1
|
Enríquez-Sánchez FM, López-Vázquez MÁ, Olvera-Cortés ME, Valdez-Jiménez L, Villalobos-Gutiérrez PT, Pérez-Vega MI. Effect of Chronic Consumption of Fluoridated Water on Sciatic Nerve Conduction Velocity in Male Wistar Rats. Int J Toxicol 2025; 44:39-45. [PMID: 39501888 DOI: 10.1177/10915818241297082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The long-term effect of fluoridated water consumption during development on the velocity of nerve impulse conduction in the sciatic nerve of rats was assessed. Thirty male Wistar rats, 21 days old, were randomly assigned to five groups. Three groups were given fluoridated water ad libitum (as the only source) at different concentrations (10, 100, and 150 ppm), designated as groups F10, F100, and F150, respectively. The study included a control group (C) that received fluoridated water at the maximum level established by the World Health Organization (1.5 ppm of fluorides) and another group that received deionized water (DW). The animals were treated until they reached 90 days of age. Electrophysiological recordings were performed on the rats' sciatic nerves to determine nerve conduction velocity, and blood plasma was extracted for fluoride concentration analysis. The study found that the F150 group had a lower nerve impulse conduction velocity in the sciatic nerve compared to the C group (P = 0.0015). Additionally, there was a negative correlation between the concentration of fluorides in plasma and the nerve conduction velocity (r = -0.5132, P = 0.0037). These findings indicate that chronic consumption of high concentrations of fluoride leads to a decrease in nerve conduction velocity. This, in conjunction with potential alterations in the central nervous system, may explain the deficits in learning and memory tests that have been documented in numerous studies evaluating individuals exposed to fluoride consumption. These results provide valuable information for understanding the effects and action mechanisms of fluoride in exposed individuals.
Collapse
Affiliation(s)
- Fernanda Marlen Enríquez-Sánchez
- Laboratorio de Ciencias Biomédicas, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos (CULagos), Universidad de Guadalajara, Lagos de Moreno, México
| | | | | | - Liliana Valdez-Jiménez
- Laboratorio de Neuropsicología, Departamento de Humanidades, Artes y Culturas Extranjeras, CULagos, Universidad de Guadalajara, Lagos de Moreno, México
| | - Paola Trinidad Villalobos-Gutiérrez
- Laboratorio de Ciencias Biomédicas, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos (CULagos), Universidad de Guadalajara, Lagos de Moreno, México
| | - María Isabel Pérez-Vega
- Laboratorio de Ciencias Biomédicas, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos (CULagos), Universidad de Guadalajara, Lagos de Moreno, México
- Laboratorio de Neuropsicología, Departamento de Humanidades, Artes y Culturas Extranjeras, CULagos, Universidad de Guadalajara, Lagos de Moreno, México
| |
Collapse
|
2
|
Zhang Y, Gao Y, Liu X. Focus on cognitive impairment induced by excessive fluoride: An update review. Neuroscience 2024; 558:22-29. [PMID: 39137871 DOI: 10.1016/j.neuroscience.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Fluorosis is a global public health concern. Prolonged exposure to excessive fluoride causes fluoride accumulation in the hippocampus, resulting in cognitive dysfunction. Cell death is necessary for maintaining tissue function and morphology, and changes in the external morphology of nerve cells and the function of many internal organelles are typical features of cell death; however, it is also a typical feature of cognitive impairment caused by fluorosis. However, the pathogenesis of cognitive impairment caused by different degrees of fluoride exposure varies. Herein, we provide an overview of cognitive impairment caused by excessive fluoride exposure in different age groups, and the underlying mechanisms for cognitive impairment in various model organisms. The mechanisms underlying these impairments include oxidative stress, synaptic and neurotransmission dysfunction, disruption of mitochondrial and energy metabolism, and calcium channel dysregulation. This study aims to provide potential insights that serve as a reference for subsequent research on the cognitive function caused by excessive fluoride.
Collapse
Affiliation(s)
- Yuhang Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, Heilongjiang 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, Heilongjiang 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, Heilongjiang 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, Heilongjiang 150081, China.
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, Heilongjiang 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
3
|
NTP monograph on the state of the science concerning fluoride exposure and neurodevelopment and cognition: a systematic review. NTP MONOGRAPH 2024:NTP-MGRAPH-8. [PMID: 39172715 PMCID: PMC11586815 DOI: 10.22427/ntp-mgraph-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Fluoride is a common exposure in our environment that comes from a variety of sources and is widely promoted for its dental and overall oral health benefits. Contributions to an individual's total exposure come primarily from fluoride in drinking water, food, beverages and dental products. A 2006 evaluation by the National Research Council (NRC) found support for an association between consumption of high levels of naturally occurring fluoride in drinking water and adverse neurological effects in humans and recommended further investigation. The evidence reviewed at that time was from dental and skeletal fluorosis-endemic regions of China. Since the NRC evaluation, the number and location of studies examining cognitive and neurobehavioral effects of fluoride in humans have grown considerably, including several recent North American prospective cohort studies evaluating prenatal fluoride exposure. In 2016, the National Toxicology Program (NTP) published a systematic review of the evidence from experimental animal studies on the effects of fluoride on learning and memory. That systematic review found a low-to-moderate level of evidence that deficits in learning and memory occur in non-human mammals exposed to fluoride. OBJECTIVE To conduct a systematic review of the human, experimental animal, and mechanistic literature to evaluate the extent and quality of the evidence linking fluoride exposure to neurodevelopmental and cognitive effects in humans. METHOD A systematic review protocol was developed and utilized following the standardized OHAT systematic review approach for conducting literature-based health assessments. This monograph presents the current state of evidence associating fluoride exposure with cognitive or neurodevelopmental health effects and incorporated predefined assessments of study quality and confidence levels. Benefits of fluoride with respect to oral health are not addressed in this monograph. RESULTS The bodies of experimental animal studies and human mechanistic evidence do not provide clarity on the association between fluoride exposure and cognitive or neurodevelopmental human health effects. Human mechanistic studies were too heterogenous and limited in number to make any determination on biological plausibility. This systematic review identified studies that assessed the association between estimated fluoride exposure and cognitive or neurodevelopmental effects in both adults and children, which were evaluated separately. The most common exposure assessment measures were drinking water concentrations and estimates of total fluoride exposure, as reflected in biomarkers such as urinary fluoride. In adults, only two high-quality cross-sectional studies examining cognitive effects were available. The literature in children was more extensive and was separated into studies assessing intelligence quotient (IQ) and studies assessing other cognitive or neurodevelopmental outcomes. Eight of nine high-quality studies examining other cognitive or neurodevelopmental outcomes reported associations with estimated fluoride exposure. Seventy-two studies assessed the association between fluoride exposure and IQ in children. Nineteen of those studies were considered to be high quality; of these, 18 reported an inverse association between estimated fluoride exposure and IQ in children. The 18 studies, which include 3 prospective cohort studies and 15 cross-sectional studies, were conducted in 5 different countries. Forty-six of the 53 low-quality studies in children also found evidence of an inverse association between estimated fluoride exposure and IQ in children. DISCUSSION Existing animal studies provide little insight into the question of whether fluoride exposure affects IQ. In addition, studies that evaluated fluoride exposure and mechanistic data in humans were too heterogenous and limited in number to make any determination on biological plausibility. The body of evidence from studies in adults is also limited and provides low confidence that fluoride exposure is associated with adverse effects on adult cognition. There is, however, a large body of evidence on associations between fluoride exposure and IQ in children. There is also some evidence that fluoride exposure is associated with other neurodevelopmental and cognitive effects in children; although, because of the heterogeneity of the outcomes, there is low confidence in the literature for these other effects. This review finds, with moderate confidence, that higher estimated fluoride exposures (e.g., as in approximations of exposure such as drinking water fluoride concentrations that exceed the World Health Organization Guidelines for Drinking-water Quality of 1.5 mg/L of fluoride) are consistently associated with lower IQ in children. More studies are needed to fully understand the potential for lower fluoride exposure to affect children's IQ.
