05) was high at 89.1%, suggesting that the model was reliable at least at the qualitative level. In that case, FRI in Region H2 could be an indication for AOC concentration in water samples. Our findings focus on fundamental insights into establishing relationship between spectroscopy method and AOC in wastewater and provide an easier way of accessing AOC in coal chemical industrial wastewater. Further investigation could be oriented to the dynamic analysis of AOC transformation and tracing.
Collapse
Affiliation(s)
- Shu Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; CAUPD Beijing Planning & Design Consultants Ltd, Beijing 100044, China
| | - Yufang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Ding A, Song R, Cui H, Cao H, Ngo HH, Chang H, Nan J, Li G, Ma J. Presence of powdered activated carbon/zeolite layer on the performances of gravity-driven membrane (GDM) system for drinking water treatment: Ammonia removal and flux stabilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149415. [PMID: 34364273 DOI: 10.1016/j.scitotenv.2021.149415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Gravity-driven membrane (GDM) filtration is a promising alternative for decentralized water supply, while its widespread application was hindered by the poor removals of organics and ammonia during long-term operation. In this study, powered activated carbon (PAC) and granular zeolite were selected as typical adsorbents to investigate the impacts of pre-deposited adsorbent layers on contaminant removal and membrane fouling. Results showed that the pre-deposited PAC layers exhibited higher removal of organics than the control, while the zeolites deposited layers exhibited low removal of organics. The presence of PAC only enhanced the NH4+ removal at subsequent stable stage, while zeolites were effective in deal with sudden high NH4+ concentration due to ion exchange. The presence of mixed adsorbents layers had similar organic removal with PAC and NH4+ removal with zeolite. The pre-deposited PAC layers could effectively alleviate membrane fouling in short-term UF tests, while the stable fluxes (5.88-6.54 L/(m2·h)) in long-term GDM operation were slightly lower than the control (6.63 L/(m2·h)). The zeolites deposited layer aggravated membrane fouling in both short-term ultrafiltration and long-term GDM (5.03-3.84 L/(m2·h)), but a higher stable flux (6.10 L/(m2·h)) was observed for GDM using the mixed adsorbents. The pre-deposited adsorbent layers resulted in increased concentrations of biomass, tri-phosphate (ATP) and extracellular polymeric substances (EPS), forming cake layers with a denser structure than the control. Finally, the fouling mechanism for GDM using different adsorbent layers was proposed based on fouling analysis and characteristics of biological fouling layer. The results and conclusion in this study could provide helpful information for the application of GDM with pre-deposited adsorbent layer in treating raw water with organics and/or sudden high ammonia concentration to produce potable water.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Ruilin Song
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Hao Cui
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Haiyan Cao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, PR China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
17
|
Yan M, Shen X, Gao B, Guo K, Yue Q. Coagulation-ultrafiltration integrated process for membrane fouling control: Influence of Al species and SUVA values of water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148517. [PMID: 34174605 DOI: 10.1016/j.scitotenv.2021.148517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 05/09/2023]
Abstract
Natural organic matter (NOM) pollution is a great challenge for the ultrafiltration (UF) process owing to the inevitable membrane fouling. In this study, three Al species coagulants (Ala/Alb/Alc) and their composites in combination with Poly dimethyl ammonium chloride (PolyDMDAAC) were used as a pretreatment strategy for the UF process. Then, test waters with different NOM fractions (i.e., humic acid, fulvic acid, protein, and polysaccharide) were prepared to analyze the effects of NOM characteristics on membrane fouling behaviors. The results indicated that compared with Alb and Alc, Ala showed higher removal efficiencies for hydrophobic NOM, aromatic organic matters, and suspended particles, but a limited effect on removing dissolved organic carbon (DOC). Ala or Ala-PolyDMDAAC effectively mitigated membrane fouling by removing the hydrophobic NOM in the coagulation process and forming the porous cake layer in the UF process. The test waters with higher specific ultraviolet absorbance (SUVA) resulted in more severe total and reversible membrane fouling but lighter irreversible fouling. After pretreatment by Ala or Ala-PolyDMDAAC, water samples with the medium SUVA value exhibited remarkable alleviation of membrane fouling due to the formation of large, compact, and robust flocs, as well as the construction of loose and poriferous cake layer on the membrane surface. Although hydrophilic NOM was challenging to be removed by coagulation, the interception and re-adsorption of porous cake layers contributed to the alleviation of irreversible fouling.