Collapse
|
4
|
Liu X, Lau CLB, Ding H, Matinlinna JP, Tsoi JKH. Enamel Remineralisation with a Novel Sodium Fluoride-Infused Bristle Toothbrush. Dent J (Basel) 2024; 12:142. [PMID: 38786540 PMCID: PMC11119043 DOI: 10.3390/dj12050142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
This study aims to investigate whether toothbrushes with fluoride-infused bristles have any (re)mineralisation effects on bovine enamel. Bovine incisors (N = 160) were extracted, and the buccal side of the crown was cut into dimensions of ~5 mm × 5 mm with a low-speed saw. These specimens were randomly allocated into four groups: half (80 teeth) were stored in demineralising solution (DM), and the other half were stored in deionised water (DW) for 96 h. Then, they were brushed with a force of 2.0 ± 0.1 N for five min with a manual toothbrush with either fluoride-infused (TF) or regular (TR) bristles. Microhardness (Vickers), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) were used to investigate the surfaces of the bovine enamel specimens before and after brushing. Two-way ANOVA was used to analyse the hardness data, and the pairwise comparison method was used to analyse the Ca/P ratio, for each group at α = 0.05. The results show that brushing with either of these toothbrushes increased the Vickers microhardness on DM and DW enamel (p < 0.001), whereas hydroxyapatite was revealed in all groups by XRD. The DM samples showed a significant increase (p < 0.05) in the Ca/P ratios after brushing with TR and TF. Conversely, under DW conditions, these ratios decreased significantly after brushing. In terms of the F atomic%, TF increased significantly. SEM revealed mineral deposition in the DM groups after toothbrushing. To conclude, toothbrushing effectively induces the microhardness of sound and demineralised enamel, while fluoride-infused bristles might be able to retain fluoride on the enamel surface.
Collapse
Affiliation(s)
- Xiaotian Liu
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
- Dental Materials Science, Applied and Oral Science and Community Oral Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (H.D.); (J.P.M.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Chun Lok Bryan Lau
- Dental Materials Science, Applied and Oral Science and Community Oral Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (H.D.); (J.P.M.)
| | - Hao Ding
- Dental Materials Science, Applied and Oral Science and Community Oral Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (H.D.); (J.P.M.)
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Applied and Oral Science and Community Oral Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (H.D.); (J.P.M.)
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK
| | - James K. H. Tsoi
- Dental Materials Science, Applied and Oral Science and Community Oral Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (H.D.); (J.P.M.)
| |
Collapse
|
5
|
Zhu X, Zhang S, Liu X, Li H, Zhu X, Zhang J, Wang X, Zhang M. Integrative transcriptome and metabolome analysis of fluoride exposure induced developmental neurotoxicity in mouse brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115752. [PMID: 38039848 DOI: 10.1016/j.ecoenv.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Fluoride could cause developmental neurotoxicity and significantly affect the intelligence quotient (IQ) of children. However, the systematic mechanism of neuronal damage caused by excessive fluoride administration in offspring is largely unknown. Here, we present a comprehensive integrative transcriptome and metabolome analysis to study the mechanism of developmental neurotoxicity caused by chronic fluoride exposure. Comparing the different doses of fluoride treatments in two generations revealed the exclusive signature of metabolism pathways and gene expression profiles. In particular, neuronal development and synaptic ion transport are significantly altered at the gene expression and metabolite accumulation levels for both generations, which could act as messengers and enhancers of fluoride-induced systemic neuronal injury. Choline and arachidonic acid metabolism, which highlighted in the integrative analysis, exhibited different regulatory patterns between the two generations, particularly for synaptic vesicle formation and inflammatory factor transport. It may suggest that choline and arachidonic acid metabolism play important roles in developmental neurotoxic responses for offspring mice. Our study provides comprehensive insights into the metabolomic and transcriptomic regulation of fluoride stress responses in the mechanistic explanation of fluoride-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Shunbin Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China
| | - Xiaoxiao Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China
| | - Huixia Li
- Gansu Tongxing Intelligent Technology Development Co., Ltd., Lanzhou 730070, Gansu Province, China
| | - Xinyu Zhu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China
| | - Xiaopeng Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Min Zhang
- Department of Scientific Research, Gansu Provincial Hospital, Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
6
|
Kocak Y, Oto G, Huyut Z, Alp HH, Turkan F, Onay E. Effects of fluoride on oxidative DNA damage, nitric oxide level, lipid peroxidation and cholinesterase enzyme activity in a rotenone-induced experimental Parkinson's model. Neurol Res 2023; 45:979-987. [PMID: 37699078 DOI: 10.1080/01616412.2023.2257452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/29/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE Environmental toxins are known to be one of the important factors in the development of Parkinson's disease (PD). This study was designed to investigate the possible contribution of fluoride (F) exposure to oxidative stress and neurodegeneration in rats with PD induced by rotenone (ROT). MATERIALS AND METHODS A total of 72 Wistar albino male rats were used in the experiment and 9 groups were formed with 8 animals in each group. ROT (2 mg/kg) was administered subcutaneously (sc) for 28 days. Different doses of sodium fluoride (NaF) (25, 50 and 100 ug/mL) were given orally (po) for 4 weeks. Malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO), oxidative DNA damage (8-OHdG) and cholinesterase (AChE/BChE) enzyme activities were evaluated in serum and brain tissue homogenates. RESULTS Rats treated with ROT and NaF had significant increases in serum and brain MDA, NO content, and decreases in GSH. In addition, the combination of ROT and NaF triggered oxidative DNA damage and resulted in increased AChE/BChE activity. CONCLUSIONS Findings suggest that NaF and ROT may interact synergistically leading to oxidative damage and neuronal cell loss. As a result, we believe that exposure to pesticides in combination with NaF is one of the environmental factors that should not be ignored in the etiology of neurological diseases such as PD in populations in areas with endemic fluorosis.
Collapse
Affiliation(s)
- Yilmaz Kocak
- Department of Physical therapy and rehabilitation, Faculty of Health Sciences, Van Yuzuncu Yil University, Van, Turkey
- Department of Pharmacology-Toxicology, Van Yuzuncu Yil University, Van, Turkey
| | - Gokhan Oto
- Department of Pharmacology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Hamit Hakan Alp
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Fikret Turkan
- Department of Basic Sciences Faculty of Dentistry, Igdir University, Iğdır, Turkey
| | - Ezgi Onay
- Department of Pharmacology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
7
|
Lingli C, Hongmei N, Penghuan J, Hongli Z, Yuye L, Rui W, Fei R, Zhihong Y, Dongfang H, Yaming G. Inhibition of RhoA/ROCK signalling pathway activity improves neural damage and cognitive deficits in the fluorosis model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115554. [PMID: 37806133 DOI: 10.1016/j.ecoenv.2023.115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Excessive fluoride intake poses health risks to humans and animals. Many studies have indicated that fluoride exposure can damage the cytoskeleton and synapses, which has negative effects on the intellectual development of humans and animals. Our previous study suggested that the RhoA/ROCK signalling pathway is activated by NaF exposure in HT-22 cells and plays a vital role in cytoskeletal assembly and synaptogenesis. However, the mechanism underlying RhoA/ROCK-mediated cytoskeletal injury induced by fluoride remains unclear. In this study, Neuro-2A cells and ICR mice were used to investigate the effects of RhoA/ROCK activation inhibition on NaF-induced synaptic dysfunction and cognitive impairment. We detected the expression of GAP, RhoA, ROCK1/2, and (p)-MLC in vivo and in vitro model. The results showed that NaF exposure activated the RhoA/ROCK/MLC signalling pathway. We measured the effects of RhoA/ROCK inhibition on synaptic injury and intellectual impairment induced by NaF exposure. In vitro, Y-27632 suppressed activated RhoA/ROCK, attenuated morphological and ultrastructural damage, and decreased the survival rate and synapse-functional protein expression caused by NaF. In vivo, the results showed that the RhoA/ROCK/MLC pathway was inhibited by fasudil and improved pathological damage in the hippocampus, cognitive impairment, and decreased expression of neurofunctional proteins induced by NaF. Overall, these results suggest that fasudil and Y-27632 can reverse neurotoxicity caused by fluoride exposure. Furthermore, inhibition of RhoA/ROCK may be a future treatment for CNS injury, and more detailed studies on other neurodegenerative disease models are required to confirm its effectiveness.
Collapse
Affiliation(s)
- Chen Lingli
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China; Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Ning Hongmei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Jia Penghuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Zhang Hongli
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Liu Yuye
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Wang Rui
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Ren Fei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Yin Zhihong
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Hu Dongfang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Ge Yaming
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China.
| |
Collapse
|
8
|
Chen L, Jia P, Liu Y, Wang R, Yin Z, Hu D, Ning H, Ge Y. Fluoride exposure disrupts the cytoskeletal arrangement and ATP synthesis of HT-22 cell by activating the RhoA/ROCK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114718. [PMID: 36950989 DOI: 10.1016/j.ecoenv.2023.114718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fluoride, an environmental contaminant, is ubiquitously present in air, water, and soil. It usually enters the body through drinking water and may cause structural and functional disorders in the central nervous system in humans and animals. Fluoride exposure affects cytoskeleton and neural function, but the mechanism is not clear. METHODS The specific neurotoxic mechanism of fluoride was explored in HT-22 cells. Cellular proliferation and toxicity detection were investigated by CCK-8, CCK-F, and cytotoxicity detection kits. The development morphology of HT-22 cells was observed under a light microscope. Cell membrane permeability and neurotransmitter content were determined using lactate dehydrogenase (LDH) and glutamate content determination kits, respectively. The ultrastructural changes were detected by transmission electron microscopy, and actin homeostasis was observed by laser confocal microscopy. ATP enzyme and ATP activity were determined using the ATP content kit and ultramicro-total ATP enzyme content kit, respectively. The expression levels of GLUT1 and 3 were assessed by Western Blot assays and qRT-PCR. RESULTS Our results showed that fluoride reduced the proliferation and survival rates of HT-22 cells. Cytomorphology showed that dendritic spines became shorter, cellular bodies became rounder, and adhesion decreased gradually after fluoride exposure. LDH results showed that fluoride exposure increased the membrane permeability of HT-22 cells. Transmission electron microscopy results showed that fluoride caused cells to swell, microvilli content decreased, cellular membrane integrity was damaged, chromatin was sparse, mitochondria ridge gap became wide, and microfilament and microtubule density decreased. Western Blot and qRT-PCR analyses showed that RhoA/ROCK/LIMK/Cofilin signaling pathway was activated by fluoride. F-actin/G-actin fluorescence intensity ratio remarkably increased in 0.125 and 0.5 mM NaF, and the mRNA expression of MAP2 was significantly decreased. Further studies showed that GLUT3 significantly increased in all fluoride groups, while GLUT1 decreased (p < 0.05). ATP contents remarkably increased, and ATP enzyme activity substantially decreased after NaF treatment with the control. CONCLUSION Fluoride activates the RhoA/ROCK/LIMK/Cofilin signaling pathway, impairs the ultrastructure, and depresses the connection of synapses in HT-22 cells. Moreover, fluoride exposure affects the expression of glucose transporters (GLUT1 and 3) and ATP synthesis. Sum up fluoride exposure disrupts actin homeostasis, ultimately affecting structure, and function in HT-22 cells. These findings support our previous hypothesis and provide a new perspective on the neurotoxic mechanism of fluorosis.