Collapse
Affiliation(s)
- Mengjiao Yan
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| | - Xue Shen
- Resources and Environment Innovation institute, Shandong Jianzhu University, Jinan 250101, China
| | - Baoyu Gao
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China.
| | - Kangying Guo
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China.
| | - Qinyan Yue
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| |
Collapse
|
18
|
Cheng X, Lian J, Ren Z, Hou C, Jin Y, Zhang L, Zhu X, Luo C, Wu D, Liang H. Coupling sodium percarbonate (SPC) oxidation and coagulation for membrane fouling mitigation in algae-laden water treatment. WATER RESEARCH 2021; 204:117622. [PMID: 34507023 DOI: 10.1016/j.watres.2021.117622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
To alleviate algal fouling in membrane water treatment processes, conventional technologies such as coagulation with poly aluminum chloride (PACl) has been widely adopted by many drinking water treatment plants. However, coagulation alone exhibited relatively weak removal effect for algal pollutants, and the coagulant residues due to the excess dosage also raised concerns. Thus, a novel process of coupling sodium percarbonate (SPC) oxidation and PACl coagulation was proposed, integrated with membrane filtration for algae-laden water treatment. The dosages of PACl and SPC were optimized, and the SPC dosing strategies were systematically compared. The changes in the characteristics of algal pollutants were investigated, and the results revealed that the resistance of algal foulants to aggregation was decreased, and the particle size of algal foulants became larger. With the synergism of coagulation and oxidation, the degradation of fluorescent organics was strengthened, and macromolecular biopolymers were decomposed into low molecular weight organics. The fouling control efficiency was further explored, and the results indicated that both irreversible and reversible fouling were effectively controlled, among which PACl/SPC (simultaneous treatment) performed best with the irreversible fouling reduced by 90.5%, while the efficiency of SPC-PACl (SPC followed by PACl) was relatively lower (57.3%). The fouling mechanism was altered by slowing the formation of cake filtration, and the reduction of algal cells played a more important role for the fouling alleviation. The interface properties of contaminated membranes (i.e., functional groups, images, and micromorphology) were characterized, and the efficiency of the proposed strategy was further verified. The proposed strategy exhibits great application values for improving membrane performance during algae-laden water treatment.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jinchuan Lian
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Zixiao Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chengsi Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
19
|
Li S, Guo Q, Jiang L, Ahmed Z, Dang Z, Wu P. The influence mechanism of dissolved organic matter on the adsorption of Cd (II) by calcite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37120-37129. [PMID: 34075494 DOI: 10.1007/s11356-021-14585-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) has been widely existed in the soil, which has great influence on the adsorption of heavy metals by minerals. In this paper, the effects of DOM on Cd (II) adsorption by calcite were studied. In the presence of DOM (5 mg/L, 10 mg/L, and 20 mg/L), the maximum sorption of Cd (II) by calcite reduced from 48.94 mg/g to 44.14 mg/g, 28.11 mg/g, and 22.30 mg/g, respectively. The characterizations (XRD, SEM, XPS, FTIR, 3D-EEM, and UHPLC-Q-Orbitrap) were used to further study the mechanism about the effects of DOM on the adsorption of Cd (II) by calcite. These results showed calcite exhibited a significant adsorption capacity for Cd (II) at pH = 6.0, and CdCO3 was formed on the surface of calcite after calcite reaction with Cd (II). Meanwhile, the fractionation of DOM by calcite could change the binding characteristics of DOM to calcite, which would increase the migration of Cd (II) in the solution. After the reaction of DOM with Cd (II) and calcite, Cd (II)-DOM complex was formed, and part of calcite was dissolved in the solution which would further increase the migration of Cd (II) and decrease the adsorption of Cd (II) by calcite. This paper might help further understand the effect of calcite and DOM on the environmental behavior of Cd (II) in the soil environment.