Collapse
Affiliation(s)
- Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China; Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Penghuan Jia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Yuye Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Rui Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China.
| |
Collapse
|
9
|
Ottappilakkil H, Babu S, Balasubramanian S, Manoharan S, Perumal E. Fluoride Induced Neurobehavioral Impairments in Experimental Animals: a Brief Review. Biol Trace Elem Res 2023; 201:1214-1236. [PMID: 35488996 DOI: 10.1007/s12011-022-03242-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
Fluoride is one of the major toxicants in the environment and is often found in drinking water at higher concentrations. Living organisms including humans exposed to high fluoride levels are found to develop mild-to-severe detrimental pathological conditions called fluorosis. Fluoride can cross the hematoencephalic barrier and settle in various brain regions. This accumulation affects the structure and function of both the central and peripheral nervous systems. The neural ultrastructure damages are reflected in metabolic and cognitive activities. Hindrances in synaptic plasticity and signal transmission, early neuronal apoptosis, functional alterations of the intercellular signaling pathway components, improper protein synthesis, dyshomeostasis of the transcriptional and neurotrophic factors, oxidative stress, and inflammatory responses are accounted for the fluoride neurotoxicity. Fluoride causes a decline in brain functions that directly influence the overall quality of life in both humans and animals. Animal studies are widely used to explore the etiology of fluoride-induced neurotoxicity. A good number of these studies support a positive correlation between fluoride intake and toxicity phenotypes closely associated with neurotoxicity. However, the experimental dosages highly surpass the normal environmental concentrations and are difficult to compare with human exposures. The treatment procedures are highly dependent on the dosage, duration of exposure, sex, and age of specimens among other factors which make it difficult to arrive at general conclusions. Our review aims to explore fluoride-induced neuronal damage along with associated histopathological, behavioral, and cognitive effects in experimental models. Furthermore, the correlation of various molecular mechanisms upon fluoride intoxication and associated neurobehavioral deficits has been discussed. Since there is no well-established mechanism to prevent fluorosis, phytochemical-based alleviation of its characteristic indications has been proposed as a possible remedial measure.
Collapse
Affiliation(s)
| | - Srija Babu
- Bharathiar University, Coimbatore, Tamilnadu, India
| | | | | | | |
Collapse
|
10
|
Chen L, Liu Y, Jia P, Zhang H, Yin Z, Hu D, Ning H, Ge Y. Acute lead acetate induces neurotoxicity through decreased synaptic plasticity-related protein expression and disordered dendritic formation in nerve cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58927-58935. [PMID: 35377123 DOI: 10.1007/s11356-022-20051-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a widespread environmental heavy metal that can damage the cerebral cortex and hippocampus, and reduce the learning and memory ability in humans and animals. In vivo and in vitro models of acute lead acetate exposure were established to further study the mechanism of neurons injury. In this study, 4-week-old female Kunming mice were randomly divided into four groups. Each group was treated with distilled water with different Pb concentrations (0, 2.4, 4.8 and 9.6 mM). Mice were killed, and brain tissues were collected to detect the changes in synaptic plasticity-related protein expression. Furthermore, Neuro-2A cells were treated with 0, 5, 25 and 50 μM lead acetate for 24 h to observe the changes in cell morphology and function. In in vivo experiment, results showed that the expression levels of cytoskeleton-associated and neural function-related proteins decreased in a dose-dependent manner in the mouse brain tissue. In in vitro experiment, compared with the control group, Pb treatment groups were observed with smaller and round cells, decreased cell density and number of synapses. In the Pb exposure group, the survival rate of nerve cells decreased evidently, and the permeability of the cell membrane was increased. Western blot results showed that the expression of cytoskeleton-associated and function-related proteins decreased gradually with increased Pb exposure dose. Confocal laser scanning microscopy results revealed the morphological and volumetric changes in Neuro-2A cells, and a dose-dependent reduction in the number of axon and dendrites. These results suggested that abnormal neural structures and inhibiting expression of synaptic plasticity-related proteins might be the possible mechanisms of Pb-induced mental retardation in human and animals, thereby laying a foundation for the molecular mechanism of Pb neurotoxicity.
Collapse
Affiliation(s)
- Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan, People's Republic of China
| | - Yuye Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Penghuan Jia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Hongli Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan, People's Republic of China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan, People's Republic of China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China.
| |
Collapse
|
11
|
Guo D, Luo L, Kong Y, Kuang Z, Wen S, Zhao M, Zhang W, Fan J. Enantioselective neurotoxicity and oxidative stress effects of paclobutrazol in zebrafish (Danio rerio). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105136. [PMID: 35772839 DOI: 10.1016/j.pestbp.2022.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Paclobutrazol is a widely used chiral plant growth regulator and its enantioselective toxicity in aquatic organisms is less explored till now. Herein, the enantioselective neurotoxicity of paclobutrazol mediated by oxidative stress in zebrafish were investigated. The oxidative stress parameters and neurotoxic biomarkers changed significantly in each exposure group, and paclobutrazol showed enantioselective toxicity in zebrafish. Firstly, (2R, 3R)-paclobutrazol exhibited a stronger oxidative stress in zebrafish than (2S, 3S)-enantiomer (P < 0.05). Then, activities of acetylcholinesterase, calcineurin, and total nitric oxide synthase in (2R, 3R)-paclobutrazol treatments were 0.61-0.89, 1.24-1.53, and 1.21-1.35-fold stronger (P < 0.05) than those in (2S, 3S)-enantiomer treatments, respectively. Next, the content variations of four neurotransmitters in zebrafish exposed to (2R, 3R)-paclobutrazol were significantly larger than those in (2S, 3S)-enantiomer treatments (P < 0.05). Moreover, (2R, 3R)-paclobutrazol had stronger binding with the receptors than (2S, 3S)-enantiomer through molecular docking. The integrated biomarker response values further demonstrated that (2R, 3R)-paclobutrazol showed stronger toxicity to zebrafish than (2S, 3S)-enantiomer. Furthermore, the neurotoxicity of paclobutrazol can be interpreted as the mediating effect of oxidative stress in zebrafish through correlation analysis, and an adverse outcome pathway for the nervous system in zebrafish induced by paclobutrazol was proposed. This work will greatly extend our understanding on the enantioselective toxic effects of paclobutrazol in aquatic organisms.