Collapse
Affiliation(s)
- Shuaishuai Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Qing Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Lu Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
20
|
Meng X, Luosang D, Meng S, Wang R, Fan W, Liang D, Li X, Zhao Q, Yang L. The structural and functional properties of polysaccharide foulants in membrane fouling. CHEMOSPHERE 2021; 268:129364. [PMID: 33360944 DOI: 10.1016/j.chemosphere.2020.129364] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Polysaccharide foulant is known to play a crucial role in membrane fouling, however the detailed influential mechanisms and the pertinence to specific structure of polysaccharides, as well as intermolecular interactions among them with and without divalent cation are still indistinct. In this study, seven polysaccharides including agarose, sodium alginate, carrageenan, pectin, starch, sodium carboxymethylcellulose (CMC) and xanthan gum, with different chain and molecular structures, were used as model foulants to investigate the role of structural and functional features of polysaccharides in membrane fouling. Two Hermia's models (classical and mass-transfer models) as well as the resistance-in-series model were used to analyze the fouling mechanism. Results show that the spatial configuration of foulant molecule is significant in membrane fouling which actually controls the resistance of gel layer formed on membrane. Polysaccharides with different properties show distinct fouling mechanisms which are in accordance with the four models described by Hermia respectively. Cations may change the interaction of polysaccharide foulant which further leads to the structural change of the gel layer. It turns out that mass-transfer model is more suitable for interpreting of crossflow filtration data. So far, little has been known about the effects of molecule structure of polysaccharides on membrane fouling. In this paper, we provide a basic database for polysaccharide fouling which will work as a theoretical basis for finding more effective measures to prevent and control membrane fouling.
Collapse
Affiliation(s)
- Xianghao Meng
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Duoji Luosang
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing, 100191, PR China.
| | - Rui Wang
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Dawei Liang
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Xiaohu Li
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Qian Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
21
|
Chen W, Yu HQ. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. WATER RESEARCH 2021; 190:116759. [PMID: 33360618 DOI: 10.1016/j.watres.2020.116759] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Natural organic matter (NOM) is ubiquitous in environment and plays a fundamental role in the geochemical cycling of elements. It is involved in a wide range of environmental processes and can significantly affect the environmental fates of exogenous contaminants. Understanding the properties and environmental behaviors of NOM is critical to advance water treatment technologies and environmental remediation strategies. NOM is composed of characteristic light-absorbing/emitting functional groups, which are the "identification card" of NOM and susceptive to ambient physiochemical changes. These groups and their variations can be captured through optical sensing. Therefore, spectroscopic techniques are elegant tools to track the sources, features, and environmental behaviors of NOM. In this work, the most recent advances in molecular spectroscopic techniques, including UV-Vis, fluorescence, infrared, and Raman spectroscopy, for the characterization, measurement, and monitoring of NOM are reviewed, and the state-of-the-art innovations are highlighted. Furthermore, the limitations of current spectroscopic approaches for the exploration of NOM-related environmental processesand how these weaknesses/drawbacks can be addressed are explored. Finally, suggestions and directions are proposed to advance the development of spectroscopic methods in analyzing and elucidating the properties and behaviors of NOM in natural and engineered environments.
Collapse
Affiliation(s)
- Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha410083, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China.
| |
Collapse
|
22
|
Katibi KK, Yunos KF, Che Man H, Aris AZ, bin Mohd Nor MZ, binti Azis RS. Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers (Basel) 2021; 13:392. [PMID: 33513670 PMCID: PMC7865700 DOI: 10.3390/polym13030392] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Water is a critical resource necessary for life to be sustained, and its availability should be secured, appropriated, and easily obtainable. The continual detection of endocrine-disrupting chemicals (EDCs) (ng/L or µg/L) in water and wastewater has attracted critical concerns among the regulatory authorities and general public, due to its associated public health, ecological risks, and a threat to global water quality. Presently, there is a lack of stringent discharge standards regulating the emerging multiclass contaminants to obviate its possible undesirable impacts. The conventional treatment processes have reportedly ineffectual in eliminating the persistent EDCs pollutants, necessitating the researchers to develop alternative treatment methods. Occurrences of the EDCs and the attributed effects on humans and the environment are adequately reviewed. It indicated that comprehensive information on the recent advances in the rejection of EDCs via a novel membrane and membrane bioreactor (MBR) treatment techniques are still lacking. This paper critically studies and reports on recent advances in the membrane and MBR treatment methods for removing EDCs, fouling challenges, and its mitigation strategies. The removal mechanisms and the operating factors influencing the EDCs remediation were also examined. Membranes and MBR approaches have proven successful and viable to eliminate various EDCs contaminants.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria;
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair bin Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Rabaah Syahidah binti Azis
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
23
|
Application of sodium alginate as a coagulant aid for mitigating membrane fouling induced by humic acid in dead-end ultrafiltration process. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Application-oriented mini-plant experiments using non-conventional model foulants to evaluate new hollow fiber membrane materials. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Xiao K, Yu J, Wang S, Du J, Tan J, Xue K, Wang Y, Huang X. Relationship between fluorescence excitation-emission matrix properties and the relative degree of DOM hydrophobicity in wastewater treatment effluents. CHEMOSPHERE 2020; 254:126830. [PMID: 32330758 DOI: 10.1016/j.chemosphere.2020.126830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Excitation-emission matrix (EEM) fluorescence spectroscopy is a powerful tool for the characterization of dissolved organic matter (DOM) in wastewater systems. It is of particular value if its utility could be extended by connecting the spectral features to hydrophobicity, one of the fundamental physicochemical properties of DOM. In this study, we employed a DAX-8 resin column to fractionate the hydrophobic/philic components of DOM and determine the relative degree of hydrophobicity by adjusting the critical retention factor (k'cr, the ratio of treated water sample volume to column volume). A higher k'cr would result in a higher hydrophobicity of the column effluent. At different k'cr values (5, 10, 25, 50, 100, and 200), the EEM characteristics of the obtained DOM components were inspected, including overall properties (average fluorescence per total organic carbon and UV absorbance), regional properties (fluorescence regional integration (FRI) and its secondary parameters), and energy-related properties (energy level of the excited states, Stokes shift for relaxation of the excited states, and fluorescence lifetime). In case studies of a wastewater membrane bioreactor and an oxidation ditch, plenty of the EEM properties varied significantly with logk'cr (r > 0.9, p < 0.05). The average fluorescence per UV absorbance (reflecting quantum yield), fluorescence proportion at Stokes shift ≥ 1.1 μm-1, and some secondary FRI parameters presented the best linear fitting with logk'cr, suggesting a smooth variation of the π-conjugated structures with the relative degree of DOM hydrophobicity. This may help to further understand the relationship between EEM fingerprints and DOM hydrophobicity.
Collapse
Affiliation(s)
- Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Jinlan Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianqing Du
- Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jihua Tan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanfen Wang
- Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Alexandra Sanchez A, Mladenov N, Wasswa J. Fluorescent compounds retained by ultrafiltration membranes for water reuse. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Cheng X, Zhou W, Li P, Ren Z, Wu D, Luo C, Tang X, Wang J, Liang H. Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment. CHEMOSPHERE 2019; 234:545-557. [PMID: 31229716 DOI: 10.1016/j.chemosphere.2019.06.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
To efficiently improve the performance of ultrafiltration (UF) membrane for drinking water treatment, carbon nanotubes (CNTs) and carbon nanofibers (CNFs) were utilized as pre-deposited coating layers on membrane surface. A comparative study between these two carbon nanomaterials for enhancing pollutants removal and mitigating membrane fouling induced by natural organic matter (NOM) was carried out. The surface morphologies were characterized by scanning electron microscopy, and the results indicated that the CNTs coating layer was more dense and homogeneous with a smaller pore size than that of CNFs. The removal and antifouling performance of CNTs/CNFs coated membranes were investigated with typical NOM, i.e., humic acid, bovine serum albumin, sodium alginate, as well as natural surface water. The results showed that the presence of coating layers was very effective to improve the rejection rate of NOM, among which CNTs exhibited significant better performance than CNFs. The fouling control performance was influenced by the NOM fraction and coating mass (6-50 g/m2). Generally, CNTs coating layer was more efficient in alleviating both reversible and irreversible membrane fouling, while CNFs exhibited limited effect on irreversible fouling control. Both pre-adsorption and size exclusion contributed to the rejection of membrane foulants, thus reducing the organics directly contacted with the underlying membrane. In natural surface water treatment, the pre-deposited coating layers significantly delayed the transition of fouling mechanisms from pore blocking to cake filtration. The experimental results were expected to illustrate the feasibility of pre-deposited CNTs/CNFs layers for enhancing membrane performance during drinking water treatment.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Shandong Co-Innovation Center of Green Building, Jinan, 250101, PR China
| | - Weiwei Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Shandong Urban Construction Vocational College, Jinan, 250103, PR China
| | - Peijie Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Zixiao Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Shandong Co-Innovation Center of Green Building, Jinan, 250101, PR China.