Collapse
Affiliation(s)
- Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Lulu Luo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiyang Kuang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Siyi Wen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Toxicity studies of select ionic liquids (1-ethyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, 1-butyl-1-methylpyrrolidinium chloride, and n-butylpyridinium chloride) administered in drinking water to Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice. TOXICITY REPORT SERIES 2022:NTP-TOX-103. [PMID: 35652689 PMCID: PMC9638888 DOI: 10.22427/ntp-tox-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are synthetic solvents with applications in a variety of industrial and chemical industries. Human exposure to this diverse chemical class is primarily through dermal or oral routes. Research suggests toxicity may be associated with IL structural characteristics, including the type of cation base or alkyl chain substitutions associated with the cation. To further investigate this hypothesis, the National Toxicology Program (NTP) conducted 3-month toxicity studies in male and female Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice (n = 10/sex/exposure group; 3 exposure concentrations per IL) to compare the relative toxicities of four ILs administered via drinking water-1-ethyl-3-methylimidazolium chloride (Emim-Cl), 1-butyl-3-methylimidazolium chloride (Bmim-Cl), 1-butyl-1-methylpyrrolidinium chloride (Bmpy-Cl), and n-butylpyridinium chloride (NBuPy-Cl). (Abstract Abridged).
Collapse
|
13
|
Impacts of Fluoride Neurotoxicity and Mitochondrial Dysfunction on Cognition and Mental Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412884. [PMID: 34948493 PMCID: PMC8700808 DOI: 10.3390/ijerph182412884] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022]
Abstract
This review focuses on the synthesis of current experimental and observational data regarding the effect of fluoride exposure on childhood mental health and the role of mitochondrial function as a mechanism of action. We aggregated data on the relationships between fluoride neurotoxicity, mitochondrial function, and cognitive and mental health using PubMed. Current animal and human research suggest that prenatal and perinatal fluoride exposure might have neurotoxic effects. These studies observed physical changes (fur loss and delayed reflex development in animals), intelligence loss, increased hyperactivity, and irregular moods associated with fluoride exposure. Two gaps in the literature were identified: (1) there is limited research on the mental and emotional impacts of fluoride exposure compared to research on cognitive outcomes, and (2) human studies primarily focus on prenatal and perinatal exposure, with little research conducted at other time points (e.g., adolescence). Furthermore, there is no agreed-upon mechanism for the neurotoxic effects of fluoride; however, fluoride can induce mitochondrial damage, including decreasing circulating mitochondrial DNA content, dysregulating biogenesis, and circular structure loss. Additionally, many neurodevelopmental conditions have mitochondrial underpinnings. More work is needed to elucidate the impact and timing of fluoride exposure on mental health and the role of mitochondrial function as a biological mechanism
Collapse
|
14
|
Ning H, Li C, Yin Z, Hu D, Ge Y, Chen L. Fluoride exposure decreased neurite formation on cerebral cortical neurons of SD rats in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50975-50982. [PMID: 33977427 DOI: 10.1007/s11356-021-13950-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Fluoride, a geochemical element, can damage the brain and result in dysfunction of the central nervous system. In recent years, fluoride-induced neurotoxicity has become one of research focuses of environmental toxicology. Our previous study showed that fluoride could induce the structural damages of the cerebral cortex and reduce the learning and memory abilities of mice offspring. However, the underlying mechanisms of these effects remain unclear. In this study, primary neurons were isolated from the cerebral cortices of postnatal 1-day SD rats. The primary cultured cerebral cortical neurons were adherent and the cellular network was obvious. Neurons were identified by Nissl's staining and were used for experiments. Different concentrations of sodium fluoride (0.5, 1.0, 1.5, 2.0 and 2.5 mM) were chosen to explore its toxic effects on neuron of SD rats in vitro. Results showed that neuronal morphology was obviously damaged in 2.0 and 2.5 mM, but was not adversely affected in 0.5 and 1 mM. Further studies revealed that the neurites of neuron were shrunken and even became fractured with the increase in NaF dose, which have been detected by scanning electron microscopy (SEM). Meanwhile, TEM showed marginated chromatin, widened nuclear gaps, damaged nuclei and swollen or even absent mitochondria in 1.5, 2 and 2.5 mM group. The cytoskeletal staining was consistent with the above results. The number of neurites of cerebral cortical neuron significantly decreased after fluoride exposure by immunofluorescent assay. In summary, high fluoride (1.5, 2 and 2.5 mM) concentrations exerted a significant toxic effect on the cellular morphologies and neural formation of primary cultured cortical neurons. These findings provide new insights into the roles of NaF in neuronal damage and can contribute to an improved understanding of fluoride-induced neurotoxicity.
Collapse
Affiliation(s)
- Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Chong Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
15
|
Mohamed O, Al-Othman A, Al-Nashash H, Tawalbeh M, Almomani F, Rezakazemi M. Fabrication of titanium dioxide nanomaterial for implantable highly flexible composite bioelectrode for biosensing applications. CHEMOSPHERE 2021; 273:129680. [PMID: 33486350 DOI: 10.1016/j.chemosphere.2021.129680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Implantable and stretchable electrodes have managed to progress the medical field from a medical diagnosis aspect to a patient treatment level. They offer the ability to detect biosignals and conduct electrical current to tissues that aid in muscle stimulation and axon regeneration. Current conventional electrodes are fabricated from stiff and very expensive, precious metals such as platinum. In this work, novel, low cost, and highly flexible electrode materials were fabricated based on titanium dioxide (TiO2) and polymethyl methacrylate (PMMA) supported by a silicone polymer matrix. The electrode materials were characterized by their electrochemical, mechanical, and surface properties. The electrodes possessed high flexibility with Young's modulus of 235 kPa, revealing highly stretchable characteristics. The impedance at 1 kHz was around 114.6 kΩ, and the charge capacity was 1.23 mC/cm2. The fabricated electrodes appeared to have a smooth surface, as seen in the scanning electron microscope micrographs, compared with electrodes in the literature. Long-time stability tests revealed an overall decrease in impedance and an increase in the charge capacity up to 475% of the initial value within three weeks.