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Shandong Co-Innovation Center of Green Building, Jinan, 250101, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
28
|
Moyo W, Motsa MM, Chaukura N, Msagati TAM, Mamba BB, Heijman SGJ, Nkambule TTI. Fundamental fouling mechanisms of dissolved organic matter fractions and their implications on the surface modifications of ceramic nanofiltration membranes: insights from a laboratory scale application. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1702-1714. [PMID: 32039902 DOI: 10.2166/wst.2019.419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work reports on the fundamental factors influencing inter-foulant and foulant-membrane interactions during simulated dissolved organic matter removal using ceramic nanofiltration. Fouling tests were performed using sodium alginate (SAL), humic acid (HA) and bovine serum albumin (BSA) as model foulants. Fouling potentials of each foulant and their mixtures were investigated using feed solutions containing fixed concentrations of K+, Na+, Mg2+ and Ca2+ with a total ionic strength of 10 mM. The impact of modification by atomic layer deposition on fouling mitigation was also assessed. The flux decline in the first 100 min for single foulants was 4.16 × 10-2, 2.69 × 10-2 and 1.60 × 10-2 Lm-2 for SAL, HA and BSA, respectively. These results demonstrated that for the single foulants, deposition on the membrane surface in the early stages of filtration was primarily governed by membrane-foulant interactions. Interestingly, cake filtration was the least fouling mechanism in feed solutions composed of BSA and SAL (R2 = 0.519, 0.374 for BSA + SAL and BSA + SAL + HA, respectively) and the most favorable fouling mechanism of feed solution which included HA and SAL (R2 = 0.972). The water contact angle dropped from 58o to 35° after coating, thus improving its anti-fouling properties.
Collapse
Affiliation(s)
- Welldone Moyo
- Nanotechnology and Water Sustainability (NanoWS) Research Unit, University of South Africa (UNISA), Johannesburg, South Africa E-mail:
| | - Machawe M Motsa
- Nanotechnology and Water Sustainability (NanoWS) Research Unit, University of South Africa (UNISA), Johannesburg, South Africa E-mail:
| | - Nhamo Chaukura
- Nanotechnology and Water Sustainability (NanoWS) Research Unit, University of South Africa (UNISA), Johannesburg, South Africa E-mail:
| | - Titus A M Msagati
- Nanotechnology and Water Sustainability (NanoWS) Research Unit, University of South Africa (UNISA), Johannesburg, South Africa E-mail:
| | - Bhekie B Mamba
- Nanotechnology and Water Sustainability (NanoWS) Research Unit, University of South Africa (UNISA), Johannesburg, South Africa E-mail:
| | - Sebastiaan G J Heijman
- Department of Civil Engineering and GeoSciences, Technical University of Delft, Delft, The Netherlands
| | - Thabo T I Nkambule
- Nanotechnology and Water Sustainability (NanoWS) Research Unit, University of South Africa (UNISA), Johannesburg, South Africa E-mail:
| |
Collapse
|
29
|
Tang S, Zhang L, Peng Y, Liu J, Zhang X, Zhang Z. Fenton cleaning strategy for ceramic membrane fouling in wastewater treatment. J Environ Sci (China) 2019; 85:189-199. [PMID: 31471026 DOI: 10.1016/j.jes.