Collapse
Affiliation(s)
- Omnia Mohamed
- Biomedical Engineering MSBME, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Hasan Al-Nashash
- Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, United Arab Emirates.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
16
|
Wang J, Yue B, Zhang X, Guo X, Sun Z, Niu R. Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143376. [PMID: 33172640 DOI: 10.1016/j.scitotenv.2020.143376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Fluorosis is a widespread endemic disease. Reports have shown that high fluoride causes the dysfunction of central nervous system (CNS) in animals. The neurotoxicity of fluoride may be related to the activation of microglia. Moreover, numerous studies have found that exercise facilitates the plasticity of structure and function in CNS, partly owing to the regulation of microglia activation. The present study was conducted to explore the effect of exercise on the microglial activation of hippocampus in fluorosis mice. One hundred adult female Institute of Cancer Research (ICR) mice were randomly divided into 4 groups: control group (group C, distilled water by gavage); exercise group (group E, distilled water by gavage and treadmill exercise); fluoride group [group F, 24 mg/kg sodium fluoride (NaF) by gavage]; fluoride plus exercise group (group F + E, 24 mg/kg NaF by gavage and treadmill exercise). After 8 weeks, hippocampal morphological structure, microglial activation and RNA transcriptome of mice in each group were evaluated by hematoxylin and eosin (HE) staining, Nissl staining, immunohistochemistry (IHC), quantitative real time PCR (QRT-PCR) and transcriptome sequencing. We discovered that the number of M1-type microglia in fluorosis-mice hippocampus was significantly increased when compared to group C; group F + E showed a decrease in the number of M1-type microglia with the comparison to group F. In addition, the hippocampal transcriptome analysis showed that 576 differential expression genes (DEG) were confirmed in group F, compared to group C, and 670 DEG were differently expressed in group F + E when compared to group F. Gene Ontology (GO) analysis showed that changed genes were implicated in regulation of transcription, DNA-templated, integral component of membrane and adenosine triphosphate (ATP) binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of 670 DEG was helpful to find neuroactive ligand-receptor interaction pathway. In conclusion, these results indicate that treadmill running inhibits the excessive activation of microglia in hippocampus of the fluoride-toxic mice, accompanied with the alteration of neuroactive ligand-receptor interaction pathway.
Collapse
Affiliation(s)
- Jixiang Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Baijuan Yue
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xuhua Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xin Guo
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
17
|
Effects of Fluoride Exposure on Primary Human Melanocytes from Dark and Light Skin. TOXICS 2020; 8:toxics8040114. [PMID: 33276624 PMCID: PMC7761615 DOI: 10.3390/toxics8040114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Fluoride exposure has adverse effects on human health that have been studied in vitro in cell culture systems. Melanocytes are the melanin pigment-producing cells that have a significant role in the regulation of the process of melanogenesis, which provides several health benefits. Melanocytes are present in the oral cavity, skin, brain, lungs, hair, and eyes. However, to date, there has been no study on the effects of fluoride exposure on melanocytes. Hence, in the current study, we have studied the effects of sodium fluoride (NaF) exposure on neonatal human epidermal melanocytes (HEMn) derived from two different skin phototypes, lightly pigmented (LP) and darkly pigmented (DP). We have assessed the impact of a 24 h and 72 h NaF exposure on metabolic activity and membrane integrity of these cells. In addition, we have evaluated whether NaF exposure might have any impact on the physiological functions of melanocytes associated with the production of melanin, which is regulated by activity of the enzyme tyrosinase. We have also assessed if NaF exposure might induce any oxidative stress in LP and DP melanocytes, by evaluation of production of reactive oxygen species (ROS) and measurement of mitochondrial membrane potential (MMP) levels. Our results showed that HEMn-LP cells showed a higher sensitivity to NaF cytotoxicity than HEMn-DP cells, with significant cytotoxicity at concentrations >1 mM, while concentration range 0.25–1 mM were nontoxic and did not lead to oxidative stress, and also did not alter the levels of intracellular melanin or cellular tyrosinase activity, indicating that treatment up to 1 mM NaF is generally safe to melanocytes from both pigmentation phototypes.
Collapse
|
18
|
Guth S, Hüser S, Roth A, Degen G, Diel P, Edlund K, Eisenbrand G, Engel KH, Epe B, Grune T, Heinz V, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lampen A, Mally A, Marchan R, Marko D, Mühle E, Nitsche MA, Röhrdanz E, Stadler R, van Thriel C, Vieths S, Vogel RF, Wascher E, Watzl C, Nöthlings U, Hengstler JG. Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch Toxicol 2020; 94:1375-1415. [PMID: 32382957 PMCID: PMC7261729 DOI: 10.1007/s00204-020-02725-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022]
Abstract
Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects. Moreover, in vitro studies investigating fluoride in neuronal cells and precursor/stem cells were analyzed, and 23 epidemiological studies published since 2012 were considered. The results show that the margin of exposure (MoE) between no observed adverse effect levels (NOAELs) in animal studies and the current adequate intake (AI) of fluoride (50 µg/kg b.w./day) in humans ranges between 50 and 210, depending on the specific animal experiment used as reference. Even for unusually high fluoride exposure levels, an MoE of at least ten was obtained. Furthermore, concentrations of fluoride in human plasma are much lower than fluoride concentrations, causing effects in cell cultures. In contrast, 21 of 23 recent epidemiological studies report an association between high fluoride exposure and reduced intelligence. The discrepancy between experimental and epidemiological evidence may be reconciled with deficiencies inherent in most of these epidemiological studies on a putative association between fluoride and intelligence, especially with respect to adequate consideration of potential confounding factors, e.g., socioeconomic status, residence, breast feeding, low birth weight, maternal intelligence, and exposure to other neurotoxic chemicals. In conclusion, based on the totality of currently available scientific evidence, the present review does not support the presumption that fluoride should be assessed as a human developmental neurotoxicant at the current exposure levels in Europe.
Collapse
Affiliation(s)
- Sabine Guth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Stephanie Hüser
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Angelika Roth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Gisela Degen
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Karolina Edlund
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Karl-Heinz Engel
- Department of General Food Technology, School of Life Sciences, TU Munich, Freising, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Thomas Henle
- Department of Food Chemistry, TU Dresden, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, Bundesinstitut für Risikobewertung (BfR), Berlin, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Rosemarie Marchan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Eva Mühle
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Elke Röhrdanz
- Department of Experimental Pharmacology and Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Richard Stadler
- Institute of Food Safety and Analytic Sciences, Nestlé Research Centre, Lausanne, Switzerland
| | - Christoph van Thriel
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, TU Munich, Freising, Germany
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany.
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany.
| |
Collapse
|
19
|
Johnston NR, Strobel SA. Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 2020; 94:1051-1069. [PMID: 32152649 PMCID: PMC7230026 DOI: 10.1007/s00204-020-02687-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/21/2020] [Indexed: 02/04/2023]
Abstract
Fluoride is ubiquitously present throughout the world. It is released from minerals, magmatic gas, and industrial processing, and travels in the atmosphere and water. Exposure to low concentrations of fluoride increases overall oral health. Consequently, many countries add fluoride to their public water supply at 0.7-1.5 ppm. Exposure to high concentrations of fluoride, such as in a laboratory setting often exceeding 100 ppm, results in a wide array of toxicity phenotypes. This includes oxidative stress, organelle damage, and apoptosis in single cells, and skeletal and soft tissue damage in multicellular organisms. The mechanism of fluoride toxicity can be broadly attributed to four mechanisms: inhibition of proteins, organelle disruption, altered pH, and electrolyte imbalance. Recently, there has been renewed concern in the public sector as to whether fluoride is safe at the current exposure levels. In this review, we will focus on the impact of fluoride at the chemical, cellular, and multisystem level, as well as how organisms defend against fluoride. We also address public concerns about fluoride toxicity, including whether fluoride has a significant effect on neurodegeneration, diabetes, and the endocrine system.
Collapse
Affiliation(s)
- Nichole R Johnston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
20
|
Zhao Q, Tian Z, Zhou G, Niu Q, Chen J, Li P, Dong L, Xia T, Zhang S, Wang A. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride. Theranostics 2020; 10:4822-4838. [PMID: 32308752 PMCID: PMC7163447 DOI: 10.7150/thno.42387] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Potential adverse effects of fluoride on neurodevelopment has been extensively explored and mitochondria have been recognized as critical targets. Mitochondrial biogenesis serves a crucial role in maintaining mitochondrial homeostasis and salubrious properties of resveratrol (RSV) has been well-defined. However, the molecular mechanisms governing mitochondrial biogenesis in developmental fluoride neurotoxicity remain unclear and the related therapeutic dietary agent is lacking. Methods: In vitro neuroblastoma SH-SY5Y cells and in vivo Sprague-Dawley rat model of developmental fluoride exposure were adopted. A total population of 60 children under long-term stable fluoride exposure were also recruited. This work used a combination of biochemical and behavioral techniques. Biochemical methods included analysis of mitochondrial function and mitochondrial biogenesis, as well as mRNA and protein expression of mitochondrial biogenesis signaling molecules, including silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM). Behavioral studies investigated spatial learning and memory ability of rats. Results: Both in vivo and in vitro experiments showed that sodium fluoride (NaF) caused mitochondrial dysfunction and impaired mitochondrial biogenesis. Also, NaF elevated SIRT1 levels and suppressed SIRT1 deacetylase activity along with decreased levels of PGC-1α, NRF1 and TFAM, suggestive of dysregulation of mitochondrial biogenesis signaling molecules. Moreover, enhancement of mitochondrial biogenesis by TFAM overexpression alleviated NaF-induced neuronal death through improving mitochondrial function in vitro. Further in vivo and in vitro studies identified RSV, the strongest specific SIRT1 activator, improved mitochondrial biogenesis and subsequent mitochondrial function to protect against developmental fluoride neurotoxicity via activating SIRT1-dependent PGC-1α/NRF1/TFAM signaling pathway. Noteworthy, epidemiological data indicated intimate correlations between disturbed circulating levels of mitochondrial biogenesis signaling molecules and fluoride-caused intellectual loss in children. Conclusions: Our data suggest the pivotal role of impaired mitochondrial biogenesis in developmental fluoride neurotoxicity and the underlying SIRT1 signaling dysfunction in such neurotoxic process, which emphasizes RSV as a potential therapeutic dietary agent for relieving developmental fluoride neurotoxicity.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qiang Niu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingwen Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pei Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lixin Dong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
21
|
Abstract
Although actively disputed and questioned, it has been proposed that chronic exposure to inorganic fluoride (F-) is toxic for brain. The major question for this review was whether an excessive F- intake is causally related to adverse neurological and cognitive health conditions in human beings and animals. The paper systematically and critically summarizes the findings of the studies showing positive associations between F- intoxication and various intellectual defects, as well as of those which attempted to clarify the nature of F- neurotoxicity. Many works provide support for a link between pre- and postnatal F- exposure and structural and functional changes in the central nervous system responsible for neurological and cognitive disorders. The mechanisms suggested to underlie F- neurotoxicity include the disturbances in synaptic transmission and synaptic plasticity, premature death of neurons, altered activities of components of intracellular signaling cascades, impaired protein synthesis, deficit of neurotrophic and transcriptional factors, oxidative stress, metabolic changes, inflammatory processes. However, the majority of works have been performed on laboratory rodents using such F- doses which are never exist in the nature even in the regions of endemic fluorosis. Thus, this kind of treatment is hardly comparable with human exposure even taking into account the higher rate of F- clearance in animals. Of special importance are the data collected on humans chronically consuming excessive F- doses in the regions of endemic fluorosis or contacting with toxic F- compounds at industrial sites, but those works are scarce and often criticized due to low quality. New, expertly performed studies with repeated exposure assessment in independent populations are needed to prove an ability of F- to impair neurological and intellectual development of human beings and to understand the molecular mechanisms implicated in F--induced neurotoxicity.
Collapse
Affiliation(s)
- N I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | - O V Nadei
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| |
Collapse
|
22
|
Oyagbemi AA, Adebiyi OE, Adigun KO, Ogunpolu BS, Falayi OO, Hassan FO, Folarin OR, Adebayo AK, Adejumobi OA, Asenuga ER, Ola-Davies OE, Omobowale TO, Olopade JO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Oguntibeju OO, Yakubu MA. Clofibrate, a PPAR-α agonist, abrogates sodium fluoride-induced neuroinflammation, oxidative stress, and motor incoordination via modulation of GFAP/Iba-1/anti-calbindin signaling pathways. ENVIRONMENTAL TOXICOLOGY 2020; 35:242-253. [PMID: 31710167 DOI: 10.1002/tox.22861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Fluoride is an environmental contaminant that is ubiquitously present in air, water, and soil. It is commonly added in minute quantity to drinking water, toothpaste, and mouth rinses to prevent tooth decay. Epidemiological findings have demonstrated that exposure to fluoride induced neurodevelopmental toxicity, developmental neurotoxicity, and motor disorders. The neuroprotective effect of clofibrate, a peroxisome proliferator-activated receptor alpha agonist, was investigated in the present study. Forty male Wistar rats were used for this study and randomly grouped into 10 rats per group as control, sodium fluoride (NaF) alone (300 ppm), NaF plus clofibrate (250 mg/kg), and NaF plus lisinopril (10 mg/kg), respectively, for 7 days. NaF was administered in drinking water while clofibrate and lisinopril were administered by oral gavage. Markers of neuronal inflammation and oxidative stress, acetylcholinesterase activity, and neurobehavioral (hanging wire and open field) tests were performed. Immunohistochemistry was performed on brain tissues, and they were probed with glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, and cerebellar Ca2+ -binding protein calbindin-D28k. The results showed that NaF significantly increased of oxidative stress and neuroinflammation and inhibited AChE activity. Immunostaining showed reactive astrocytes, microgliosis, loss of dendritic spines, and arborization in Purkinje cells in rats administered only NaF. Neurobehavioral results showed that cotreatment of NaF with clofibrate improved muscular strength and locomotion, reduced anxiety, and significantly reduced astrocytic count. Overall, cotreatment of NaF with either clofibrate or lisinopril showed neuroprotective effects by mitigating neuronal inflammation and oxidative and motor incoordination. Hence, clofibrate could be seen as a novel drug candidate against neurodegeneration and motor disorders.