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Membrane fouling is an obstacle impeding the wide applications of ceramic membranes and organics are responsible for most of the membrane fouling issues in wastewater treatment. In this study, Fenton cleaning strategy was firstly proposed to clean ceramic membrane fouling in wastewater treatment. Fe2+ efficiently catalyzed fouling cleaning with H2O2 (1.5%) to recover the filterability of ceramic membrane. The maximum ∆TMP recovery (over 99%) was achieved at an optimal Fe2+ dosage of 124 mg/L after 6 hr of immersion cleaning. The total residual membrane fouling resistance decreased gradually from this optimum value as the Fe2+ dosage increased above 124 mg/L. The residual hydraulically reversible fouling resistance accounted for most of the membrane fouling and was basically removed (≤3.0 × 109 m-1) when Fe2+ dosages higher than 124 mg/L were used. The foulants responsible for the formation of a residual hydraulically reversible fouling layer (DOC (dissolved organic carbon), proteins, polysaccharides, EEM (fluorescence excitation-emission matrix spectra), SS (suspended solids), and VSS (volatile suspended solids)) were gradually removed as the Fe2+ dosage increased. These residual organic foulants were degraded from biopolymers (10-200 kDa) to low molecular weight substances (0.1-1 kDa), and the particle size of these residual foulants decreased significantly as a result. The strong oxidation power of hydrogen peroxide/hydroxy radicals towards organic foulants was enhanced by Fe2+. Fe2+ played a significant role in the removal of hydraulically reversible fouling and irreversible fouling from the ceramic membrane. However, Fe2+ (≥124 mg/L) increased the likelihood of forming secondary iron-organics aggregates.
Collapse
Affiliation(s)
- Shengyin Tang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Lixun Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi Peng
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jing Liu
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | | | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
30
|
Li K, Wen G, Li S, Chang H, Shao S, Huang T, Li G, Liang H. Effect of pre-oxidation on low pressure membrane (LPM) for water and wastewater treatment: A review. CHEMOSPHERE 2019; 231:287-300. [PMID: 31129410 DOI: 10.1016/j.chemosphere.2019.05.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 05/26/2023]
Abstract
Low pressure membrane (LPM) filtration is a promising technology for drinking water production, wastewater reclamation as well as pretreatment for seawater desalination. However, wider implementation of LPM is restricted by their inherent drawbacks, i.e., membrane fouling and insufficient rejection for dissolved contaminants. Pretreatment of feed water is a major method to improve the performance of LPM, and pre-oxidation has gained extensive attention because it can significantly alter compositions and properties of feed water through chemical reactions. This paper attempts to systematically review efficiency and mechanisms of pre-oxidation in membrane fouling control and permeate water quality improvement. On the basis of briefly discussing major foulants and fouling mechanisms of LPM, advantages and disadvantages of pre-oxidation in mitigating organic fouling, inorganic fouling and biofouling are discussed in detail. Impacts of pre-oxidation on removal of micropollutants, bulk organic matter and inorganic pollutants are summarized, and potential by-products of different oxidants are presented. As a prerequisite for the integration of chemical oxidation with LPM filtration, compatibility of membrane with oxidants at low concentration and long exposure time are highlighted. Finally, the existing challenges and future research needs in practical application of chemical oxidation to improve performance of LPM are also discussed.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Shu Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Haiqing Chang
- College of Architecture and Environment, Sichuan University, Chengdu, 610207, PR China.