Collapse
Affiliation(s)
- Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olamide E Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Kabirat O Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing S Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke O Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Fasilat O Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Oluwabusayo R Folarin
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
- Department of Medical Laboratory Science, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adedeji K Adebayo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olumuyiwa A Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Ebunoluwa R Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke E Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Temidayo O Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - James O Olopade
- Department of Medical Laboratory Science, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale B Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Sanah M Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Faculty of Veterinary Science, Onderstepoort, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Faculty of Veterinary Science, Onderstepoort, South Africa
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh A Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Texas Southern University, Houston, Texas
| |
Collapse
|
23
|
Ge Y, Song X, Chen L, Hu D, Hua L, Cui Y, Liu J, An Z, Yin Z, Ning H. Cadmium induces actin cytoskeleton alterations and dysfunction in Neuro-2a cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:469-475. [PMID: 30614199 DOI: 10.1002/tox.22700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is considered a possible etiological factor in neurodegenerative diseases. However, the exact mechanism by which Cd induces neurotoxicity is not well elucidated. In this study, Neuro-2a cells were treated with 0, 10, 20, and 40 μM cadmium chloride for 24 hours to investigate the effects of Cd on the cytoskeleton of nerve cells. MTT assay and ELISA assay were used to examine cell viability and release of lactate dehydrogenase (LDH) from cells, respectively. Results showed that Cd reduced cell viability and increased the release of LDH in a dose-dependent manner (P < 0.05). The morphology of treated cell was damaged as indicated by cell collapse and dimensionality reduction. Moreover, the axonal spines and normal features of Cd-treated neurons disappeared. We checked the ultrastructure of Neuro-2a cells and found that Cd-induced swelling, membrane damage, overflow of cytoplasm contents, and cell fragmentation. Damaged mitochondria, expanded endoplasmic reticulum, and abnormal microfilaments were found in Cd-treated cells rather than in untreated cells. Compared with the control group, the relative release of glutamate in the supernatant after Cd treatment was reduced, indicating that Cd exposure could reduce the release of glutamate by inhibiting the function of nerve-2a cells. Cd decreased the mRNA and protein expression levels of cytoskeletal proteins including DBN, SYP, and TAU, which might promote cytoskeleton alterations in Cd-treated cells. In conclusion, Cd-induced actin cytoskeleton alterations and dysfunction of cultured neurons. The results of the present study provide new insights for the investigation of Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaochao Song
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Liushuai Hua
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yunli Cui
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Junwei Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhixing An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
24
|
Ge Y, Chen L, Yin Z, Song X, Ruan T, Hua L, Liu J, Wang J, Ning H. Fluoride-induced alterations of synapse-related proteins in the cerebral cortex of ICR offspring mouse brain. CHEMOSPHERE 2018; 201:874-883. [PMID: 29567471 DOI: 10.1016/j.chemosphere.2018.02.167] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Fluoride (F) exposure causes cognitive dysfunction in humans and animals. However, the precise molecular mechanisms by which fluoride exerts its neurotoxic effects are poorly understood. In this study, an animal model of fluoride exposure was created by providing ICR mice were treated with vehicle F at a dose of 0 (control group), 50 (low-fluoride group) or 100 mg/L (high-fluoride group) in water for one month. After the mice mated, parents and offspring were treated and maintained under these conditions. The cognitive abilities of the mice were examined using a Morris water maze test. Results indicated that fluoride exposure significantly prolonged the escape latency period and decreased the number of crossings in a particular zone. Histopathologic analysis revealed the shrinkage and fragmentation of glial cells in the fluoride-treated groups. Pyramidal cells in the cerebral cortices of fluoride-treated groups were fewer than those of the control group. The expression of microtubule-associated protein 2 (MAP2) and synaptic proteins of the cerebral cortex in mouse offspring was assayed using RT-PCR and Western blot. Fluoride exposure possibly induced a significantly decreased expression of MAP2, synaptophysin (SYP) and developmentally regulated brain protein (Dbn) at protein and mRNA levels. Glutamate receptor (N-methyl-d-aspartate receptor, NMDAR) was also expressed, and this finding was consistent with the reduced MAP2, SYP and Dbn expression. Therefore, fluoride-mediated reduction in cognitive dysfunction is likely caused by the disruption of the expression of these synapse-associated proteins, resulting in attenuated neuronal functioning.
Collapse
Affiliation(s)
- Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, PR China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, PR China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, PR China
| | - Xiaochao Song
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, PR China
| | - Tao Ruan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Liushuai Hua
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, PR China
| | - Junwei Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, PR China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, PR China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
25
|
Li J, Shi Y, Fan H, Li Y, Zhu Y, Lin X, Zhang J. Effects of Fluoride on Surface Structure of Primary Culture Leydig Cells in Mouse. Biol Trace Elem Res 2018; 183:123-127. [PMID: 28812227 DOI: 10.1007/s12011-017-1121-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/04/2017] [Indexed: 02/02/2023]
Abstract
Fluoride (F) is known to induce reproduction toxicity, and the elucidation of its underlying mechanisms is an ongoing research. These findings aim to provide deeper insights into roles of soduim fluoride (NaF) in testis damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity. The Leydig cells were administrated by 0, 5, 10, and 20 mg/L NaF for 24 h, respectively. Scanning electron microscope was used to identify the change of surface structure in the Leydig cells. The results showed that fluoride exposure of high-dose induced bulged balloon in the membrane of the Leydig cell. We speculated that high doses of NaF inhibited cell proliferation and induced cell apoptosis in Leydig cells. This is the first time that we have reported that fluoride impaired cytomembrane and cytoskeleton of the Leydig cells in vitro treated with different doses of fluoride for 24 h by using a scanning electron microscope. Damage to the cytoskeleton and cytomembrane may be one of the reasons of male reproductive toxicity induced by fluoride.
Collapse
Affiliation(s)
- Jian Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yan Shi
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Hua Fan
- Experimental Teaching Center, Shanxi Agriculture University, Taigu, Shanxi, 030801, China
| | - Yanyan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yuchen Zhu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xijun Lin
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|