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
31
|
Gong W, Xie B, Deng S, Fan Y, Tang X, Liang H. Enhancement of anaerobic digestion effluent treatment by microalgae immobilization: Characterized by fluorescence excitation-emission matrix coupled with parallel factor analysis in the photobioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:105-113. [PMID: 31075577 DOI: 10.1016/j.scitotenv.2019.04.440] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The bacterial-microalgal consortium has been investigated to anaerobic digestion effluent (ADE) treatment in the photobioreactor (PBR). However, the high concentrations of nutrients reduced the ADE treatment efficiency and the transformation of organic pollutants in PBR was still unclear. In this study, two-sequencing batch PBRs were operated with suspended Microcystis aeruginosa (M. aeruginosa, SMA) and immobilized M. aeruginosa (IMA) to compare the ADE treatment performance. Fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) was conducted to identify organics degradations. The results showed that the proportion of living M. aeruginosa cell (86.4%) in PBR (IMA) was highly significant (p < 0.05) higher than that in PBR (SMA) (75.2%). This indicated immobilized microalgae beads enhanced the resistance to the high concentration of nutrients in PBR (IMA). EEM-PARAFAC analysis displayed the biodegradation order in the bacterial-microalgal consortium system was humic-like substances > tyrosine-like substances > tryptophan-like substances. The removals of humic-like matters (94.05 ± 0.92%) and tyrosine-like matters (91.13 ± 2.49%) in PBR (IMA) were significantly (p < 0.01) higher than those in PBR (SMA). Notably, the average removals of nutrients in PBR (IMA) were significantly (p < 0.05) higher than those in PBR (SMA). This result verified that microalgae immobilization benefitted nutrients removals with 93.05 ± 1.45% of NH4+-N and complete PO43--P removal in PBR (IMA). Moreover, the enrichment of functional genera Flavobacterium and Opitutus contributed to decreasing the organics loadings and strengthening the ADE treatment performance. Therefore, this study verified microalgae immobilization enhanced the actual ADE treatment. Additionally, fluorescent organic pollutants degradations were further evaluated by EEM-PARAFAC analysis in the bacterial-microalgal consortium.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China.
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; National University of Singapore Environmental Research Institute, National University of Singapore, 5A Engineering Dr. 1, Singapore 117411, Singapore
| | - Shihai Deng
- National University of Singapore Environmental Research Institute, National University of Singapore, 5A Engineering Dr. 1, Singapore 117411, Singapore; School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Yuhui Fan
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
32
|
Zhai S, Zhang W, Li T, Zhang W, Lv L, Pan B. Sodium hypochlorite assisted membrane cleaning: Alterations in the characteristics of organic foulants and membrane permeability. CHEMOSPHERE 2018; 211:139-148. [PMID: 30071425 DOI: 10.1016/j.chemosphere.2018.07.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Chemical cleaning is an important approach for alleviating severe fouling in membrane separation processes. In this study, lysozyme (LYS) was exposed to sodium hypochlorite (NaClO) with varied concentrations (0-2000 ppm) to understand the changes in the physicochemical properties and functional groups as well as the variations in membrane permeabilities. The results showed that membrane filterability exhibited an obvious 'U-shaped' trend, and the valley existed when the ratio of Cl/C (the ratio of NaClO and TOC concentrations in feed water) is among 1.35-3.09. Upon exposure to low dose NaClO, three-dimensional fluorescence excitation-emission matrix (3D-EEM) spectra showed that tryptophan protein substances were transformed to more hydrophobic humic-like substances. Fourier transform infrared (FTIR) analysis further confirmed that exposure to low dose NaClO promoted the breakage of aromatic substituents, leading to the formation of hydrophobic condensed aromatic substances. On the contrary, at high NaClO loads, protein structures were destroyed completely and almost no obvious fluorescent intensities could be detected, which promoted the recovery of membrane filterabilities. Notably, the chemical cleaning mechanisms of fouled membranes with NaClO were understood in depth in this study. These results provide new information about the oxidation products of LYS and the cleaning efficiency upon exposure to NaClO.
Collapse
Affiliation(s)
- Shu Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing University, 210023, PR China.
| | - Ting Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| | - Wenbin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, PR China
| |
Collapse
|
33
|
Role of ionic strength on protein fouling during ultrafiltration by synchronized UV–vis spectroscopy and electrochemical impedance spectroscopy. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Chen W, Qian C, Zhou KG, Yu HQ. Molecular Spectroscopic Characterization of Membrane Fouling: A Critical Review. Chem 2018. [DOI: 10.1016/j.chempr.2018.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Zhang X, Fan L, Roddick FA. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane. MEMBRANES 2018; 8:membranes8010007. [PMID: 29389873 PMCID: PMC5872189 DOI: 10.3390/membranes8010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
The influence of the interaction between aquatic humic substances and the algal organic matter (AOM) derived from Microcystis aeruginosa on the fouling of a ceramic microfiltration (MF) membrane was studied. AOM alone resulted in a significantly greater flux decline compared with Suwannee River humic acid (HA), and fulvic acid (FA). The mixture of AOM with HA and FA exhibited a similar flux pattern as the AOM alone in the single-cycle filtration tests, indicating the flux decline may be predominantly controlled by the AOM in the early filtration cycles. The mixtures resulted in a marked increase in irreversible fouling resistance compared with all individual feed solutions. An increase in zeta potential was observed for the mixtures (becoming more negatively charged), which was in accordance with the increased reversible fouling resistance resulting from enhanced electrostatic repulsion between the organic compounds and the negatively-charged ceramic membrane. Dynamic light scattering (DLS) and size exclusion chromatography analyses showed an apparent increase in molecular size for the AOM-humics mixtures, and some UV-absorbing molecules in the humics appeared to participate in the formation of larger aggregates with the AOM, which led to greater extent of pore plugging and hence resulted in higher irreversible fouling resistance.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Chemical and Environmental Engineering Department, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea.
| | - Linhua Fan
- Chemical and Environmental Engineering Department, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.
| | - Felicity A Roddick
- Chemical and Environmental Engineering Department, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.
| |
Collapse
|
36
|
Chen XD, Wang Z, Liu DY, Xiao K, Guan J, Xie YF, Wang XM, Waite TD. Role of adsorption in combined membrane fouling by biopolymers coexisting with inorganic particles. CHEMOSPHERE 2018; 191:226-234. [PMID: 29035794 DOI: 10.1016/j.chemosphere.2017.09.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/19/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
This study was conducted in order to obtain a better understanding of the combined fouling by biopolymers coexisting with inorganic particles from the aspects of fouling index, fouling layer structure and biopolymer-particle interactions. Calcium alginate was used as the model biopolymer and Fe2O3, Al2O3, kaolin, and SiO2 were used as model inorganic particles. Results showed that the combined fouling differed greatly among the four types of inorganic particles. The differences were attributed particularly to the different adsorption capacities for calcium alginate by the particles with this capacity decreasing in the order of Fe2O3, Al2O3, kaolin and SiO2. Particle size measurement and electron microscopic observation indicated the formation of agglomerates between calcium alginate and those inorganic particles exhibiting strong adsorption capacity. A structure was proposed for the combined fouling layer comprised of a backbone cake layer of alginate-inorganic particle agglomerates with the pores partially filled with discontinuous calcium alginate gels. The filterability of the fouling layer was primarily determined by the abundance of the gels. The strength of physical interaction between calcium alginate and each type of inorganic particle was calculated from the respective surface energies and zeta potentials. Calculation results showed that the extent of physical interaction increased in the order of Al2O3, Fe2O3, kaolin and SiO2, with this order differing from that of adsorption capacity. Chemical interactions may also play an important role in the adsorption of alginate and the consequent combined fouling. High-resolution XPS scans revealed a slight shift of electron binding energies when alginate was adsorbed.
Collapse
Affiliation(s)
- Xu-di Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dan-Yang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Guan
- Beijing Origin Water Technology Co., Ltd, Beijing, 102206, China
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
37
|
Juntawang C, Rongsayamanont C, Khan E. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure. CHEMOSPHERE 2017; 187:147-155. [PMID: 28846970 DOI: 10.1016/j.chemosphere.2017.08.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community.
Collapse
Affiliation(s)
- Chaipon Juntawang
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND 58108, USA.
| | - Chaiwat Rongsayamanont
- Research Center for Environmental Assessment and Technology for Hazardous Waste Management, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|